Tensorflow CNN turorial

2017/03/10

Lenet-5

[LeCun et al., 1998]

C3: 1. maps 16@10x10
S4:1, mq;s 16@5x5

| Ful conrtecnon | Gauwan connections
Convolutions Subsampling Convoluuons Subsamplﬂg Full connection

C1: leature maps
- Go282s

S2. 1. ma
6@14x1

A |

Today’s example

output

pool2 hiddend

convi1

input

Image source

The slides are from

1. “Lecture 13: Neural networks
for machine vision, Dr. Richard
E. Turner”

2. Lecture 7 & 12 in Stanford
CS231n

The slides are from
1. “Lecture 13: Neural networks for machine vision, Dr. Richard E. Turner”
2. Lecture 7 & 12 in Stanford CS231n

Convolution Layer

32x32x3 image

32 height

3 depth

Convolution Layer

32x32x3 image

5x5x3 filter
32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

ConVO|Utlon I—ayer Filters always extend the full
. depth of the input volume

32x32x3 image /
5x5x3 filter
32 £/
I| Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Convolution Layer

32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz+ b

~~ 1 number:

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Convolution Layer

activation map

__— 32x32x3image

5x5x3 filter /
=
@>@ N

convolve (slide) over all

spatial locations
32 28

Convolution Layer

JE

V
——0

32

consider a second, green filter

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

V4

/A

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

32

3

32

Convolution Layer

activation maps

y 4

28

28

6

We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6

5x5x3
32 filters 28

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

>

CONYV,
RelLU
e.g. 6
9x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24

32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32
-> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
9x5x3 9x5x6
32 filters 28 filters 24

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

A closerlook at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closerlook at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closerlook at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

applied with stride 2
=> 3x3 output!

A closerlook at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

A closerlook at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

n practice;: Common to zero pad the border

0

0

0

0

0

o O o o o

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

n practice;: Common to zero pad the border

ofofofo]oO
e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

o O o o o

7x7 output!
in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 =>zero pad with 1
F =5 => zero pad with 2

F =7 =>zeropad with 3

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—>

'

> o 112
224 downsampling

224

Single depth slice

MAX POOLING

111 2| 4

max pool with 2x2 filters
5| 6|7 | 8 and stride 2
3210 "
112 | 3| 4

v

Tensorflow implementation

* Weight Initialization

e Convolution and Pooling
e Convolution layer

* Fully connected layer

* Readout Layer

e Reference and image source:
https://www.tensorflow.org/get started/mnist/pros

(See section ‘Build a Multilayer Convolutional Network’)

Input (placeholder)

X = tf.placeholder(tf.float32, shape=INone, input_size

y tf.placeholder(tf.float32, shape=|None, classes_num

X is placeholder for input image.
y is label with one-hot representation, so second dimension of y is
equal to number of classes.

None indicates that the first dimension, corresponding to the batch
size, which can be any size.

tf.placeholder

Weight Initialization

def weight_variable(shape
initial = tf.truncated_normal(shape, stddev=0.
return tf.Variable(initial

def bias_variable(shape
initial tf.constant(0.1, shape=shape
return tf.Variable(initial tftruncated_normal

These variable will be initialized when user run ‘tf.global variables_initializer’.
Now they are just nodes in a graph without any value.

Convolution and Pooling

def conv2d(x, W
return tf.nn.conv2d(x, W, strides=[1, 1, 1, : padding="'SAME’

def max_pool_2x2(x
return tf.nn.max_pool(x, ksize=|[1l, 2, 2
strides=[1, 2, 2, 1 padding="'SAME’

Strides is 4-d, following NHWC format.
(Num_samples x Height x Width x Channels)

Recall strides and padding.
padding = ‘SAME’ means apply padding to keep output size as same as input size.

tf.nn.conv2d

Conv2d pads with zeros and max_pool pads with —inf.
tf.nn.max_pool

Convolution layer

weight_variable
bias variable

tf.reshape(x 1,28,28,1

tf.nn.relu(conv2d(x_image, W_convl b_convl
max_pool_2x2(h_convl

. weight_variable(|5
b_conv2 bias _variablel([€

h_conv2 tf.nn.relu(conv2d(h_pooll, W_conv2 b_conv2
h_pool2 = max_pool_2x2(h_conv2

input conv1 pool1 conv2 pool2 hiddend output

tf.reshape

Convolution layer

weight_variable

bias_variablel |:

tf.reshape(x 28,20

tf.nn.relulconv2d(x 1mage W_convl b_convl
max_pool_2x2(h_convl

weight_variable(|5

b:conv2 bias_variable

h_conv2 tf.nn.relu(conv2d(h_pooll, W_conv2 b_conv2
h_pool2 max_pool_2x2(h_conv2

See how the code creates a model by wrapping layers.
Be care of shape of each layer.

-1 means match the size of that dimensionis computed
so that the total size remains constant.

tf.reshape

Reshape

For example:
tensor ‘t"is [[1, 2], [3, 4], [5, 6], [7, 8]] , so t has shape [4, 2]

(1) reshape(t, [2,4]) = [[1, 2, 3, 4], [5, 6, 7, 8]]
(2) reshape(t, [-1, 4]) = [[1, 2, 3, 4], [5, 6, 7, 8]]

-1 would be computed and becomes ‘2’

tf.reshape

Fully connected layer

W_fcl = weight_variable(|’
b fcl bias _variable(1024

h_pool2_flat tf.reshape(h_pool2 1, 7x7%64
h_fcl tf.nn.relu(tf.matmul(h_pool2_ flat W fcl b _fcl

Flatten all the maps and connect them with fully connected layer.
Again, be care of shape.

input convi pool1 conv2 pool2 hiddend output

N

Full Connection

Readout Layer

_fc2 = weight_variable
b fc2 bias_variablel(|:

y_conv tf.matmul(h_fcl _drop, W_fc2 b fc2

Use a layer to match output size.
Done!

input convi pool1 conv2 pool2 hiddend output

Full Connection

Training and Evaluation (optional)

cross_entropy tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_
train_step = tf.train.AdamOptimizer(le-4).minimize(cross_entropy
correct_prediction tf.equal(tf.argmax(y_conv,1 tf.argmax(y_,1
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32
sess.run(tf.global_variables_initializer
for 1 range (20000

batch mnist.train.next_batch(50

if 1%100 0
train_accuracy = accuracy.eval(feed_dict
X:batch|@ y_: batchll keep_prob: 1.0
print("step %d, training accuracy %g"%(1, train_accuracy
train_step.run(feed_dict={x: batch!|® y_: batch!l keep_prob

print("test accuracy %g"%accuracy.eval(feed_dict
X: mnist.test.images, y_: mnist.test. labels, keep_prob: 1.@

Recommendation

* Search for each function, and you’ll what’s everything going on.

