Neural Network (Basic Ideas) Hung-yi Lee

Learning ≈ Looking for a Function

Speech Recognition

Handwritten Recognition

Weather forecast

$$f($$
 weather today $)=$ "sunny tomorrow"

Play video games

$$f(\begin{array}{c} \text{Positions and} \\ \text{number of enemies} \end{array}) = \text{"fire"}$$

Framework

x:

 \hat{y} : "2" (label)

Outline

1. What is the model (function hypothesis set)?

2. What is the "best" function?

3. How to pick the "best" function?

Task Considered Today

Classification

Binary Classification

Only two classes

Spam filtering

- Is an e-mail spam or not?
- Recommendation systems
 - recommend the product to the customer or not?
- Malware detection
 - Is the software malicious or not?
- Stock prediction
 - Will the future value of a stock increase or not?

Task Considered Today

Classification

Binary Classification

Only two classes

Class A (yes) object Class B (no)

Multi-class Classification

More than two classes

Multi-class Classification

Handwriting Digit Classification

Input:

Class: "1", "2",, "9", "0"

10 classes

Image Recognition

Input:

Class: "dog", "cat", "book",

Thousands of classes

Multi-class Classification

• *Real* speech recognition is not multi-class classification

Classes: "hi", "how are you", "I am sorry"

Cannot be enumerated

 The HW1 is multi-class classification

The frame belongs to which *phoneme*.

Classes are the phonemes.

1. What is the model?

What is the function we are looking for?

classification

$$y = f(x) \qquad f: R^N \to R^M$$

- x: input object to be classified
- y: class
- Assume both x and y can be represented as fixed-size vector
 - x is a vector with N dimensions, and y is a vector with M dimensions

What is the function we are looking for?

Handwriting Digit Classification

 $f: \mathbb{R}^N \to \mathbb{R}^M$

x: image

Each pixel corresponds to an element in the vector

y: class

10 dimensions for digit recognition

1. What is the model? A Layer of Neuron

Single Neuron

$$f: \mathbb{R}^N \to \mathbb{R}$$

Single Neuron

$$f: \mathbb{R}^N \to \mathbb{R}$$

Single Neuron $f: \mathbb{R}^N \to \mathbb{R}$

 Single neuron can only do binary classification, cannot handle multi-class classification

A Layer of Neuron $f: \mathbb{R}^N \to \mathbb{R}^M$

Handwriting digit classification

• Classes: "1", "2",, "9", "0"

If y_2 is the max, then the image is "2".

1. What is the model? Limitation of Single Layer

Limitation of Single Layer

Input		Output
x_1	X ₂	Output
0	0	No
0	1	Yes
1	0	Yes
1	1	No

Limitation of Single Layer

No, we can't

Limitation of Single Layer

Input		Output
x_1	X ₂	Output
0	0	No
0	1	Yes
1	0	Yes
1	1	No

Neural Network

Neural Network

1. What is the model? Neural Network

Neural Network as Model

 $f: \mathbb{R}^N \to \mathbb{R}^M$

- > Fully connected feedforward network
- ➤ Deep Neural Network: many hidden layers

Layer l-1 N_{l-1} nodes

 $\boldsymbol{\mathcal{Z}}_i^l$: input of the activation function for neuron i at layer I

 $\boldsymbol{\mathcal{Z}}^l$: input of the activation function all the neurons in layer I

$$z_i^l = w_{i1}^l a_1^{l-1} + w_{i2}^l a_2^{l-1} \dots + b_i^l$$

$$z_i^l = \sum_{j=1}^{N_{l-1}} w_{ij}^l a_j^{l-1} + b_i^l$$

Layer l-1 Layer l

 N_{l-1} nodes N_l nodes

Notation - Summary

```
a_i^l :output of a neuron w_{ij}^l : a weight
```

$$a^l$$
 :output of a layer \mathbf{W}^l : a weight matrix

$$oldsymbol{\mathcal{Z}}_i^l$$
 : input of activation $oldsymbol{b}_i^l$: a bias function

$$\mathcal{Z}^l$$
 : input of activation \mathcal{b}^l : a bias vector function for a layer

Function of Neural Network

Function of Neural Network

Layer 1 Layer 2 Layer L Input Output $\mathbf{W}^1, b^1 \qquad \mathbf{W}^2, b^2 \qquad \mathbf{W}^L, b^L$ y₂ vector vector X

$$y = f(x)$$

$$= \sigma(\mathbf{W}^{L} \dots \sigma(\mathbf{W}^{2} \sigma(\mathbf{W}^{1} x + b^{1}) + b^{2}) \dots + b^{L})$$

2. What is the "best" function?

Best Function = Best Parameters

$$y = f(x) = \sigma(\mathbf{W}^L \dots \sigma(\mathbf{W}^2 \sigma(\mathbf{W}^1 x + b^1) + b^2) \dots + b^L)$$

function set

because different parameters W and b lead to different function

Formal way to define a function set:

$$f(x; \theta) \rightarrow \text{parameter set}$$

 $\theta = \{W^1, b^1, W^2, b^2 \cdots W^L, b^L\}$

Pick the "best" function f*

Pick the "best" parameter set θ^*

Cost Function

- Define a function for parameter set $C(\theta)$
 - $C(\theta)$ evaluate how bad a parameter set is
 - The best parameter set θ^* is the one that minimizes $C(\theta)$

$$\theta^* = \arg\min_{\theta} C(\theta)$$

- $C(\theta)$ is called **cost/loss/error function**
 - If you define the goodness of the parameter set by another function $O(\theta)$
 - $O(\theta)$ is called objective function

Cost Function

Given training data:

$$\{(x^1, \hat{y}^1)...(x^r, \hat{y}^r)...(x^R, \hat{y}^R)\}$$

Handwriting Digit Classification

3. How to pick the "best" function?

Gradient Descent

Statement of Problems

- Statement of problems:
 - There is a function C(θ)
 - θ represents parameter set
 - $\theta = \{\theta_1, \theta_2, \theta_3, \dots \}$
 - Find θ^* that minimizes $C(\theta)$
- Brute force?
 - Enumerate all possible θ
- Calculus?
 - Find θ^* such that $\left. \frac{\partial C(\theta)}{\partial \theta_1} \right|_{\theta = \theta^*} = 0, \frac{\partial C(\theta)}{\partial \theta_2} \right|_{\theta = \theta^*} = 0, \dots$

Gradient Descent – Idea

• For simplification, first consider that θ has only one variable

Gradient Descent – Idea

η is called "learning rate"

• For simplification, first consider that θ has only one

Gradient Descent

- Suppose that θ has two variables $\{\theta_1, \theta_2\}$
- ightharpoonup Randomly start at $\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$
- ightharpoonup Compute the gradients of $C(\theta)$ at θ^0 : $\nabla C(\theta^0) = \begin{vmatrix} \partial C(\theta_1^0)/\partial \theta_1 \\ \partial C(\theta_2^0)/\partial \theta_2 \end{vmatrix}$
- Update parameters

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(\theta_1^0)}{\partial C(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla C(\theta^0)$$

- **>**

Gradient Descent

Formal Derivation of Gradient Descent

Formal Derivation of Gradient Descent

• **Taylor series**: Let h(x) be infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x - x_0)^k$$

$$= h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \dots$$

When x is close to $x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$

E.g. Taylor series for h(x)=sin(x) around $x_0=\pi/4$

$$\sin(x) = \frac{1}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^3}{6\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^4}{24\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^5}{120\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^6}{720\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^8}{120\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^8}{40320\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^9}{362880\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^{10}}{3628800\sqrt{2}} + \dots$$

Multivariable Taylor series

$$h(x, y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

+ something related to $(x-x_0)^2$ and $(y-y_0)^2 +$

When x and y is close to x_0 and y_0

$$h(x, y) \approx h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)$$

Formal Derivation of Gradient Descent

Based on Taylor Series:

If the red circle is *small enough*, in the red circle

$$C(\theta) \approx C(a,b) + \frac{\partial C(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial C(a,b)}{\partial \theta_2} (\theta_2 - b)$$

$$s = C(b)$$

$$u = \frac{\partial \mathbf{C}(a,b)}{\partial \theta_1}, v = \frac{\partial \mathbf{C}(a,b)}{\partial \theta_2} \quad \theta_2^{\text{0.0}}$$

$$C(\theta)$$

$$\approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Formal Derivation of Gradient Descent

$$u = \frac{\partial \mathbf{C}(a,b)}{\partial \theta_1}, v = \frac{\partial \mathbf{C}(a,b)}{\partial \theta_2}$$

Based on Taylor Series:

If the red circle is *small enough*, in the red circle

$$C(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

Find θ_1 and θ_2 yielding the smallest value of $C(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C(a,b)}{\partial \theta_1} \\ \frac{\partial C(a,b)}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \nabla C(a,b)$$

Its value depending on the radius of the circle, u and v.

This is how gradient descent updates parameters.

Gradient Descent for Neural Network

Compute
$$\nabla C(\theta^0)$$

 $\theta^1 = \theta^0 - \eta \nabla C(\theta^0)$
Compute $\nabla C(\theta^1)$
 $\theta^2 = \theta^1 - \eta \nabla C(\theta^1)$

Starting Parameters

$$\theta^0 \longrightarrow \theta^1 \longrightarrow \theta^2 \longrightarrow \dots$$

$$\nabla C(\theta)$$

$$\theta = \left\{ \mathbf{W}^1, b^1, \mathbf{W}^2, b^2, \dots, \mathbf{W}^l, b^l, \dots, \mathbf{W}^L, b^L \right\}$$

$$= \begin{bmatrix} \vdots \\ \frac{\partial \mathbf{C}(\theta)}{\partial w_{ij}^{l}} \\ \vdots \\ \frac{\partial \mathbf{C}(\theta)}{\partial b_{i}^{l}} \\ \vdots \end{bmatrix}$$

$$egin{bmatrix} w_{11}^l & w_{12}^l & \cdots \ w_{21}^l & w_{22}^l \ dots & \ddots \ \end{bmatrix} egin{bmatrix} b_1^l \ b_2^l \ dots \ b_i^l \ dots \ \end{bmatrix}$$

Millions of parameters

To compute the gradients efficiently, we use **backpropagation**.

Stuck at local minima?

- Who is Afraid of Non-Convex Loss Functions?
- http://videolectures.ne t/eml07_lecun_wia/
- Deep Learning: Theoretical Motivations
- http://videolectures.ne t/deeplearning2015_be ngio_theoretical_motiv ations/

3. How to pick the "best" function?

Practical Issues for neural network

Practical Issues for neural network

- Parameter Initialization
- Learning Rate
- Stochastic gradient descent and Mini-batch
- Recipe for Learning

Parameter Initialization

- For gradient Descent, we need to pick an initialization parameter θ^0 .
- The initialization parameters have some influence to the training.
 - We will go back to this issue in the future.
- Suggestion today:
 - Do not set all the parameters θ^0 equal
 - Set the parameters in θ^0 randomly

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

• Set the learning rate η carefully

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

Set the learning rate η carefully

Toy Example

$$x \xrightarrow{w} + z \xrightarrow{z} y$$

$$y = z$$

$$\theta^* = \begin{bmatrix} w = 1 \\ b = 0 \end{bmatrix}$$

Training Data (20 examples)

x = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5]y = [0.1, 0.4, 0.9, 1.6, 2.2, 2.5, 2.8, 3.5, 3.9, 4.7, 5.1, 5.3, 6.3, 6.5, 6.7, 7.5, 8.1, 8.5, 8.9, 9.5]

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

Toy Example

Error Surface: C(w,b)

Toy Example

Different learning rate η

$$C(\theta) = \frac{1}{R} \sum_{r} ||f(x^{r}; \theta) - \hat{y}^{r}||$$
$$= \frac{1}{R} \sum_{r} C^{r}(\theta)$$

Gradient Descent

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1})$$

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1}) \qquad \nabla C(\theta^{i-1}) = \frac{1}{R} \sum_{r} \nabla C^{r}(\theta^{i-1})$$

Stochastic Gradient Descent

Faster!

Better!

Pick an example x^r

$$\theta^{i} = \theta^{i-1} - \eta \nabla C^{r} (\theta^{i-1})$$

If all example x^r have equal probabilities to be picked

$$E\left[\nabla C^{r}\left(\theta^{i-1}\right)\right] = \frac{1}{R} \sum_{r} \nabla C^{r}\left(\theta^{i-1}\right)$$

What is epoch?

Training Data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots (x^r, \hat{y}^r), \dots (x^R, \hat{y}^R)\}$$

When using stochastic gradient descent

Starting at
$$\theta_0$$
 pick \mathbf{x}^1 $\theta^1 = \theta^0 - \eta \nabla C^1 (\theta^0)$ pick \mathbf{x}^2 $\theta^2 = \theta^1 - \eta \nabla C^2 (\theta^1)$ seen all the pick \mathbf{x}^r $\theta^r = \theta^{r-1} - \eta \nabla C^r (\theta^{r-1})$ examples once in the pick \mathbf{x}^R $\theta^R = \theta^{R-1} - \eta \nabla C^R (\theta^{R-1})$

pick
$$x^1$$
 $\theta^{R+1} = \theta^R - \eta \nabla C^1(\theta^R)$

Toy Example

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

If there are 20 examples, update 20 times in one epoch.

♦ Gradient Descent

$$\theta^{i} = \theta^{i-1} - \eta \nabla C(\theta^{i-1}) \qquad \nabla C(\theta^{i-1}) = \frac{1}{R} \sum \nabla C^{r}(\theta^{i-1})$$

♦ Stochastic Gradient Descent

Pick an example x_r

$$\theta^{i} = \theta^{i-1} - \eta \nabla C^{r} (\theta^{i-1})$$

♦ Mini Batch Gradient Descent

Pick B examples as a batch b

B is batch size

Shuffle your data

$$\theta^{i} = \theta^{i-1} - \eta \frac{1}{B} \sum_{x_r \in b} \nabla C^r (\theta^{i-1})$$

Average the gradient of the examples in the batch b

Handwriting Digit Classification

 Why mini-batch is faster than stochastic gradient descent?

Stochastic Gradient Descent

$$z^1 = W^1 \qquad x \qquad z^1 = W^1 \qquad x \qquad \dots$$

Mini-batch

Practically, which one is faster?

"Best" Function f

 Data provided in homework **Testing Data Training Data Validation Real Testing** y_2

Data provided in homework

Testing Data

Training Data

x ĵ

Validation

x y

Immediately know the accuracy

Real Testing

x y

Do not know the accuracy until the deadline

(what really count)

Do I get good results on training set?

Modify your training process

- ➤ Your code has bug.
- ➤ Can not find a good function
 - Stuck at local minima, saddle points
 - Change the training strategy
- ➤ Bad model
 - There is no good function in the hypothesis function set.
 - Probably you need bigger network

➤ Your code usually do not have bug at this situation.

Recipe for Learning - Overfitting

You pick a "best" parameter set θ*

Training Data:
$$\{...(x^r, \hat{y}^r)...\} \longrightarrow \forall r: f(x^r; \theta^*) = \hat{y}^r$$

However,

Testing Data:
$$\{...x^u...\} \qquad f(x^u;\theta^*) \neq \hat{y}^u$$

Training data and testing data have different distribution.

Training Data:

Testing Data:

Recipe for Learning - Overfitting

- Panacea: Have more training data
 - You can do that in real application, but you can't do that in homework.
- We will go back to this issue in the future.

Concluding Remarks

> Learning Rate

> Recipe for Learning

1. What is the model (function hypothesis set)? **Neural Network** 2. What is the "best" function? **Cost Function** 3. How to pick the "best" function? **Gradient Descent** > Parameter Initialization

> Stochastic gradient descent, Mini-batch

Acknowledgement

- 感謝 余朗祺 同學於上課時糾正投影片上的拼字 錯誤
- 感謝 吳柏瑜 同學糾正投影片上的 notation 錯誤
- 感謝 Yes Huang 糾正投影片上的打字錯誤