Energy-based GAN

Hung-yi Lee
Original Idea

• Discriminator leads the generator

Is it the only explanation of GAN?
Original GAN

The discriminator is flat in the end.

Source: https://www.youtube.com/watch?v=ebMei6bYeWw (credit: Benjamin Striner)
Evaluation Function

• We want to find an evaluation function $F(x)$
 • Input: object x, output: scalar $F(x)$ (how “good” the object is)
 • E.g. x are images
 • Real x has high $F(x)$
 • $F(x)$ can be a network
 • We can generate good x by $F(x)$:
 • Find x with large $F(x)$
 • How to find $F(x)$?

In practice, you cannot decrease all the x other than real data.
Evaluation Function
- Structured Perceptron

- **Input:** training data set \(\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^r, \hat{y}^r), \ldots\} \)
- **Output:** weight vector \(w \)
- **Algorithm:** Initialize \(w = 0 \)

 \[
 F(x, y) = w \cdot \phi(x, y)
 \]

 - do
 - For each pair of training example \((x^r, \hat{y}^r) \)
 - Find the label \(\tilde{y}^r \) maximizing \(F(x^r, y) \)

 \[
 \tilde{y}^r = \arg\max_{y \in Y} F(x^r, y)
 \]

 - If \(\tilde{y}^r \neq \hat{y}^r \), update \(w \)

 Increase \(F(x^r, \hat{y}^r) \), decrease \(F(x^r, \tilde{y}^r) \)

 \[
 w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)
 \]

 - until \(w \) is not updated

 We are done!
How about GAN?

- Generator is an intelligent way to find the negative examples.

“Experience replay”, parameters from last iteration

In the end
$P_{\text{data}} = \text{“origin”}$

$G = \text{1 hidden layer (100)}$

$D = \text{1 hidden layer (100)}$
100 iterations on G

100 iterations on D
$P_{data} = \text{"line"}$

100 iterations on D

$G = 1$ hidden layer (100)
$D = 1$ hidden layer (100)

$G = 2$ hidden layer (100)
$D = 1$ hidden layer (100)

$G = 1$ hidden layer (100)
$D = 2$ hidden layer (100)
$P_{\text{data}} = 1$-D Gaussian

100 iterations on D

G = 2 hidden layer (100)
D = 1 hidden layer (100)
Energy-based GAN (EBGAN)

• Viewing the discriminator as an energy function (negative evaluation function)
• Auto-encoder as discriminator (energy function)
• Loss function with margin for discriminator training
• Generate reasonable-looking images from the ImageNet dataset at 256 x 256 pixel resolution
 • without a multiscale approach

Sample real example x
Sample code z from prior distribution
Update discriminator D to minimize

$$L_D(x, z) = D(x) + \max\left(0, m - D(G(z))\right)$$

Sample code z from prior distribution
Update generator G to minimize

$$L_G(z) = D(G(z))$$
EBGAN

Discriminator D:
\[
L_D(x, z) = D(x) + \max \left(0, m - D(G(z)) \right)
\]

Generator G:
\[
L_G(z) = D(G(z))
\]

Hard to reconstruct, easy to destroy
EBGAN

Discriminator D:
\[L_D(x, z) = D(x) + \max(0, m - D(G(z))) \]

Generator G:
\[L_G(z) = D(G(z)) \]

For auto-encoder, the region for low value is limited.

What would happen if \(x \) and \(G(z) \) have the same distribution?

\(\gamma \) is a value between 0 and \(m \)

\(\gamma \) is a value between 0 and \(m \)
More about EBGAN

• Pulling-away term for training generator

Given a batch $S = \{\cdots x_i \cdots x_j \cdots \}$ from generator

$$f_{PT}(S) = \sum_{i,j,i \neq j} \cos(e_i, e_j)$$

To increase diversity

• Better way to learn auto-encoder?
 • If auto-encoder only learns to minimize the reconstruction error of real images
 • Can obtain nearly identity function (not properly designed structure)
 • Giving larger reconstruction error for fake images regularized auto-encoder
Margin Adaptation GAN (MAGAN)

\[L_D(x, z) = D(x) + \max\left(0, m - D(G(z))\right) \]

- Dynamic margin \(m \)
 - As the generator generates better images
 - The margin becomes smaller and smaller
Loss-sensitive GAN (LSGAN)

- LSGAN allows the generator to focus on improving poor data points that are far apart from real examples.
- Connecting LSGAN with WGAN

LSGAN

Assuming $D(x)$ is the *energy function*

Discriminator minimizing:

$$D(x) + \max \left(0, \Delta(x, G(z)) + D(x) - D(G(z)) \right)$$
LSGAN Assuming $D(x)$ is the *energy function*

Discriminator minimizing:

$$D(x) + \max \left(0, \Delta(x, G(z)) + D(x) - D(G(z))\right)$$
\[F(x^n, \hat{y}^n) \geq F(x^n, y) \]

\[F(x^n, \hat{y}^n) - F(x^n, y) \geq \Delta(\hat{y}^n, y) \]
Boundary Equilibrium Generative Adversarial Networks (BEGAN)

• Auto-encoder based GAN
For discriminator: \(L_D = D(x) - k_t D(G(z))\)

For generator: \(L_G = D(G(z))\)

For each training step \(t\):
\[k_{t+1} = k_t + \lambda \left(\gamma D(x) - D(G(z))\right)\]

\(k_t\) increase

If \(\gamma D(x) > D(G(z))\), then \(\frac{D(G(z))}{D(x)} < \gamma\)
BEGAN

\[\frac{D(G(z))}{D(x)} < \gamma \]

For discriminator: \[L_D = D(x) - k_t D(G(z)) \]

For generator: \[L_G = D(G(z)) \]

For each training step \(t \):

\[k_{t+1} = k_t + \lambda \left(\gamma D(x) - D(G(z)) \right) \]
陳柏文 (大四) 提供實驗結果 (using CelebA)