
Unsupervised 
Conditional Generation



Domain X Domain Y

male female

It is good.

It’s a good day.

I love you.

It is bad.

It’s a bad day.

I don’t love you.

Unsupervised Conditional Generation

Transform an object from one domain to another 
without paired data (e.g. style transfer)

GDomain X Domain Y



Unsupervised 
Conditional Generation
• Approach 1: Direct Transformation

• Approach 2: Projection to Common Space
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ignore input

[Tomer Galanti, et al. ICLR, 2018]

The issue can be avoided by network design.

Simpler generator makes the input and 
output more closely related.



Direct Transformation
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scalar
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Baseline of DTN [Yaniv Taigman, et al., ICLR, 2017] 



Direct Transformation 

𝐺𝑋→𝑌

𝐷𝑌

Domain Y

scalar

Input image 
belongs to 
domain Y or not

𝐺Y→X

as close as possible

Lack of information 
for reconstruction 

[Jun-Yan Zhu, et al., ICCV, 2017]

Cycle consistency



Direct Transformation 

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to 
domain Y or not

scalar: belongs to 
domain X or not



Cycle GAN –
Silver Hair

• https://github.com/Aixile/c
hainer-cyclegan



Cycle GAN –
Silver Hair

• https://github.com/Aixile/c
hainer-cyclegan



Issue of Cycle Consistency

• CycleGAN: a Master of Steganography (隱寫術)
[Casey Chu, et al., NIPS workshop, 2017] 

𝐺Y→X𝐺𝑋→𝑌

The information is hidden.



Cycle GAN

Dual GAN

Disco GAN

[Jun-Yan Zhu, et al., ICCV, 2017]

[Zili Yi, et al., ICCV, 2017] 

[Taeksoo Kim, et 

al., ICML, 2017]



StarGAN
For multiple domains, 
considering starGAN

[Yunjey Choi, arXiv, 2017]
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Unsupervised 
Conditional Generation
• Approach 1: Direct Transformation

• Approach 2: Projection to Common Space
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𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

Minimizing reconstruction error

Because we train two auto-encoders separately …

The images with the same attribute may not project 
to the same position in the latent space.

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Minimizing reconstruction error

Projection to Common Space
Training



Sharing the parameters of encoders and decoders

Projection to Common Space
Training

𝐸𝑁𝑋

𝐸𝑁𝑌

𝐷𝐸𝑋

𝐷𝐸𝑌

Couple GAN[Ming-Yu Liu, et al., NIPS, 2016]

UNIT[Ming-Yu Liu, et al., NIPS, 2017]



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

Minimizing reconstruction error

The domain discriminator forces the output of 𝐸𝑁𝑋 and 
𝐸𝑁𝑌 have the same distribution.

From 𝐸𝑁𝑋 or 𝐸𝑁𝑌

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space
Training

Domain
Discriminator

𝐸𝑁𝑋 and 𝐸𝑁𝑌 fool the 
domain discriminator

[Guillaume Lample, et al., NIPS, 2017]
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Cycle Consistency:

Used in ComboGAN [Asha Anoosheh, et al., arXiv, 017]

Minimizing reconstruction error



𝐸𝑁𝑋

𝐸𝑁𝑌 𝐷𝐸𝑌

𝐷𝐸𝑋image

image

image

image

𝐷𝑋

𝐷𝑌

Discriminator 
of X domain

Discriminator 
of Y domain

Projection to Common Space
Training

Semantic Consistency:

Used in DTN [Yaniv Taigman, et al., ICLR, 2017] and 
XGAN [Amélie Royer, et al., arXiv, 2017]

To the same 
latent space



世界二次元化

• Using the code: 
https://github.com/Hi-
king/kawaii_creator

• It is not cycle GAN, 
Disco GAN

input output domain

https://github.com/Hi-king/kawaii_creator


Voice Conversion



In the past

Today

Speaker A Speaker B

How are you? How are you?

Good morning Good morning

Speaker A Speaker B

天氣真好 How are you?

再見囉 Good morning

Speakers A and B are talking about completely different things.



Speaker A Speaker B

我

感謝周儒杰同學提供實驗結果
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