Tips for Training
Deep Network



Output

* Training Strategy: Batch Normalization
* Activation Function: SELU
* Network Structure: Highway Network



Batch Normalization



Feature Scaling
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In general, gradient descent converges much faster
with feature scaling than without it.



How about Hidden Layer?
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) Batch normalization

3 o R 2 Smaller learning rate can be
'5 - \“4 helpful, but the training would

be slower.
Internal Covariate Shift




Batch

f

1

Sigmoid Sigmoid  Sigmoid

= =

f

]
A
N
N
\N
S
N

A A A

BN Ew e

Batch




Batch normalization
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Note: Batch normalization
w1l cannot be applied on

small batch.
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U, o are ¥, b are network
from batch parameters

We do not have batch at testing stage.

Ideal solution:
Computing u and o using the whole training dataset.

Practical solution:

Computing the moving average of u and o of the
batches during training.



Batch normalization - Benefit

* BN reduces training times, and make very deep net
trainable.

e Because of less Covariate Shift, we can use larger
learning rates.

* Less exploding/vanishing gradients
* Especially effective for sigmoid, tanh, etc.

* Learning is less affected by initialization.
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* BN reduces the demand for regularization.
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
fraining steps.



To learn more ......

* Batch Renormalization
* Layer Normalization

* Instance Normalization
* Weight Normalization

e Spectrum Normalization



Activation Function:
SELU



RelLU

 Rectified Linear Unit (ReLU)

Reason:

o(2) ry 1. Fast to compute
2. Biological reason

3. Infinite sigmoid
>Z with different biases

4. Vanishing gradient
problem




RelLU - variant

Leaky ReLU
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Parametric ReLU

a = az

a also learned by
gradient descent



(1) Definition of scaled exponential linear units (SELUs)

In [3]: def selu(x): . .. .
with ops.name_scope('elu’) as scope: https://glthub.com/blomf—Jku/SNNs
alpha = 1.6732632423543772848170429916717
scale = 1.8507009873554804934193349852946
return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x))

Exponential Linear

Unit (ELU) Scaled ELU (SELU)
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a =1.6732632423543772848170429916717
A =1.0507009873554804934193349852946


https://github.com/bioinf-jku/SNNs

" a=1.673263242...
SE I—U * 1=1.050700987 ...

Positive and negative values

» The whole ReLU family has this property except the original ReLU.

Saturation region » ELU also has this property
Slope larger than 1 » Only SELU also has this property



SELU EE

The inputs are i.i.d random
variables with mean u and
variance ¢2.-1 =0
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Do not have to be Gaussian
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Demo
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Source of joke:
https://zhuanlan.zhihu.co
m/p/27336839

SELU is actually

more general.

’ Andrej Karpathy @

-

@karpathy

maybe it's all generated by a char-rnn. |
suspect we will never know.
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FNN method comparison

ML method comparison

Method avg. rank diff.  p-value  Method avg. rank diff.  p-value
SNN -0.756 SNN -6.7

MSRAnit -0.240* 2.77e-02  SVM -6.4 5.8e-01
LayerNorm -0.198* [.5e-02 RandomForest -5.9 2.1e-01
Highway 0.021%* 1.9e-03  MSRAInit -5.4% 4.5e-03
ResNet 0.273% S5.4e-04 LayerNorm -5.3 7T.1e-02
WeightNorm 0.397* 71.8e-07 Highway -4.6% 1.7e-03

BatchNorm ().504%* 3.5e-06



https://data-sci.info/2017/06/11/%e6%9c%80%e6%96%b0%e6%bf%80%e6%b4%bb%e7%a5%9e%e7%b6%93%e5%85%83self-normalization-neural-network-selu/

Demo



Highway Network
& Grid LSTM




Feedforward v.s. Recurrent

1. Feedforward network does not have input at each step
2. Feedforward network has different parameters for each layer

“HMM

= fi(at™)) = c(Wtat~t + b?) tis layer

g g t is time step

f(ht 1, t)_a(whht 1+ Wixt + b')

Applying gated structure in feedforward network




GRU — Highway Network

No input xtat each
step

No output ytat
each step

atlis the output of
the (t-1)-th layer

atis the output of
the t-th layer

No reset gate
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Highway Network

* Highway Network * Residual Network
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Training Very Deep Networks Deep Residual Learning for Image
https://arxiv.org/pdf/1507.0622 Recognition
8v2.pdf http://arxiv.org/abs/1512.03385
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Highway Network automatically
determines the layers needed!




Mean Cross Entropy Error
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Highway Network
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Grid LSTM Memory for both

time and depth

depth







Grid LSTM




3D Grid LSTM
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3D Grld I_STI\/I 3 x 3 images
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* Images are composed of pixels
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