Actor-Critic
Hung-yi Lee
Asynchronous Advantage Actor-Critic (A3C)

Review – Policy Gradient

\[\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r^n_{t'} - b \right) \nabla \log p_\theta(a^n_t | s^n_t) \]

\(G^n_t \): obtained via interaction

Very unstable

With sufficient samples, approximate the expectation of \(G \).

Can we estimate the expected value of \(G \)?

\[G = 100 \]
\[G = 3 \]
\[G = 1 \]
\[G = 2 \]
\[G = -10 \]
Review – Q-Learning

- State value function $V^\pi(s)$
 - When using actor π, the *cumulated* reward expects to be obtained after visiting state s

- State-action value function $Q^\pi(s, a)$
 - When using actor π, the *cumulated* reward expects to be obtained after taking a at state s

V^π scalar

Q^π

Estimated by TD or MC

for discrete action only

$Q^\pi(s, a = \text{left})$

$Q^\pi(s, a = \text{right})$

$Q^\pi(s, a = \text{fire})$
Actor-Critic

\[Q^{\pi_\theta}(s^n_t, a^n_t) - V^{\pi_\theta}(s^n_t) \]

\[\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(\sum_{t'=t}^{T_n} \gamma^{t'-t} r^n_{t'} - b \right) \nabla \log p_\theta(a^n_t | s^n_t) \]

\[E[G^n_t] = Q^{\pi_\theta}(s^n_t, a^n_t) \]
Advantage Actor-Critic

Estimate two networks? We can only estimate one.

Only estimate state value
A little bit variance

\[Q^n(s^n_t, a^n_t) = E[r^n_t + V^n(s^n_{t+1})] \]
\[Q^n(s^n_t, a^n_t) = r^n_t + V^n(s^n_{t+1}) \]
Advantage Actor-Critic

\[\pi \text{ interacts with the environment} \]

\[\pi = \pi' \]

Update actor from \(\pi \rightarrow \pi' \) based on \(V^\pi(s) \)

Learning \(V^\pi(s) \)

\[\nabla \bar{R}_\theta \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \left(r_t^n + V^\pi(s_{t+1}^n) - V^\pi(s_t^n) \right) \nabla \log p_\theta(a_t^n|s_t^n) \]
Advantage Actor-Critic

• Tips
 • The parameters of actor $\pi(s)$ and critic $V^\pi(s)$ can be shared
 • Use output entropy as regularization for $\pi(s)$
 • Larger entropy is preferred \rightarrow exploration
Asynchronous Advantage
Actor-Critic (A3C)

The idea is from 李思叡
Asynchronous

1. Copy global parameters
2. Sampling some data
3. Compute gradients
4. Update global models

\[\theta^1 + \eta \Delta \theta \] (other workers also update models)
Pathwise Derivative Policy Gradient

Another Way to use Critic

Original Actor-critic

Pathwise derivative

Policy gradient

From Q function we know that taking a' at state s is better than a. We know the parameters of Q function.
Action a is a continuous vector

$$a = \arg \max_a Q(s, a)$$

Actor as the solver of this optimization problem

http://www.cartomad.com/comic/109000081104011.html
Pathwise Derivative Policy Gradient

\[\pi'(s) = \arg \max_a Q^\pi(s, a) \quad \text{a is the output of an actor} \]

Gradient ascent:
\[\theta'^\pi \leftarrow \theta^\pi + \eta \nabla_{\theta^\pi} Q^\pi(s, a) \]

Update \(\pi \to \pi' \)

This is a large network
\(\pi \) interacts with the environment

Learning: \(Q^\pi(s, a) \)

Replay Buffer

Exploration

Find a new actor \(\pi' \) "better" than \(\pi \)

Actor

\(\pi \)

Update \(\pi \rightarrow \pi' \)

Update: \(\theta^{\pi'} \leftarrow \theta^\pi + \eta \nabla_{\theta^\pi} Q^\pi(s, a) \)

Replay Buffer

\(s \)

\(a \)

\(Q^\pi \)

\(Q^\pi(s, a) \)
Q-Learning Algorithm

• Initialize Q-function Q, target Q-function $\hat{Q} = Q$

• In each episode
 • For each time step t
 • Given state s_t, take action a_t based on Q (exploration)
 • Obtain reward r_t, and reach new state s_{t+1}
 • Store (s_t, a_t, r_t, s_{t+1}) into buffer
 • Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 • Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 • Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)

• Every C steps reset $\hat{Q} = Q$
Q-Learning Algorithm ➔ Pathwise Derivative Policy Gradient

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$, actor π, target actor $\hat{\pi} = \pi$
- In each episode
 - For each time step t
 1. Given state s_t, take action a_t based on Q (exploration)
 2. Obtain reward r_t, and reach new state s_{t+1}
 3. Store (s_t, a_t, r_t, s_{t+1}) into buffer
 4. Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 1. Update the parameters of Q to make $Q(s_i, a_i)$ close to y (regression)
 2. Update the parameters of π to maximize $Q(s_i, \pi(s_i))$
- Every C steps reset $\hat{Q} = Q$
- Every C steps reset $\hat{\pi} = \pi$
Connection with GAN

<table>
<thead>
<tr>
<th>Method</th>
<th>GANs</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezing learning</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Label smoothing</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Historical averaging</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Minibatch discrimination</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Batch normalization</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Target networks</td>
<td>n/a</td>
<td>yes</td>
</tr>
<tr>
<td>Replay buffers</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Entropy regularization</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Compatibility</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>