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Structured Learning

• What does F(x,y) look like?

Problem 1: Evaluation

• How to solve the “arg max” problem

Problem 2: Inference

• Given training data, how to find F(x,y)

Problem 3: Training

 yxFy
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,maxarg

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𝐹 𝑥, 𝑦 = 𝑤 ∙ 𝜙 𝑥, 𝑦

Structured SVM, etc.

We also know how 
to involve hidden 
information.



Difficulties

𝜙 𝑥, 𝑦

𝐹 𝑥, 𝑦 = 𝑤 ∙ 𝜙 𝑥, 𝑦

Hard to figure out? Hard to interpret the meaning?

Difficulty 1. Evaluation

Difficulty 2. Inference

We can use Viterbi algorithm to deal with sequence 
labeling. How about other cases?

Graphical Model

Gibbs Sampling



Graphical Model
A language which describes the 

evaluation function



Graphical Model

• Define and describe your evaluation function F(x,y) 
by a graph

• There are three kinds of graphical model.

• Factor graph, Markov Random Field (MRF) and 
Bayesian Network (BN)

• Only factor graph and MRF will be briefly 
mentioned today.

𝐹 𝑥, 𝑦 Graph



Decompose F(x,y)

• 𝐹 𝑥, 𝑦 is originally a global function

• Define over the whole x and y

• Based on graphical model, 𝐹 𝑥, 𝑦 is the 
composition of some local functions

• x and y are decomposed into smaller 
components

• Each local function defines on only a few related 
components in x and y

• Which components are related → defined by  
Graphical model 



Decomposable x and y

• x and y are decomposed into smaller components

POS Tagging

John  saw  the  saw.

PN     V  D    N

x:

y:

x:

y:

x1 x2 x3 x4

y1 y2 y3 y4

{word}

{tags}

x1 x2 x3 x4

y1 y2 y3 y4



Factor Graph

YXx1 y1 y2x2

𝐹 𝑥, 𝑦 = 𝑓𝑎 𝑥1, 𝑦1 + 𝑓𝑏 𝑥2, 𝑦1, 𝑦2 + 𝑓𝑐 𝑦2

factor b factor c
𝑓𝑎 𝑥1, 𝑦1 𝑓𝑏 𝑥2, 𝑦1, 𝑦2 𝑓𝑑 𝑦2

factor a

The local functions of the factors are learned from data.

Each factor corresponds to a local 
function.

Each factor influences some 
components.

You only have to define the factors.

Larger value means more compatible.



Factor Graph - Example

• Image De-noising

Noisy image 
x

Clean image 
y

Each pixel is one component

{-1,1}
x7 x8 x9

x4 x5 x6

x1 x2 x3 ……
……

……

{-1,1}
y7 y8 y9

y4 y5 y6

y1 y2 y3 ……
……

……

http://cs.stanford.edu/people/karpathy/visml/ising_example.html

http://cs.stanford.edu/people/karpathy/visml/ising_example.html


a

Factor Graph - Example

a: the values of xi and yiFactor:

noisy 
image

cleaned 
image

b: the values of the neighboring yi

x3 x4

x1 x2

y3 y4

y1 y2

a a

a

𝑓𝑎 𝑥𝑖 , 𝑦𝑖 =  
1 𝑥𝑖 = 𝑦𝑖
−1 𝑥𝑖 ≠ 𝑦𝑖

𝑓𝑏 𝑦𝑖 , 𝑦𝑗 =  
2 𝑦𝑖 = 𝑦𝑗
−2 𝑦𝑖 ≠ 𝑦𝑗

b

b b

b
The weights can be 
learned from data.

The colors in the clean image is smooth.

Noisy and clean images are related



a

Factor Graph - Example

a: the values of xi and yiFactor:

noisy 
image

cleaned 
image

b: the values of the neighboring yi

x3 x4

x1 x2

y3 y4

y1 y2

a a

a

b

b b

b

The colors in the clean image is smooth.

Noisy and clean images are related

𝐹 𝑥, 𝑦 =  

𝑖=1

4

𝑓𝑎 𝑥𝑖 , 𝑦𝑖

+𝑓𝑏 𝑦1, 𝑦2 + 𝑓𝑏 𝑦1, 𝑦3
+𝑓𝑏 𝑦2, 𝑦4 + 𝑓𝑏 𝑦3, 𝑦4

Realize 𝐹 𝑥, 𝑦 easily 
from the factor graph 



Factor Graph - Example

 c: the values of xi and the values of the 
neighboring yi

Factor:

xi-1 xi

yi-1 yi
…… ……

c

d: the values of the neighboring xi and the values 
of yi

c

dd
𝑓𝑐 𝑥𝑖 , 𝑦𝑖 , 𝑦𝑖−1

𝑓𝑑 𝑥𝑖 , 𝑥𝑖−1, 𝑦𝑖

𝑓𝑒 𝑥𝑖 , 𝑥𝑖−1, 𝑦𝑖 , 𝑦𝑖−1

ee



Markov Random Field (MRF)

A

B

C

D

Clique: a set of components connecting to each other

Maximum Clique: a clique that is not included by 
other cliques



MRF Each maximum clique on the graph 
corresponds to a factor

A

B

C

A

B

C

D

A B

Factor GraphMRF

A B C

A B C D

A B

𝑓 𝐴, 𝐵

𝑓 𝐴, 𝐵, 𝐶

𝑓 𝐴, 𝐵, 𝐶, 𝐷



MRF
MRF Factor Graph

a

b

c

d e

Evaluation Function

𝑓𝑎 𝐴, 𝐵 +𝑓𝑏 𝐴, 𝐷 + 𝑓𝑐 𝐵, 𝐶 + 𝑓𝑑 𝐶,𝐷, 𝐸 + 𝑓𝑒 𝐸, 𝐹, 𝐺



Training

𝐹 𝑥, 𝑦 = 𝑓𝑎 𝑥1, 𝑥2, 𝑦1 + 𝑓𝑏 𝑦1, 𝑦2

= 𝑤𝑎 ∙ 𝜙𝑎 𝑥1, 𝑥2, 𝑦1 +𝑤𝑏 ∙ 𝜙𝑏 𝑦1, 𝑦2

y2

x2x1

y1

a

b

=
𝑤𝑎

𝑤𝑏

𝜙𝑎 𝑥1, 𝑥2, 𝑦1
𝜙𝑏 𝑦1, 𝑦2

= 𝑤 ∙ 𝜙 𝑥, 𝑦

Simply training by 
structured perceptron 

or structured SVM

Max-Margin Markov Networks (M3N)



Training

𝐹 𝑥, 𝑦 = 𝑓𝑎 𝑥1, 𝑥2, 𝑦1 + 𝑓𝑏 𝑦1, 𝑦2

= 𝑤𝑎 ∙ 𝜙𝑎 𝑥1, 𝑥2, 𝑦1 +𝑤𝑏 ∙ 𝜙𝑏 𝑦1, 𝑦2

y1 y2 𝑓𝑏 𝑦1, 𝑦2

+1 +1 w1

+1 -1 w2

-1 +1 w3

-1 -1 w4

𝜙𝑏 +1,+1 =

1
0
0
0

𝜙𝑏 +1,−1 =

0
1
0
0

𝜙𝑏 −1,+1 =

0
0
1
0

𝜙𝑏 −1,−1 =

0
0
0
1

𝑤𝑏 =

𝑤1

𝑤2

𝑤3

𝑤4

𝑦1, 𝑦2𝜖 +1,−1

y2

x2x1

y1

a

b



Now can you interpret this?

𝜙 𝑥, 𝑦



=

𝑒𝐹 𝑥,𝑦

 𝑥′,𝑦′ 𝑒𝐹 𝑥′,𝑦′

 𝑦′′
𝑒𝐹 𝑥,𝑦′′

 𝑥′,𝑦′ 𝑒𝐹 𝑥′,𝑦′

Probability Point of View

• 𝐹 𝑥, 𝑦 can be any real number

• If you like probability

𝑃 𝑥, 𝑦 =
𝑒𝐹 𝑥,𝑦

 𝑥′,𝑦′ 𝑒𝐹 𝑥′,𝑦′

𝑃 𝑦|𝑥

To be positive

normalization

=
𝑃 𝑥, 𝑦

 𝑦′′ 𝑃 𝑥, 𝑦′′

Between 0 and 1

=
𝑃 𝑥, 𝑦

𝑃 𝑥

=
𝑒𝐹 𝑥,𝑦

 𝑦′′ 𝑒𝐹 𝑥,𝑦′′



Gibbs Sampling
Inference for the dumb



x3 x4

x1 x2a

x3 x4

x1 x2

y3 y4

y1 y2

a a

a

b

b b

b

𝑥1, 𝑥2, 𝑥3, 𝑥4 = −1,−1,−1,1

Given input noisy image x

𝑓𝑎 𝑥𝑖 , 𝑦𝑖 =  
0.1 𝑥𝑖 = 𝑦𝑖
−0.1 𝑥𝑖 ≠ 𝑦𝑖

𝑓𝑏 𝑦𝑖 , 𝑦𝑗 =  
0.5 𝑦𝑖 = 𝑦𝑗
−0.5 𝑦𝑖 ≠ 𝑦𝑗

Inference:

 𝑦 = argmax
𝑦

F(ݕ,ݔ)

𝐹 𝑥, 𝑦 = 2.2

𝑦1, 𝑦2, 𝑦3, 𝑦4 = 1,1,1,1

𝐹 𝑥, 𝑦 = 1.8

𝑦1, 𝑦2, 𝑦3, 𝑦4 = −1,1,1,−1

𝐹 𝑥, 𝑦 = −2.2

…
max

𝑦1, 𝑦2, 𝑦3, 𝑦4 = −1,−1,−1,−1

Design an efficient algorithm 
to do that is not always easy. 

y3 y4

y1 y2

0.1

0.1

0.1

-0.1

0.5
0.5

0.5
0.5

Enumerate all possible y



Sampling?

𝑃 𝑦|𝑥 =
𝑒𝐹 𝑥,𝑦

 𝑦′′ 𝑒𝐹 𝑥,𝑦′′

𝑃 𝑥, 𝑦 =
𝑒𝐹 𝑥,𝑦

 𝑥′,𝑦′ 𝑒𝐹 𝑥′,𝑦′

 𝑦 = argmax
𝑦

F(ݕ,ݔ)  𝑦 = argmax
𝑦

𝑃 𝑦|𝑥=

Probability point of view:

∝ 𝐹 𝑥, 𝑦Independent 
of y



Sampling?

• 𝑃 𝑦|𝑥 is a distribution

 𝑦 = argmax
𝑦

𝑃 𝑦|𝑥
P

ro
b

ab
ili

ty
 P

(y
|x

)

Given 𝑥1, 𝑥2, 𝑥3, 𝑥4 = −1,−1,−1,1

𝑦1, 𝑦2, 𝑦3, 𝑦4 =
− 1,−1,−1,−1

𝑦1, 𝑦2, 𝑦3, 𝑦4 =
1,1,1,1

Sample from the 
distribution ……

−1,−1,−1,−1

−1,−1,−1,−1

−1,−1,−1,−1

1,1,1,1

1,1,1,1

−1,−1,−1,1

……

−1,−1,−1,−1

Max probability
Inference result



Sampling?

• 𝑃 𝑦|𝑥 is a distribution

P
ro

b
ab

ili
ty

 P
(y

|x
)

Given 𝑥1, 𝑥2, 𝑥3, 𝑥4 = −1,−1,−1,1

𝑦1, 𝑦2, 𝑦3, 𝑦4 =
− 1,−1,−1,−1

𝑦1, 𝑦2, 𝑦3, 𝑦4 =
1,1,1,1

Sample from the 
distribution ……

−1,−1,−1,−1

−1,−1,−1,−1

−1,−1,−1,−1

1,1,1,1

1,1,1,1

−1,−1,−1,1

……

−1,−1,−1,−1

Max probability
Inference result

 If we know the distribution, why 
bother with the sampling?

 It is hard to know the distribution.

𝑃 𝑦|𝑥 =
𝑒𝐹 𝑥,𝑦

 𝑦′′ 𝑒𝐹 𝑥,𝑦′′



Gibbs Sampling

• There is a probability distribution P(y|x)

• y = {y1, y2, …, yN}

• We want to sample from P(y|x), but it is too 
complex to do that

• However, P(yi|y1, y2, …, yi-1, yi+1, …, yN,x) can be 
computed

• We can sample from P(y|x) by Gibbs sampling



Gibbs Sampling

𝒚𝟏, 𝒚𝟐, 𝒚𝟑,…, 𝒚𝑻

𝒚𝟎 = 𝑦1
0, 𝑦2

0, ⋯ , 𝑦𝑁
0

For t = 1 to T:

𝑦1
𝑡~𝑃 𝑦1|𝑦2 = 𝑦2

𝑡−1, 𝑦3 = 𝑦3
𝑡−1, 𝑦4 = 𝑦4

𝑡−1, ⋯ , 𝑦𝑁 = 𝑦𝑁
𝑡−1, 𝒙

𝑦2
𝑡~𝑃 𝑦2|𝑦1 = 𝑦1

𝑡 , 𝑦3 = 𝑦3
𝑡−1, 𝑦4 = 𝑦4

𝑡−1, ⋯ , 𝑦𝑁 = 𝑦𝑁
𝑡−1, 𝒙

𝑦𝑁
𝑡 ~𝑃 𝑦𝑁|𝑦1 = 𝑦1

𝑡 , 𝑦2 = 𝑦2
𝑡 , 𝑦3 = 𝑦3

𝑡 , ⋯ , 𝑦𝑁−1 = 𝑦𝑁−1
𝑡 , 𝒙

…

Get a sample: 𝒚𝒕 = 𝑦1
𝑡 , 𝑦2

𝑡 , ⋯ , 𝑦𝑁
𝑡

𝑦3
𝑡~𝑃 𝑦3|𝑦1 = 𝑦1

𝑡 , 𝑦2 = 𝑦2
𝑡 , 𝑦4 = 𝑦4

𝑡−1, ⋯ , 𝑦𝑁 = 𝑦𝑁
𝑡−1, 𝒙

As sampling from P(y|x)

Initialization

T samples



Gibbs Sampling

• Is P(yi|y1, y2, …, yi-1, yi+1, …, yN,x) easy to be 
computed?

𝑃 𝑦𝑖|𝑦1, 𝑦2, ⋯ , 𝑦𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑁 , 𝒙

𝑃 𝑦|𝑥 =
𝑒𝐹 𝑥,𝑦

 𝑦′′ 𝑒𝐹 𝑥,𝑦′′

=
𝑒𝐹 𝑥,𝑦−𝑖,𝑦𝑖

 
𝑦𝑖
′ 𝑒𝐹 𝑥,𝑦−𝑖,𝑦𝑖

′

Enumerate all possible y 
may not be tractable

Enumerate all possible 
𝑦𝑖 may be tractable

𝑦𝑖𝜖 +1,−1 2N possible y

𝑦𝑖𝜖 +1,−1 2 possible 𝑦𝑖



x3 x4

x1 x2

y3 y4

y1 y2

Initialization 𝑦1, 𝑦2, 𝑦3, 𝑦4 = −1,−1,−1,1

y3 y4

y1 y2

Sample from P(y|x) 
by Gibbs sampling



x3 x4

x1 x2

y3 y4

y1 y2

y3 y4

y1 y2y1?

Sample y1 given all the other variables

𝑦1~𝑃 𝑦1|𝒚−𝟏, 𝒙 𝒚−𝟏 = y2, y3, y4

=
𝑒𝐹 𝑥,𝑦1=1,𝒚−𝟏

𝑒𝐹 𝒙,𝑦1=1,𝒚−𝟏 + 𝑒𝐹 𝒙,𝑦1=−1,𝒚−𝟏

Compute 𝑃 𝑦1 = 1|𝒚−𝟏, 𝒙 and 𝑃 𝑦1 = −1|𝒚−𝟏, 𝒙

𝑃 𝑦1 = 1|𝒚−𝟏, 𝒙 =
𝑃 𝒙, 𝑦1 = 1, 𝒚−𝟏

𝑃 𝒙, 𝑦1 = 1, 𝒚−𝟏 + 𝑃 𝒙, 𝑦1 = −1, 𝒚−𝟏

y1

= -1.8

= -1.8

-0.1

0.1

0.1

0.1

-0.5

-0.5

-0.5

-0.5

𝑃 𝑥, 𝑦

=
𝑒𝐹 𝑥,𝑦

 𝑥′,𝑦′ 𝑒𝐹 𝑥′,𝑦′



x3 x4

x1 x2

y3 y4

y1 y2

y3 y4

y1 y2y1?

Sample y1 given all the other variables

𝑦1~𝑃 𝑦1|𝒚−𝟏, 𝒙 𝒚−𝟏 = y2, y3, y4

=
𝑒𝐹 𝑥,𝑦1=1,𝒚−𝟏

𝑒𝐹 𝒙,𝑦1=1,𝒚−𝟏 + 𝑒𝐹 𝒙,𝑦1=−1,𝒚−𝟏

Compute 𝑃 𝑦1 = 1|𝒚−𝟏, 𝒙 and 𝑃 𝑦1 = −1|𝒚−𝟏, 𝒙

𝑃 𝑦1 = 1|𝒚−𝟏, 𝒙 =
𝑃 𝒙, 𝑦1 = 1, 𝒚−𝟏

𝑃 𝒙, 𝑦1 = 1, 𝒚−𝟏 + 𝑃 𝒙, 𝑦1 = −1, 𝒚−𝟏

= -1.8

= -1.8

y1

=0.4

0.1

0.1

0.1

0.1

0.5

0.5

-0.5

-0.5

Random 
sample 

𝑦1 = −1= 0.10



x3 x4

x1 x2

y3 y4

y1 y2

y3 y4

y1y1 ?

Sample y2 given all the other variables

y1

𝑦2~𝑃 𝑦2|𝒚−𝟐, 𝒙

=
𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐

𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐 + 𝑒𝐹 𝒙,𝑦2=−1,𝒚−𝟐

𝑃 𝑦2 = 1|𝒚−𝟐, 𝒙 =
𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐

𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐 + 𝑃 𝒙, 𝑦2 = −1, 𝒚−𝟐

0.1

0.1

-0.1

0.1

0.5

-0.5

=0.2

=0.2

y2

-0.5

0.5



x3 x4

x1 x2

y3 y4

y1 y2

y3 y4

y1y1 ?

Sample y2 given all the other variables

y1

𝑦2~𝑃 𝑦2|𝒚−𝟐, 𝒙

=
𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐

𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐 + 𝑒𝐹 𝒙,𝑦2=−1,𝒚−𝟐

𝑃 𝑦2 = 1|𝒚−𝟐, 𝒙 =
𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐

𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐 + 𝑃 𝒙, 𝑦2 = −1, 𝒚−𝟐

=0.2

=0.2

y2

=0.4

y2

0.1

0.1

0.1

0.1

0.5

0.5

-0.5

-0.5



x3 x4

x1 x2

y3 y4

y1 y2

y3 y4

y1y1 ?

Sample y2 given all the other variables

y1

𝑦2~𝑃 𝑦2|𝒚−𝟐, 𝒙

=
𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐

𝑒𝐹 𝒙,𝑦2=1,𝒚−𝟐 + 𝑒𝐹 𝒙,𝑦2=−1,𝒚−𝟐

𝑃 𝑦2 = 1|𝒚−𝟐, 𝒙 =
𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐

𝑃 𝒙, 𝑦2 = 1, 𝒚−𝟐 + 𝑃 𝒙, 𝑦2 = −1, 𝒚−𝟐

=0.2

=0.2

y2

=0.4
Random 
sample 

𝑦2 = 1= 0.45



x3 x4

x1 x2

y3 y4

y1 y2

y4

y1y1

Sample y3 given all the other variables

y1

𝑦3~𝑃 𝑦3|𝒚−𝟑, 𝒙

y2

?

𝑃 𝑦3 = 1|𝒚−𝟑, 𝒙 =? 0.45

Random sample 

𝑦3 = −1

y3



x3 x4

x1 x2

y3 y4

y1 y2

y4

y1y1

Sample y4 given all the other variables

y1

𝑦4~𝑃 𝑦4|𝒚−𝟒, 𝒙

y2

y3

?
y4y4

Get 1-st sample y1=-1, y2=1, y3=-1, y4=-1



x3 x4

x1 x2

y3 y4

y1 y2

y4

y1y1y1 y2

y3 y4y4

Get 1-st sample y1=-1, y2=1, y3=-1, y4=-1

? y2 ?
y2

y3? y3 ?y4y4

Get 2-nd sample y1=-1, y2=-1, y3=-1, y4=-1



Get 1-st sample y1=-1, y2=1, y3=-1, y4=-1

Get 2-nd sample y1=-1, y2=-1, y3=-1, y4=-1

Get 3-rd sample y1=1, y2=1, y3=-1, y4=1

Get 4-th sample y1=-1, y2=1, y3=-1, y4=1

Get 5-th sample y1=1, y2=1, y3=1, y4=1
…
…

Until you want to stop



No. of samples yA yB yC

10 2 3 0

100 23 37 0

1000 315 230 8

10000 3307 2225 40

100000 32637 22129 422

P(yA|x) ≈0.33 P(yB|x) ≈0.22 P(yC|x) ≈0.004

P(yA|x)≈0.33 P(yB|x)≈0.22 P(yC|x)≈0.004

From sampling: yA would be the results of inference.

yA
yB yC



No. of samples A B C

10 3 1 0

100 40 11 1

1000 331 237 2

10000 3251 2176 31

100000 32911 21845 385

No. of samples A B C

10 0 3 0

100 28 31 0

1000 318 226 2

10000 3277 2169 46

100000 32319 21751 393

Starting from …

Starting from …

How about starting from different initialization?
Not really change the final results.



All rivers run into the sea.

http://www.juergenwiki.de/work/wiki/doku.php?id=public:mcmc



Practical Suggestion 

• “burn-in” 
• “burn-in” period: The first few of samples would be 

influenced by the initialization

• Discard the samples in the “burn-in” period

• Modify the sampling distribution

𝑃 𝑦𝑖|𝑦1, 𝑦2, ⋯ , 𝑦𝑖−1, 𝑦𝑖+1, ⋯ , 𝑦𝑁 , 𝒙 =
𝑒𝐹 𝑥,𝑦−𝑖,𝑦𝑖

 
𝑦𝑖
′ 𝑒𝐹 𝑥,𝑦−𝑖,𝑦𝑖

′ X c

X c
c > 1

X c
Increase c after 
each interaction



Gibbs Sampling
A little bit of theory



Gibbs Sampling

𝒛𝟎 = 𝑧1
0, 𝑧2

0, ⋯ , 𝑧𝑁
0

For t = 1 to T:

𝑧1
𝑡~𝑃 𝑧1|𝑧2 = 𝑧2

𝑡−1, 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧2
𝑡~𝑃 𝑧2|𝑧1 = 𝑧1

𝑡 , 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧𝑁
𝑡 ~𝑃 𝑧𝑁|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧3 = 𝑧3

𝑡 , ⋯ , 𝑧𝑁−1 = 𝑧𝑁−1
𝑡

…

Output: 𝒛𝒕 = 𝑧1
𝑡 , 𝑧2

𝑡 , ⋯ , 𝑧𝑁
𝑡

𝑧3
𝑡~𝑃 𝑧3|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝒛𝟏, 𝒛𝟐, 𝒛𝟑,…, 𝒛𝑻

Gibbs sampling from a distribution P(z) ( z = {z1,…,zN} )

As sampling from P(z) Why?



Markov Chain

C

A B

The traveler recorded the cities he visited each day.

A B C A A ……

This is a Markov chain

2/3

0

0

1/6

1/6

1/2

1/2
1/2

1/2

state

Three cities A, B and C



Markov Chain
10000 days 10000 days 10000 days

With sufficient samples ……
A : B : C = 0.6 : 0.2 : 0.2
(independent of the starting city)



Markov Chain
C

A B

2/3

0

0

1/6

1/6

1/2

1/2
1/2

1/2
0.6

0.2

0.2

P(A)=0.6

P(B)=0.2

P(C)=0.2

𝑃𝑇 𝐴 𝐴 𝑃 𝐴 + 𝑃𝑇 𝐴 𝐵 𝑃 𝐵 + 𝑃𝑇 𝐴 𝐶 𝑃 𝐶 = 𝑃 𝐴

𝑃𝑇 𝐵 𝐴 𝑃 𝐴 + 𝑃𝑇 𝐵 𝐵 𝑃 𝐵 + 𝑃𝑇 𝐵 𝐶 𝑃 𝐶 = 𝑃 𝐵

𝑃𝑇 𝐶 𝐴 𝑃 𝐴 + 𝑃𝑇 𝐶 𝐵 𝑃 𝐵 + 𝑃𝑇 𝐶 𝐶 𝑃 𝐶 = 𝑃 𝐶

0.6 0.2 0.22/3 1/21/2 0.6

Stationary
Distribution

The distribution will not change.



Markov Chain

Unique stationary 
distribution

C

A B

1 1

1

PT(s’|s) for any states 
s and s’ is not zero

A Markov Chain can have 
multiple stationary distributions.

The Markov Chain fulfill some conditions will have 
unique stationary distribution.

(sufficient but not 
necessary condition)

 Reaching which stationary 
distribution depends on starting state



Markov Chain 
from Gibbs Sampling

𝒛𝟏, 𝒛𝟐, 𝒛𝟑,…, 𝒛𝑻

𝒛𝟎 = 𝑧1
0, 𝑧2

0, ⋯ , 𝑧𝑁
0

For t = 1 to T:

𝑧1
𝑡~𝑃 𝑧1|𝑧2 = 𝑧2

𝑡−1, 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧2
𝑡~𝑃 𝑧2|𝑧1 = 𝑧1

𝑡 , 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧𝑁
𝑡 ~𝑃 𝑧𝑁|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧3 = 𝑧3

𝑡 , ⋯ , 𝑧𝑁−1 = 𝑧𝑁−1
𝑡

…

Output: 𝒛𝒕 = 𝑧1
𝑡 , 𝑧2

𝑡 , ⋯ , 𝑧𝑁
𝑡

𝑧3
𝑡~𝑃 𝑧3|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

This is a Markov Chain

 zt only depend on zt-1

Gibbs sampling from a distribution P(z) ( z = {z1,…,zN} )

state



Markov Chain 
from Gibbs Sampling

𝒛𝟏, 𝒛𝟐, 𝒛𝟑,…, 𝒛𝑻

𝒛𝟎 = 𝑧1
0, 𝑧2

0, ⋯ , 𝑧𝑁
0

For t = 1 to T:

𝑧1
𝑡~𝑃 𝑧1|𝑧2 = 𝑧2

𝑡−1, 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧2
𝑡~𝑃 𝑧2|𝑧1 = 𝑧1

𝑡 , 𝑧3 = 𝑧3
𝑡−1, 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

𝑧𝑁
𝑡 ~𝑃 𝑧𝑁|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧3 = 𝑧3

𝑡 , ⋯ , 𝑧𝑁−1 = 𝑧𝑁−1
𝑡

…

Output: 𝒛𝒕 = 𝑧1
𝑡 , 𝑧2

𝑡 , ⋯ , 𝑧𝑁
𝑡

𝑧3
𝑡~𝑃 𝑧3|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , 𝑧4 = 𝑧4

𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁
𝑡−1

Gibbs sampling from a distribution P(z) ( z = {z1,…,zN} )

Proof that the Markov chain has unique 
stationary distribution which is P(z).



• Markov chain from Gibbs sampling has unique 
stationary distribution?

• 𝑃𝑇 𝑧′|𝑧 > 0, for any z and z’

Markov Chain 
from Gibbs Sampling

𝑧1
𝑡~𝑃 𝑧1|𝑧2 = 𝑧2

𝑡−1, 𝑧3 = 𝑧3
𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁

𝑡−1

𝑧2
𝑡~𝑃 𝑧2|𝑧1 = 𝑧1

𝑡 , 𝑧3 = 𝑧3
𝑡−1, ⋯ , 𝑧𝑁 = 𝑧𝑁

𝑡−1

𝑧𝑁
𝑡 ~𝑃 𝑧𝑁|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , ⋯ , 𝑧𝑁−1 = 𝑧𝑁−1

𝑡

…

𝑧3
𝑡~𝑃 𝑧3|𝑧1 = 𝑧1

𝑡 , 𝑧2 = 𝑧2
𝑡 , ⋯ , 𝑧𝑁 = 𝑧𝑁

𝑡−1

can be any zt

None of the 
conditional 
probability is 
zero

Yes



Markov Chain 
from Gibbs Sampling
• Show that P(z) is a stationary distribution

 

𝑧

𝑃𝑇 𝑧′|𝑧 𝑃 𝑧

𝑃𝑇 𝑧′|𝑧 = 𝑃 𝑧1
′ |𝑧2, 𝑧3, 𝑧4, ⋯ , 𝑧𝑁

× 𝑃 𝑧2
′ |𝑧1

′ , 𝑧3, 𝑧4, ⋯ , 𝑧𝑁
× 𝑃 𝑧3

′ |𝑧1
′ , 𝑧2

′ , 𝑧4, ⋯ , 𝑧𝑁

× 𝑃 𝑧𝑁
′ |𝑧1

′ , 𝑧2
′ , 𝑧3

′ , ⋯ , 𝑧𝑁−1
′

…
= 𝑃 𝑧′

There is only one stationary distribution 
for Gibbs sampling, so we are done.

Please do the 
math yourself



Thank you for your attention!
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