MLDS Caffe Tutorial

2015-12-18 **simpdanny**

Outline

- BVLC: Berkeley Vision and Learning Center
- Caffe: Convolutional Architecture for Fast Feature Embedding
- What can Caffe do?
- Installation
- Tutorial
- Conclusion

Caffe

- Convolutional Architecture for Fast Feature Embedding
- http://caffe.berkeleyvision.org/

Caffe: Convolutional Architecture for Fast Feature Embedding*

Yangqing Jia*, Evan Shelhamer*, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell
SUBMITTED to ACM MULTIMEDIA 2014 OPEN SOURCE SOFTWARE COMPETITION
UC Berkeley EECS, Berkeley, CA 94702
{jiayq,shelhamer,jdonahue,sergeyk,jonlong,rbg,sguada,trevor}@eecs.berkeley.edu

Notes

- •CNN/DNN
- Different training objective function
- Different optimization algorithm
- Program control
- Model Zoo
- ●C++ Framework
- NO LSTM/RNN

CNN/DNN modules

Vision Layer

Convolution/ Pooling/ Local Response Normalization

Common Layer

- InnerProduct(= DNN fully-connected weights)
- batch normalization
- element-wise summation/product/BNLL
- dropout layer

Activation Layer(Non-linearity)

Sigmoid/Tanh/ReLU/PReLU

Utility Layer

Dimension slicing/concatenation/flattening/reshaping

Training Loss Layer

- CrossEntropyLoss
- L1, L2 Loss, pair-wise contrasive loss
- Multitask Learning with loss weights
- Accuracy Layer: for evaluation only.

Optimization Algorithms

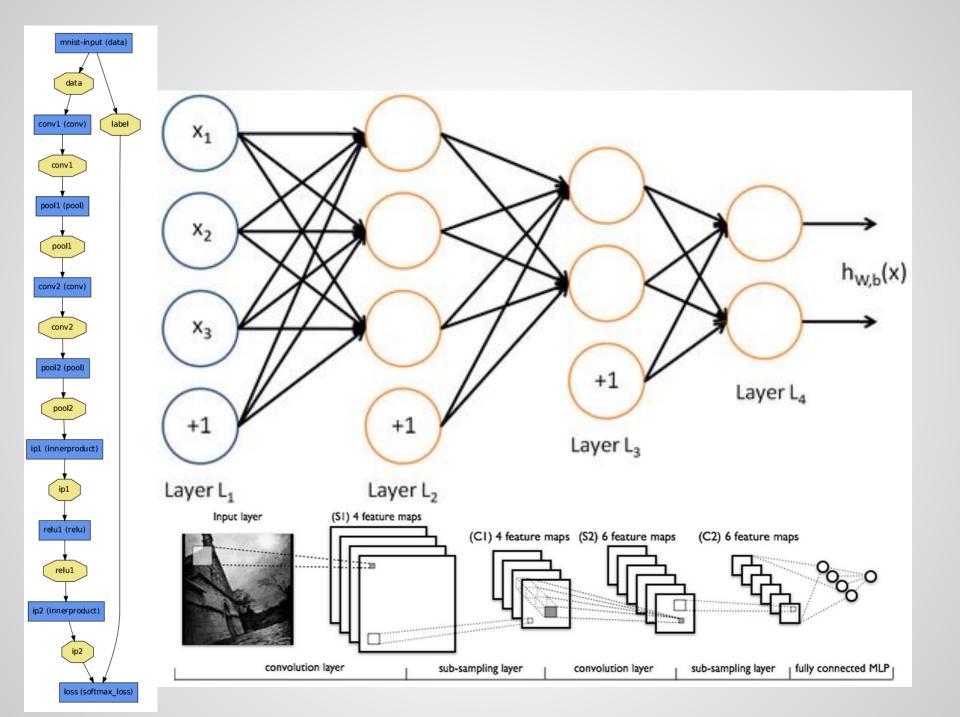
- SGD, RMSProp, ADAM, ADADELTA, ADGRAD...
- Momentum
- Learning Rate Adjustment Policies
 - decay, step-decay, exp-decay
- Regularization
 - o weight-decay, L1 decay

Program Control

- Snapshot (solverstate)
- •Phase:
 - Convention: Train/Validation/Test
 - Caffe: Train/Test/Deploy
 - You could assign different action w.r.t different phase.

Caffe Program Interface

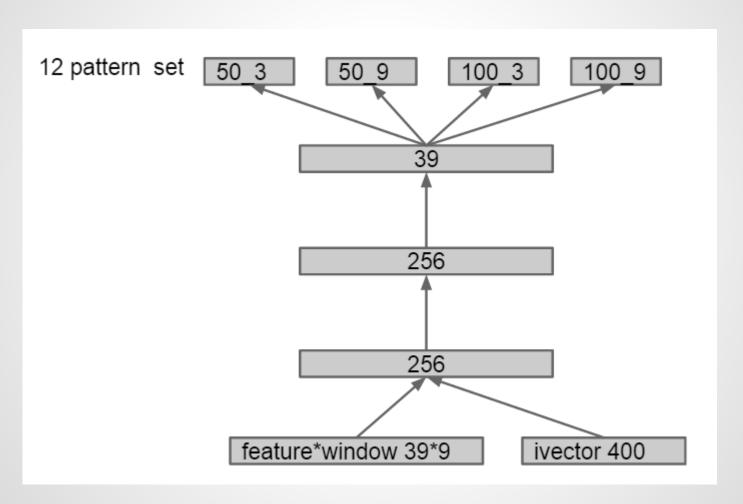
- You can provide meta data without actually implement the deep learning algorithms.
- You can extend the module and implement your own ideas.



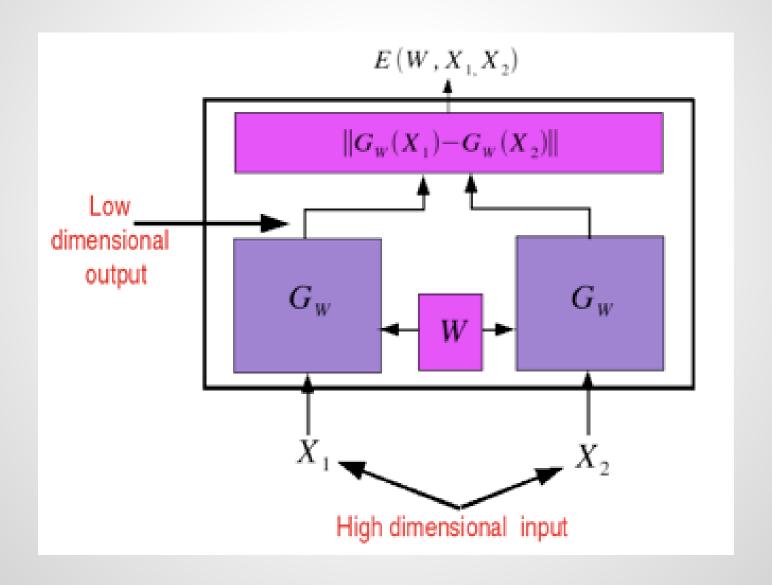
What can Caffe do?

- Multitask learning
 - Multi-target, Multi-loss
- Parameters share training
 - Siamese Neural Network
- Easy to integrated into online system.
 - With known distributed database, protocol...
 - C++, Python and Matlab binding.

Multitask Learning



Siamese Neural Network



Introduction

- The goal of Caffe is to find the effective representations(feature embedding) for various inputs, such as images and sounds, with help of deep learning and GPU acceleration.
 - There does exist cross-domain feature embedding among different tasks.
 - Utilize CUDA(cuDNN) to achieve acceptable training time.

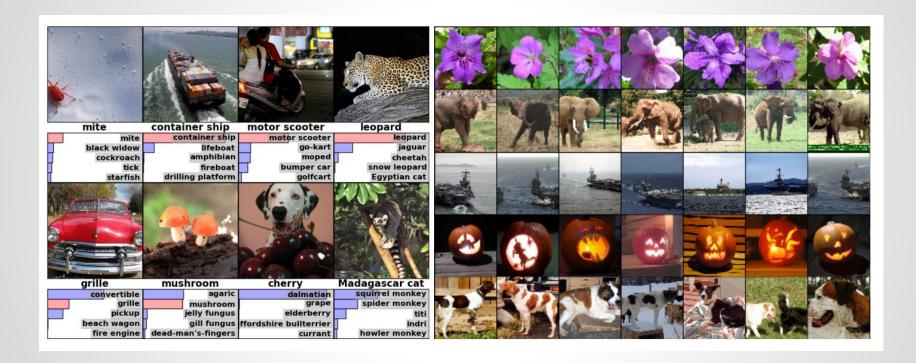
Introduction

- Caffe is designed for images and based on state-of-the-art CNN. However, the concept of feature embedding shares among other works(e.g. speech recognition).
 - Yes, Caffe supports non-image tasks with a bit more efforts.

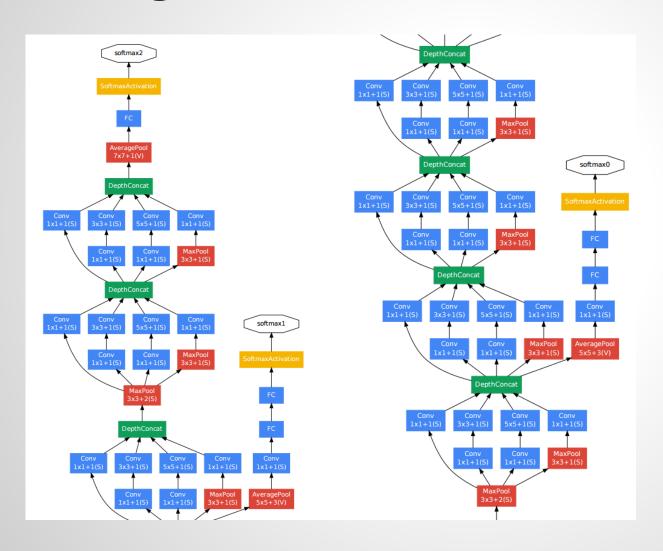
Introduction

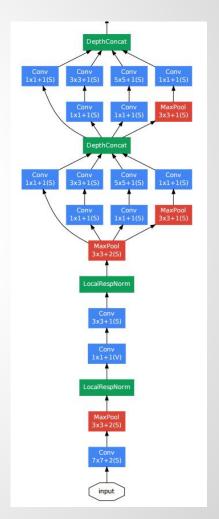
- Caffe provided well-known and welltrained models, offering state-of-the-art researching and off-the-shelf deployment.
 - ImageNet: classify images into 22000 categories.
 - GoogleNet: classify images into 1000 categories.
 - R-CNN: object detection (20 or 200 types)

ImageNet

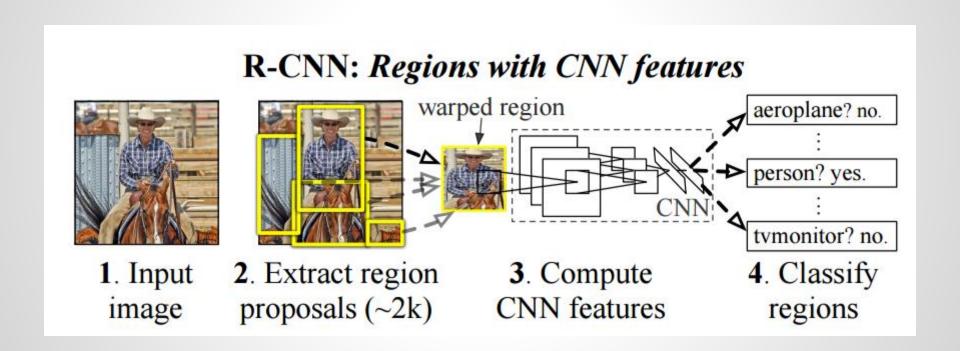


GoogleNet





R-CNN



Highlights

- Complete toolkit for training, testing, finetuning and deploying.
- Modularity
 - Extensible
 - Forward, backward, CPU/GPU version.
- Good coding style and huge community
 - Only well-test idea would be merged into Caffe
 - Distributed developed with many coders.
 - Clearly logging, documentation, robust, bullet proof, easy-understanding message...

Highlights

- Python/Matlab binding
 - Online deploying interface
 - Online training is not intuitively integrated but able to.
- Pre-trained models

Architecture

- C++ implementation
 - Well-known efficiency.
- Saving models in GPBL.
 - Google Protocol Buffer Language
 - Human-readable, efficient serialization and implemented in multiple interface.
- Online training
 - Memory data.
- Offline training
 - <u>LevelDB</u> database for image data
 - HDF5 database for general purpose.

Application

- Object Classification/Detection
 - ∘ ImageNet
 - o Demo

Application

- Learning Feature Embedding
 - ImageNet
 - Using pre-trained models as feature extractor

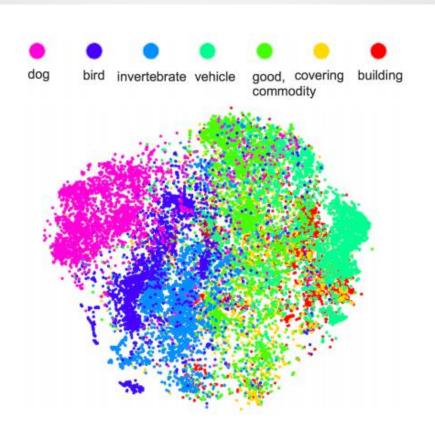


Figure 3: Features extracted from a deep network, visualized in a 2-dimensional space. Note the clear separation between categories, indicative of a successful embedding.

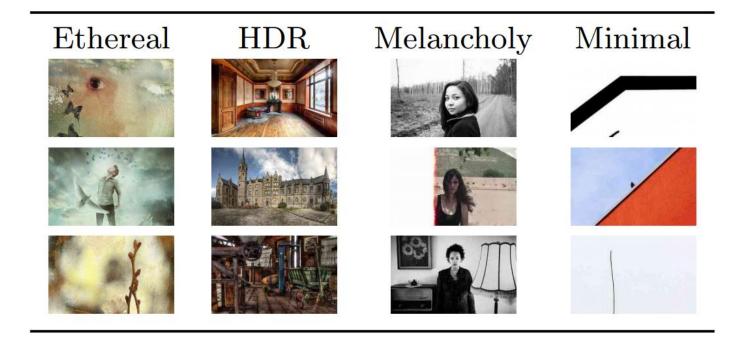


Figure 4: Top three most-confident positive predictions on the Flickr Style dataset, using a Caffetrained classifier.

Tutorial

- Installation
 - Prerequisite/Core/Wrappers
- Data Preprocessing
 - LevelDB/HDF5
- Models
 - o description, model weights, protobuf
- Solver
 - o description, solver state
- Training/Testing/Fine-tuning/Deploying

Warning

- Caffe is not officially supporting Windows OS. Ubuntu/CentOS is recommended.
- Caffe is not officially supporting Windows OS. Ubuntu/CentOS is recommended.
- Caffe is not officially supporting Windows OS. Ubuntu/CentOS is recommended.
- ●不要問我windows怎麼灌。

Installation

Install Prerequisite

- CUDA and cuDNN
- BLAS via OpenBLAS, MKL, or ATLAS
- sudo apt-get install Boost/OpenCV/protobuf/glog/gflags/hdf5/leveldb/snappy/lmdb

Install Caffe

- prepare Makefile.config from Makefile.config.example
- make all && make test && make runtest

Install Python wrapper(optional but recommended)

- for req in \$(cat requirements.txt); do pip install \$req; done
- export PYTHONPATH=/path/to/caffe/python:\$PYTHONPATH

Data Preprocessing

- Input data must be 4D array:
 - Image: (number, channel, height, width)
 - Non-image: (number, dimension , 1 , 1)
- Training target is usually 2D array:
 - Label: (number, dimension)
- Online Memory
 - (C++) MemoryDataLayer::Reset()
 - (python) Net.set_input_arrays()
- Offline database
 - prepare a directory contain all the images
 - prepare <u>lmdb</u>(python) or <u>leveldb</u>(c++) for images
 - o prepare hdf5(python) for general purposes
 - prepare train.list/test.list comprising the path

Description

- DAG layered structure written in json format.
- Data Layers: read from data, only out-degree
- Activation/Neuron Layers: perform forward/backward pass.
- Loss Layers: nn output, only in-degree
- Common Layers: for utility
- Each type of layers contain its own parameters
- Different layer parameter could share!

```
name: "LeNet"
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  transform param {
    scale: 0.00390625
  data_paralli {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size.
    backend: LMDB
```

```
layer {
 name: "mnist"
 type: "Data"
 top: "data"
 top: "label"
  include {
    phase: TEST
  transform param {
    scale: 0.00390625
  data nanam
    source: "examples/mnist_mnist_test_lmdb"
    batch size. 10
    backend: LMDB
```

```
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "ip2"
  bottom: "label"
}
```

```
layers {
 name: "fc8"
 type: INNER_PRODUCT
 blobs lr: 1
                     # learning rate multiplier for the filters
 blobs_lr: 2  # learning rate multiplier for the biases
 weight decay: 1
                     # weight decay multiplier for the filters
 weight_decay: 0  # weight decay multiplier for the biases
 inner_product_param {
   num_output: 1000
   weight_filler {
    type: "gaussian"
     std: 0.01
   bias_filler {
     type: "constant"
     value: 0
 bottom: "fc7"
 top: "fc8"
```

```
layers {
  name: "slicer_label"
  type: SLICE
  bottom: "label"
  ## Example of label with a shape N x 3 x 1 x 1
  top: "label1"
  top: "label2"
  top: "label3"
  slice_param {
     slice_dim: 1
     slice_point: 1
     slice_point: 2
  }
}
```

```
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {
    name: "conv1_w"
    lr_mult: 1
 param {
    name: "conv1_b"
    lr_mult: 2
```

```
layer {
 name: "conv1_p"
 type: "Convolution"
 bottom: "data_p"
 top: "conv1_p"
 param {
    name: "conv1_w"
    lr_mult: 1
  param {
    name: "conv1_b"
    lr_mult: 2
```

- Model Weights
 - o x.caffemodel
 - store in GPBL format
 - o prototype

```
message LayerParameter {
  optional string name = 1; // the layer name
  optional string type = 2; // the layer type
  repeated string bottom = 3; // the name of each bottom blob
  repeated string top = 4; // the name of each top blob
```

```
# The train/test net protocol butter definition
Solver net: "examples/mnist/lenet_train_test.prototxt"
                   # test ite. posifies how many former a passes the test should carry out.
                   # In the case of MNIST, we have test batch size 100 and 100 test iterations,
                   # covering the full 10,000 testing images.
                   test iter: 100
                   # Carry out testing every 500 training iterations.
                   test interval: 500
                   # The base learning rate, momentum and the weight decay of the network.
                   base lr: 0.01
                   momentum: 0.9
                   weight_decay: 0.0005
                   # The learning rate policy
                   lr policy: "inv"
                   gamma: 0.0001
                   power: 0.75
                   # Display every 100 iterations
                   display: 100
                   # The maximum number of iterations
                   max iter: 10000
                   # snapshot intermediate results
                   snapshot: 5000
                   snapshot prefix: "examples/mnist/lenet"
                   # solver mode: CPU or GPU
                   solver mode: GPU
```

Training and Testing

- Preparation:
 - o data
 - model description(nnet.prototxt)
 - solver description(solver.prototxt)
- You can specify two phase
 - training -> calculate loss, gradients, backward pass and update
 - testing -> calculate accuracy/loss
- •run:
 - caffe train --solver=solver.prototxt

Fine-tuning

- Preparation:
 - o data
 - model description(nnet.prototxt)
 - solver description(solver.prototxt)
 - pre-trained models(pretrain.caffemodel)

•run:

caffe train --solver=solver.prototxt -weights=pretrain.caffe

Deploying

- Preparation:
 - o data
 - model description(deploy.prototxt)
 - well-train model(well_train.caffemodel)
 - opycaffe if you use python
 - your own code(python, c++ or matlab)
- deploy.prototxt is slightly different

Deploying(python example)

- Add data description in deploy.prototxt
 - remove any DATA_LAYER
- In python, import caffe
 - o net = caffe.Classifier(MODEL_FILE, PRETRAINED)
 - ouse numpy array to prepare your input data
 - o net.blobs['data'].reshape(input_shape)
 - out = net.forward(data=input)
 - use out['label'] to get any output you want.

```
name: "LeNet"
input: "data"
input_dim: 64
input_dim: 1
input_dim: 28
input_dim: 28
```

Final Recommendation

- ●Caffe is easy and flexible to use, but not that efficient. 甚至可以不用寫程式XD
- •For complicated structure with multi-loss layer, weight sharing and advanced optimization, caffe is good.
- However, you should prepare data in the specified format
 - HDF5, LMDB, LEVELDB...
 - offline training/testing is easy and preferred
- For online procedure, you must write your own code to deploy.