# Tips for Training Deep Network

# Output

- Training Strategy: Batch Normalization
- Activation Function: SELU
- Network Structure: Highway Network

# Feature Scaling



In general, gradient descent converges much faster with feature scaling than without it.

# How about Hidden Layer?



# Batch

$$x^{1} + W^{1} \rightarrow z^{1} \rightarrow \overline{g}$$

$$x^{2} + W^{1} \rightarrow z^{2} \rightarrow \overline{g}$$

$$x^{3} + W^{1} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{3} + W^{1} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{1} + W^{2} \qquad \dots$$

$$x^{2} + W^{2} \qquad \dots$$

$$x^{3} + W^{1} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{2} + W^{2} \qquad \dots$$

$$x^{3} + W^{2} \qquad \dots$$

$$x^{4} + W^{2} \qquad \dots$$

$$x^{4} + W^{4} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{2} + W^{2} \qquad \dots$$

$$x^{4} + W^{4} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{4} + W^{4} \rightarrow z^{3} \rightarrow \overline{g}$$

$$x^{2} + W^{2} \rightarrow \overline{g}$$

$$x^{4} + W^{2} \rightarrow \overline{g}$$

$$x^{4} + W^{2} \rightarrow \overline{g}$$

$$x^{4} + W^{2} \rightarrow \overline{g}$$

$$x^{5} + W^{2} \rightarrow \overline{g}$$

$$x^{2} + W^{2} \rightarrow \overline{g}$$

$$x^{4} + W^{2} \rightarrow \overline{g}$$

$$x^{5} + W^{2} \rightarrow \overline{g}$$

$$x^{2} + W^{2} \rightarrow \overline{g}$$

$$x^{4} + W^{2} \rightarrow \overline{g}$$

$$x^{5} + W^{2$$



$$\tilde{z}^i = \frac{z^i - \mu}{\sigma}$$



$$\tilde{z}^{i} = \frac{z^{i} - \mu}{\sigma}$$

$$\hat{z}^{i} = \gamma \odot \tilde{z}^{i} + \beta$$





At testing stage:



We do not have **batch** at testing stage.

### Ideal solution:

Computing  $\mu$  and  $\sigma$  using the whole training dataset.

### **Practical solution:**

Computing the moving average of  $\mu$  and  $\sigma$  of the batches during training.

## Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
  - Because of less Covariate Shift, we can use larger learning rates.
  - Less exploding/vanishing gradients
    - Especially effective for sigmoid, tanh, etc.
- Learning is less affected by initialization.



BN reduces the demand for regularization.



Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

# To learn more .....

- Batch Renormalization
- Layer Normalization
- Instance Normalization
- Weight Normalization
- Spectrum Normalization

# Activation Function: SELU

### ReLU

Rectified Linear Unit (ReLU)



### Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

## ReLU - variant

### Leaky ReLU



### Parametric ReLU



α also learned by gradient descent

#### (1) Definition of scaled exponential linear units (SELUs)

```
In [3]: def selu(x):
    with ops.name_scope('elu') as scope:
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x))
https://github.com/bioinf-jku/SNNs
```

# Exponential Linear Unit (ELU)

### Scaled ELU (SELU)



 $\alpha = 1.6732632423543772848170429916717$   $\lambda = 1.0507009873554804934193349852946$ 

**SELU** 



Positive and negative values



The whole ReLU family has this property except the original ReLU.

Saturation region



ELU also has this property

Slope larger than 1



Only SELU also has this property

# **SELU**

The inputs are i.i.d random variables with mean  $\mu$  and variance  $\sigma^2$ .=1

$$\mu_{z} = E[z]$$

$$= \sum_{k=1}^{K} E[a_{k}] w_{k} = \mu \sum_{k=1}^{K} w_{k} = \mu \cdot K\mu_{w}$$

$$= 0 = 0$$



Do not have to be Gaussian

# **SELU**

The inputs are i.i.d random variables with mean  $\mu$  and variance  $\sigma^2$ . =0

$$\mu_{z} = 0 \qquad \mu_{w} = 0$$

$$\sigma_{z}^{2} = E[(z - \mu_{z})^{2}] = E[z^{2}]$$

$$= E[(a_{1}w_{1} + a_{2}w_{2} + \cdots)^{2}]$$

$$= \sum_{k=1}^{K} (w_{k})^{2} \sigma^{2} = \sigma^{2} \cdot K \sigma_{w}^{2} = 1$$

$$= 1 = 1$$



# Demo

$$\frac{2(2x-y)(2x+y)2.911}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}\left(\frac{2x+y}{\sqrt{2}\sqrt{x}}\right)^{2}+2.911^{2}+\frac{(2.911-1)\sqrt{x}(2x+y)}{\sqrt{2}\sqrt{x}}\right)}\right)\sqrt{\pi}-0.0003=$$

$$(3x-y)+\left(\frac{\left(\sqrt{2}\sqrt{x}2.911\right)(x-y)(x+y)}{\left(\sqrt{\pi}(x+y)^{2}+2\cdot2.911^{2}x}+(2.911-1)(x+y)\sqrt{x}\right)\left(\sqrt{2}\sqrt{x}\right)}-\frac{2(2x-y)(2x+y)\left(\sqrt{2}\sqrt{x}2.911\right)}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}(2x+y)^{2}+2\cdot2.911^{2}x}+(2.911-1)(2x+y)\sqrt{\pi}\right)}\right)\sqrt{\pi}-0.0003=$$

$$(3x-y)+2.911\left(\frac{(x-y)(x+y)}{(2.911-1)(x+y)+\sqrt{(x+y)^{2}+\frac{2\cdot2.911^{2}x}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}}}}\right)-0.0003\geqslant$$

$$(3x-y)+2.911\left(\frac{(x-y)(x+y)}{(2.911-1)(x+y)+\sqrt{(\frac{2.911^{2}}{x}})^{2}}+(x+y)^{2}+\frac{2\cdot2.911^{2}x}{x}+\frac{2\cdot2.911^{2}y}{x}}\right)$$

$$\frac{2(2x-y)(2x+y)}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{x}}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(2x+y)+\sqrt{(2x+y)^{2}+\frac{2\cdot2.911^{2}x}{x}}}}\right)-0.0003=$$

$$(3x-y)+2.911\left(\frac{(x-y)(x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2.911^{2}x}{x}})^{2}}}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2.911^{2}x}{x}})^{2}}}-\frac{2(2x-y)(2x+y)}{(2.911-1)(x+y)+\sqrt{(x+y+\frac{2.911^{2}x}{x}})^{2}}}\right)-0.0003=$$

### 93 頁的證明

Source of joke: https://zhuanlan.zhihu.co m/p/27336839

SELU is actually more general.

Following



(x-y)(x+y)

 $((x+y)+\frac{2.9}{-})$ 

Andrej Karpathy @karpathy

maybe it's all generated by a char-rnn. I suspect we will never know.





2:54 AM - 10 Jun 2017











| FNN method comparison |                 |                 | ML method comparison |                 |         |
|-----------------------|-----------------|-----------------|----------------------|-----------------|---------|
| Method                | avg. rank diff. | <i>p</i> -value | Method               | avg. rank diff. | p-value |
| SNN                   | -0.756          |                 | SNN                  | -6.7            |         |
| MSRAinit              | -0.240*         | 2.7e-02         | SVM                  | -6.4            | 5.8e-01 |
| LayerNorm             | -0.198*         | 1.5e-02         | RandomForest         | -5.9            | 2.1e-01 |
| Highway               | 0.021*          | 1.9e-03         | MSRAinit             | -5.4*           | 4.5e-03 |
| ResNet                | 0.273*          | 5.4e-04         | LayerNorm            | -5.3            | 7.1e-02 |
| WeightNorm            | 0.397*          | 7.8e-07         | Highway              | -4.6*           | 1.7e-03 |
| BatchNorm             | 0.504*          | 3.5e-06         |                      |                 |         |

# Demo

# Highway Network & Grid LSTM





### Feedforward v.s. Recurrent

- 1. Feedforward network does not have input at each step
- 2. Feedforward network has different parameters for each layer



Applying gated structure in feedforward network

# GRU → Highway Network

No input x<sup>t</sup> at each step

No output y<sup>t</sup> at each step

a<sup>t-1</sup> is the output of the (t-1)-th layer

a<sup>t</sup> is the output of the t-th layer

No reset gate



# Highway Network

# $h' = \sigma(Wa^{t-1})$ $z = \sigma(W'a^{t-1})$ $a^{t} = z \odot a^{t-1} + (1-z) \odot h$

### Highway Network



Training Very Deep Networks https://arxiv.org/pdf/1507.0622 8v2.pdf

### Residual Network



Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385



# Highway Network



# **Grid LSTM**







# Grid LSTM



# 3D Grid LSTM





# 3D Grid LSTM

3 x 3 images

• Images are composed of pixels



