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Lenet-5	

[LeCun et	al.,	1998]



Today’s	example

Image	source



The slides are from
1. “Lecture 13: Neural networks for machine vision, Dr. Richard E. Turner”
2. Lecture 7 & 12 in Stanford CS231n
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Convolve the filter with the image
i.e. “slide over the image spatially,  
computing dot products”

Filters always extend the full  
depth of the input volume
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32x32x3 image  
5x5x3 filter

1 number:
the result of taking a dot product between the  
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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consider a second, green filter
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



Preview: ConvNet is a sequence of Convolution Layers, interspersed with  
activation functions
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  
activation functions
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32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!  (32 
-> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.
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assume 3x3 filter  
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2
=> 3x3 output!
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3?
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 3?
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A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on  
7x7 input with stride 3.



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with  
stride 1, filters of size FxF, and zero-padding with  
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:
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Tensorflow implementation

• Weight	Initialization

• Convolution	and	Pooling
• Convolution	layer
• Fully	connected	layer
• Readout	Layer

• Reference	and	image	source:	
https://www.tensorflow.org/get_started/mnist/pros

(See	section	‘Build	a	Multilayer	Convolutional	Network’)



Input	(placeholder)

tf.placeholder

x	is	placeholder	for	input	image.
y	is	label with	one-hot	representation,	so	second	dimension	of	y	is	
equal	to	number	of	classes.

None indicates	that	the	first	dimension,	corresponding	to	the	batch	
size,	which	can	be	any	size.



Weight	Initialization

tf.truncated_normal

These	variable	will	be	initialized	when	user	run	‘tf.global_variables_initializer’.
Now	they	are	just	nodes	in	a	graph	without	any	value.



Convolution	and	Pooling

Strides	is	4-d,	followingNHWC	format.	
(Num_samples x	Height	x	Width	x	Channels)

Recall	strides	and	padding.
padding	=	‘SAME’	means	apply	padding	to	keep	output	size	as	same	as	input	size.

Conv2d	pads	with	zeros and	max_pool pads	with	–inf.		
tf.nn.conv2d

tf.nn.max_pool



Convolution	layer

tf.reshape



Convolution	layer

See	how	the	code	creates	a	model	by	wrapping	layers.
Be	care	of	shape of	each	layer.
-1	means	match	the	size	of	that	dimension	is	computed	
so	that	the	total	size	remains	constant.

tf.reshape



Reshape	

tf.reshape

For	example:

tensor	‘t’	is	[[1,	2],	[3,	4],	[5,	6],	[7,	8]]	,	so	t	has	shape	[4,	2]

(1) reshape(t,	[2,4])	è [[1,	2,	3,	4],	[5,	6,	7,	8]]	

(2) reshape(t,	[-1,	4])	è [[1,	2,	3,	4],	[5,	6,	7,	8]]

-1	would	be	computed	and	becomes	‘2’



Fully	connected	layer

Flatten	all	the maps	and	connect	them	with	fully	connected	layer.
Again,	be	care	of	shape.



Readout	Layer

Use	a	layer	to	match	output	size.
Done!



Training	and	Evaluation	(optional)



Recommendation

• Search	for	each	function,	and	you’ll	what’s	everything	going	on.


