Imitation Learning
Introduction

• Imitation Learning
 • Also known as learning by demonstration, apprenticeship learning

• An expert demonstrates how to solve the task
 • Machine can also interact with the environment, but cannot explicitly obtain reward.
 • It is hard to define reward in some tasks.
 • Hand-crafted rewards can lead to uncontrolled behavior

• Three approaches:
 • Behavior Cloning
 • Inverse Reinforcement Learning
 • Generative Adversarial Network
Behavior Cloning
Behavior Cloning

- Self-driving cars as example

Observation

Training data:

\[(o_1, \hat{a}_1)\]
\[(o_2, \hat{a}_2)\]
\[(o_3, \hat{a}_3)\]

......

Expert (Human driver): 向前
Machine: 向前

Yes, this is supervised learning.
Behavior Cloning

• Problem

Expert only samples limited observation (states)

Let the expert in the states seem by machine

Dataset Aggregation
Behavior Cloning

- Dataset Aggregation

 Get actor π_1 by behavior cloning

 Using π_1 to interact with the environment

 Ask the expert to label the observation of π_1

 Using new data to train π_2
Behavior Cloning

The agent will copy every behavior, even irrelevant actions.

https://www.youtube.com/watch?v=j2FSB3bseek
Behavior Cloning

• Major problem: if machine has limited capacity, it may choose the wrong behavior to copy.

• Some behavior must copy, but some can be ignored.
 • Supervised learning takes all errors equally
Mismatch

- In supervised learning, we expect training and testing data have the same distribution.
- In behavior cloning:
 - Training: \((o, a) \sim \hat{\pi}\) (expert)
 - Action \(a\) taken by actor influences the distribution of \(o\)
 - Testing: \((o', a') \sim \pi^*\) (actor cloning expert)
 - If \(\hat{\pi} = \pi^*\), \((o, a)\) and \((o', a')\) from the same distribution
 - If \(\hat{\pi}\) and \(\pi^*\) have difference, the distribution of \(o\) and \(o'\) can be very different.
Inverse Reinforcement Learning (IRL)

Also known as inverse optimal control, inverse optimal planning

Pieter Abbeel and Andrew Y. Ng. "Apprenticeship learning via inverse reinforcement learning“, ICML, 2004
Inverse Reinforcement Learning

- Using the reward function to find a policy π^*
- Modeling reward can be easier. Simple reward function can lead to complex policy.
Inverse Reinforcement Learning

- **Original RL:**
 - given a reward function $R(\tau)$, $R(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$
 - Initialize an actor π
 - In each iteration
 - using π to interact with the environment N times, obtain $\{\tau_1, \tau_2, \ldots, \tau_N\}$
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \ldots, s_T, a_T, r_T\}$
 - $\bar{R}_\pi = \sum_{\tau} R(\tau)P(\tau|\pi) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$
 - Update π to maximize \bar{R}_π
 - The actor π is the optimal actor $\hat{\pi}$
Inverse Reinforcement Learning

• **Inverse RL:**
 • \(R(\tau) \) or \(r(s, a) \) is to be found
 • Given expert policy \(\hat{\pi} \) (Given the trajectories \(\{\hat{\tau}_1, \hat{\tau}_2, \ldots, \hat{\tau}_N\} \))
 • The expert policy \(\hat{\pi} \) is the actor that can obtain maximum expected reward
 • Find **reward function** that fulfills the above statements (explaining expert behavior)

\[
\bar{R}_{\hat{\pi}} > \bar{R}_\pi \quad \text{For all other actors } \pi
\]
Ring a bell in your mind?

Inverse Reinforcement Learning

Find reward function:

\[
\bar{R}_{\hat{\pi}} > \bar{R}_{\pi}
\]

For all other actors \(\pi \)

Find policy:

\[
\pi^* = \arg\max_{\pi} \bar{R}_{\pi}
\]

Structured Learning

Training:

\[
F(x, \hat{y}) > F(x, y)
\]

For all \(x \), for all \(y \neq \hat{y} \)

Testing (Inference):

\[
y^* = \arg\max_{y} F(x, y)
\]
Review: Structured Perceptron

- **Input**: training data set \(\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^r, \hat{y}^r), \ldots\} \)
- **Output**: weight vector \(w \)
- **Algorithm**: Initialize \(w = 0 \)

 - do

 - For each pair of training example \((x^r, \hat{y}^r) \)

 - Find the label \(\tilde{y}^r \) maximizing \(w \cdot \phi(x^r, y) \)

 \[
 \tilde{y}^r = \arg \max_{y \in Y} w \cdot \phi(x^r, y)
 \]

 - If \(\tilde{y}^r \neq \hat{y}^r \), update \(w \)

 \[
 w \leftarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r)
 \]

 - until \(w \) is not updated

We are done!
IRL v.s. Structured Perceptron

\[F(x, y) = w \cdot \phi(x, y) \quad \leftrightarrow \quad \bar{R}_\pi = w \cdot \phi(\pi) \]

\[\tau = \{s_1, a_1, s_2, a_2, \ldots, s_T, a_T, \} \]

\[\bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} r_t = w \cdot \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} f(s_t, a_t) \]

\[r_t = w \cdot f(s_t, a_t) \quad w: \text{Parameters} \quad f(s_t, a_t): \text{feature vector} \]

\[\tilde{y} = \arg \max_{y \in Y} F(x, y) \quad \leftrightarrow \quad \pi^* = \arg \max_{\pi} \bar{R}_\pi \]

This is reinforcement learning.
Framework of IRL

Expert $\hat{\pi}$

Self driving: record human drivers
Robot: grab the arm of robot

Update reward function such that:
$\bar{R}_{\hat{\pi}} > \bar{R}_\pi$

Update actor:
$\pi^* = \arg \max_\pi \bar{R}_\pi$

By Reinforcement learning

Assume $\bar{R}_\pi = w \cdot \phi(\pi)$
$r_t = w \cdot f(s_t, a_t)$

$\phi(\pi) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} f(s_t, a_t)$

$w \rightarrow w + \phi(\hat{\pi}) - \phi(\pi)$
GAN for Imitation Learning

GAN v.s. Imitation Learning

Normal Distribution

\[z \]

generator \(G \)

\[P_G(x) \]

As close as possible

Dynamic in environment

\[z \]

actor \(\pi \)

\[P_\pi(x) \]

As close as possible

\[P_{\hat{\pi}}(x) \]
GAN for Imitation Learning

- Find actor \(\pi \) such that \(D(\tau_i) \)

- A trajectory export or not
- Find a discriminator such that \(D(\hat{\tau}_i) \)
 \(D(\tau_i) \)
GAN for Imitation Learning

• Discriminator

\[\tau = \{s_1, a_1, s_2, a_2, \ldots, s_T, a_T\} \]

\[D(\tau) \]

\[D(\hat{\tau}_i) \uparrow \quad D(\tau_i) \downarrow \]

\[(s, a) \text{ from expert} \rightarrow d(s, a) \uparrow \]

\[(s, a) \text{ from actor} \rightarrow d(s, a) \downarrow \]
GAN for Imitation Learning

- Generator
 \[\tau = \{s_1, a_1, s_2, a_2, \cdots, s_T, a_T \} \]
 \[D(\tau) = \frac{1}{T} \sum_{t=1}^{T} d(s_t, a_t) \]

- Find actor \(\pi \) such that
 \[D(\tau_i) \]

Given discriminator \(D \)

Using \(\pi \) to interact with the environment to obtain \(\{\tau_1, \tau_2, \cdots, \tau_N\} \)

If \(D(\tau_i) \) is large, increase \(P(\tau_i|\pi) \); otherwise, decrease \(P(\tau_i|\pi) \)

\[\theta^\pi \leftarrow \theta^\pi + \eta \nabla_{\theta^\pi} E_{\pi}[D(\tau)] \]

\[\theta^\pi \leftarrow \theta^\pi + \eta \sum_{i=1}^{N} D(\tau_i) \nabla_{\theta^\pi} \log P(\tau_i|\pi) \]

Policy gradient

Each step in the same trajectory can have different values.
Algorithm

• Input: expert trajectories \(\{\hat{\tau}_1, \hat{\tau}_2, \ldots, \hat{\tau}_N\} \)
• Initialize discriminator D and actor \(\pi \)
• In each iteration:
 • Using actor to obtain trajectories \(\{\tau_1, \tau_2, \ldots, \tau_N\} \)
 • Update discriminator parameters: Increase \(D(\hat{\tau}_i) \), decrease \(D(\tau_i) \)

\[
D(\tau) = \frac{1}{T} \sum_{t=1}^{T} \text{reward} \ d(s_t, a_t)
\]

Find the reward function that expert has larger reward.

• Update actor parameters: Increase \(D(\tau_i) \)

\[
\theta^\pi \leftarrow \theta^\pi + \eta \sum_{i=1}^{N} D(\tau_i) \nabla_{\theta^\pi} \log P(\tau_i | \pi)
\]

Find the actor maximizing reward by reinforcement learning
Recap: Sentence Generation & Chat-bot

Sentence Generation

Expert trajectory:
床 前 明 月 光

\[(o_1, a_1): ("<BOS>","床")\]
\[(o_2, a_2): ("床","前")\]
\[(o_3, a_3): ("床前","明")\]

Chat-bot

Expert trajectory:
input: how are you
Output: I am fine

\[(o_1, a_1): ("input", <BOS>",","I")\]
\[(o_2, a_2): ("input", I", "am")\]
\[(o_3, a_3): ("input", I am", "fine")\]

Maximum likelihood is behavior cloning. Now we have better approach like SeqGAN.
Examples of Recent Study
http://rll.berkeley.edu/gcl/
Parking Lot Navigation

- Reward function:
 - Forward vs. reverse driving
 - Amount of switching between forward and reverse
 - Lane keeping
 - On-road vs. off-road
 - Curvature of paths
Path Planning
Third Person Imitation Learning

First Person

Third Person

http://lasa.epfl.ch/research_new/ML/index.php

https://kknews.cc/sports/q5kbb8.html

http://sc.chinaz.com/Files/pic/icons/1913/%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%9B%BE%E6%A0%87%E4%B8%8B%E8%BD%BD34.png
Third Person Imitation Learning
Third Person Imitation Learning
Point Experiment Third-Person vs. Baselines

Reacher Experiment Third-Person vs. Baselines
One-shot Imitation Learning

• How to teach robots? https://www.youtube.com/watch?v=DEGbtjTOIB0
One-shot Imitation Learning

A demonstration that communicates the task + The current observation

A demonstration that communicates the task + The current observation

Action

Action
Unstructured Demonstration

- **Review: InfoGAN**

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph Lim, Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets, arXiv preprint, 2017
Unstructured Demonstration

- The solution is similar to info GAN

Expert demonstration:
Predict the code \(c \) given \(o \) and \(a \)
Unstructured Demonstration

Multi-modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

https://www.youtube.com/watch?v=tpEgL1AASYk
Take a look at our brand new robot, it's full of artificial intelligence!

You won't believe how intelligent it is!

Does it really have AI inside? Based on a neuronal approach or...

Yes yes! Exactly! There are some really complex algorithms in there, you can trust me!

OK let's take a look at what's in the torso!

Grr, I knew it. It's just 'IFs'. Hundreds and hundreds of 'IFs'...

Heeeeyyyyy!

Don't talk to me about AI...