
Tensorflow CNN	turorial
2017/03/10

Lenet-5	

[LeCun et	al.,	1998]

Today’s	example

Image	source

The slides are from
1. “Lecture 13: Neural networks for machine vision, Dr. Richard E. Turner”
2. Lecture 7 & 12 in Stanford CS231n

32

3

Convolution Layer

32x32x3 image

width

height

32

depth

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

7

7x7 input (spatially)
assume 3x3 filter

7

7

7x7 input (spatially)
assume 3x3 filter

7

7

7x7 input (spatially)
assume 3x3 filter

7

7

7x7 input (spatially)
assume 3x3 filter

7

=> 5x5 output

7

7x7 input (spatially)
assume 3x3 filter

7

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
spatial locations

consider a second, green filter

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32
-> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

=> 5x5 output

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

Tensorflow implementation

• Weight	Initialization

• Convolution	and	Pooling
• Convolution	layer
• Fully	connected	layer
• Readout	Layer

• Reference	and	image	source:	
https://www.tensorflow.org/get_started/mnist/pros

(See	section	‘Build	a	Multilayer	Convolutional	Network’)

Input	(placeholder)

tf.placeholder

x	is	placeholder	for	input	image.
y	is	label with	one-hot	representation,	so	second	dimension	of	y	is	
equal	to	number	of	classes.

None indicates	that	the	first	dimension,	corresponding	to	the	batch	
size,	which	can	be	any	size.

Weight	Initialization

tf.truncated_normal

These	variable	will	be	initialized	when	user	run	‘tf.global_variables_initializer’.
Now	they	are	just	nodes	in	a	graph	without	any	value.

Convolution	and	Pooling

Strides	is	4-d,	followingNHWC	format.	
(Num_samples x	Height	x	Width	x	Channels)

Recall	strides	and	padding.
padding	=	‘SAME’	means	apply	padding	to	keep	output	size	as	same	as	input	size.

Conv2d	pads	with	zeros and	max_pool pads	with	–inf.		
tf.nn.conv2d

tf.nn.max_pool

Convolution	layer

tf.reshape

Convolution	layer

See	how	the	code	creates	a	model	by	wrapping	layers.
Be	care	of	shape of	each	layer.
-1	means	match	the	size	of	that	dimension	is	computed	
so	that	the	total	size	remains	constant.

tf.reshape

Reshape	

tf.reshape

For	example:

tensor	‘t’	is	[[1,	2],	[3,	4],	[5,	6],	[7,	8]]	,	so	t	has	shape	[4,	2]

(1) reshape(t,	[2,4])	è [[1,	2,	3,	4],	[5,	6,	7,	8]]	

(2) reshape(t,	[-1,	4])	è [[1,	2,	3,	4],	[5,	6,	7,	8]]

-1	would	be	computed	and	becomes	‘2’

Fully	connected	layer

Flatten	all	the maps	and	connect	them	with	fully	connected	layer.
Again,	be	care	of	shape.

Readout	Layer

Use	a	layer	to	match	output	size.
Done!

Training	and	Evaluation	(optional)

Recommendation

• Search	for	each	function,	and	you’ll	what’s	everything	going	on.

