Tensorflow CNN turorial
 2017/03/10

Lenet-5

[LeCun et al., 1998]

Today's example

The slides are from 1. "Lecture 13: Neural networks for machine vision, Dr. Richard E. Turner"
2. Lecture 7 \& 12 in Stanford CS231n

Convolution Layer

Convolution Layer

$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Filters always extend the full depth of the input volume

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$7 x 7$ input (spatially) assume $3 x 3$ filter

$7 x 7$ input (spatially) assume $3 x 3$ filter

$7 x 7$ input (spatially) assume $3 x 3$ filter

$7 x 7$ input (spatially) assume $3 x 3$ filter

$7 x 7$ input (spatially) assume 3x3 filter

$=>5 \times 5$ output

Convolution Layer

Convolution Layer

consider a second, green filter

For example, if we had 65×5 filters, we'll get 6 separate activation maps: activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

32×32 input convolved repeatedly with 5×5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7×7 input (spatially) assume 3x3 filter

=> 5×5 output

A closer look at spatial dimensions:

7×7 input (spatially)
assume 3×3 filter
applied with stride 2

A closer look at spatial dimensions:

7×7 input (spatially)
assume 3×3 filter
applied with stride 2

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter applied with stride 2
 => $3 x 3$ output!

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter applied with stride 3 ?

A closer look at spatial dimensions:

7×7 input (spatially) assume 3×3 filter applied with stride 3 ?

doesn't fit!

cannot apply 3×3 filter on 7×7 input with stride 3 .

In practice: Common to zero pad the border

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
7x7 output!

In practice: Common to zero pad the border

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = $3=>$ zero pad with 1
$F=5=>$ zero pad with 2
F = 7 => zero pad with 3

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

$\underbrace{$| 1 | 1 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |$\xrightarrow{\text { max pool with 2x2 filters }}$| and stride 2 |
| :--- |}$_{\mathrm{y} \uparrow}$| 6 | 8 |
| :---: | :---: | :---: |
| 3 | 4 |

Tensorflow implementation

- Weight Initialization
- Convolution and Pooling
- Convolution layer
- Fully connected layer
- Readout Layer
- Reference and image source:
https://www.tensorflow.org/get started/mnist/pros
(See section 'Build a Multilayer Convolutional Network')

Input (placeholder)

```
x = tf.placeholder(tf.float32, shape=[None, input_size])
y = tf.placeholder(tf.float32, shape=[None, classes_num])
```

x is placeholder for input image.
y is label with one-hot representation, so second dimension of y is equal to number of classes.

None indicates that the first dimension, corresponding to the batch size, which can be any size.

Weight Initialization

```
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
```

These variable will be initialized when user run 'tf.global_variables_initializer'. Now they are just nodes in a graph without any value.

Convolution and Pooling

```
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
```

Strides is 4-d, following NHWC format.
(Num_samples x Height x Width \times Channels)
Recall strides and padding.
padding = 'SAME' means apply padding to keep output size as same as input size.

Conv2d pads with zeros and max_pool pads with -inf.
tf.nn.conv2d
tf.nn.max_pool

Convolution layer

```
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
```


Convolution layer

```
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
```

See how the code creates a model by wrapping layers.
Be care of shape of each layer.
-1 means match the size of that dimension is computed so that the total size remains constant.

Reshape

For example:
tensor ' t ' is $[[1,2],[3,4],[5,6],[7,8]]$, so t has shape $[4,2]$
(1) reshape $(t,[2,4]) \rightarrow[[1,2,3,4],[5,6,7,8]]$
(2) reshape(t, [-1, 4]) \rightarrow [[1, 2, 3, 4], [5, 6, 7, 8]]
-1 would be computed and becomes ' 2 '

Fully connected layer

```
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
```

Flatten all the maps and connect them with fully connected layer.
Again, be care of shape.

Readout Layer

```
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
```

Use a layer to match output size.
Done!

Training and Evaluation (optional)

```
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_)
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
```


Recommendation

- Search for each function, and you'll what's everything going on.

