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Conditional Sequence Generation

\

How are you Machine Learning | am fine.

% oa 2 H How are you?

ASR Translation Chatbot

The generator is a typical seq2seq model.

With GAN, you can train seq2seq model in another way.



Review: Sequence-to-sequence

Maximize
* Chat-bot as example likelihood I’m good.
Output: Not bad ’'m John. \‘
Human better output
Training Criterion better SENLENCE X

Training

data:
A: How are you ?

B: I'm good.

T

| Generator
Input sentence c

How are you ?
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 Machine obtains feedback from user

How are Hello g
you?
= 5
JWJ Bye bye @} 40&?‘-:'\ {
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e Chat-bot learns to maximize the expected reward




Maximizing Expected Reward

Learn to maximize expected reward

T Policy Gradient

Input sentence c #

Input sentence c #
response sentence x »

En | De.

Chatbot

Human

- response sentence x

# R(c,x) 1»

reward

[Li, et al., EMNLP, 2016]



Maximizing Expected Reward

/ 1 )

update @

arg max Rg « Maximizing expected reward

Ro=) P(h) ) R(h,x) Py(x|h)
h X

\ Randomness in generator

Probability that the input/history is h



Maximizing Expected Reward

/ 1 )

update @

0" =arg max Ry « Maximizing expected reward

Ro = 2 P(h) z R(h, ) Po(x1h) = En-pn [Ex~poam [R(,2)]]

= Epp(n)x~Py(xin) [R(H, x)] ZR(hl X ) Where
is @7

Sample: (ht, x1), (h?%, x?), - (hN xN)



, , dlog(f(x)) _ 1 df(x)
Policy Gradient A f0) dx

N
_ 1 .
Ry = Z p(h)Z R(h, x) P (x|h) ~ NZ R(h, x)

N
VRy = z P(h) z R(h,x)VPy(x|h) = %z R(Rh%, x')ViogPg(x|h)
=1 ﬁ

h be
=) P(h) ) R, x)Py(xIh) ‘7PPQ Q(ixl'h’;)} Sampling
h X

_ z P(h) z R(h, x)Pg (x| L) TogPa (xR
h X

= Ep-p(n)x~pPgxin) [R(R,x)VIogPg(x|h)]



Policy Gradient

 Gradient Ascent
0"V « 6°'% + nVRjo1a

N
_ 1 . L
VRg = Nz R(h‘,x‘)Vlong (x‘|h‘)
i=1
R(hi,xi) is positive
» After updating 0, Py (xi|hi) will increase

R(hi,xi) is negative
» After updating 0, Py (xi|hi) will decrease



Policy Gradient - Implemenation

R(ct xt) is positive

Updating 6 to increase Pg(x‘|c!)
R(Ci;xi) Is negative

Updating 6 to decrease Pg(x!|c!)

4




Comparison

Maximum Reinforcement
Likelihood Learning
1% 1%
Objective zl iy i z i i)
— ogPq(X"|cC — Rlc*, x"')logP
Function N£Ld o(%'1¢) N 4 (¢, )logPo(x'|c")
=1 1=1
; N , N
Gradient Nz ViogPg (3?1|C‘) Nz R(c‘,xl)Vlong (x‘lc‘)
i=1 =1
Training {(ct,2Y), ..., (N, 2} {(cL,xD), ..., (cN,x"))
Data

R(ch,®Y) =1

obtained from interaction
weighted by R(ci,xi)



Alpha GO style training !

* Let two agents talk to each other

5%& How old are you? j(‘:’?\ How old are you?
D Fa; Ui o
-4/ i‘”’*

See you. ;@ lam 16. 3%

&Y, Seeyou. & | though you were 12.

- 4 i &
BB 4 W |

See you. _g%”’ What make you _g%”'

think so?

Using a pre-defined evaluation function to compute R(h,x)
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http://www.nipic.com/show/3/83/3936650kd7476069.html|

Conditional GAN

Input sentence c » m

Chatbot
Input sentence c #

response sentence x -

- response sentence x

Discriminator

» Real or fake

“reward”

\ 4
y &

human
dialogues

. N— |
" Q W‘:
[

[Li, et al., EMNLP, 2017]




Training data:

AlgO ﬂthm Pairs of conditional input ¢

and response x

* |nitialize generator G (chatbot) and discriminator D
* In each iteration:

e Sample input c and response x from training set
« Sample input ¢’ from training set, and generate
response X by G(c')

* Update D to increase D(c, x) and decrease D(c’, X)

e Update generator G (chatbot) such that

m Discrimi ﬁ
¢ - Chatbot » nator »scalar

update




m Discrimi
»scalar scalar
Chatbot nator
update Discriminator I
Can we use
radient ascent? A
s 4\ 4\ N

NO!

Due to the sampling process, “discriminator+ generator”
is not differentiable



Three Categories of Solutions

Gumbel-softmax

e [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

\J

e [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMINLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,
2017]

“Reinforcement Learning”

\J

* [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William

Fedus, et al., ICLR, 2018]




Gumbel-softmax

(a) ™
fix)
.i.--.

x(E}
https://gabrielhuang.g _ $
itbooks.io/machine- v
learning/reparametriz
ation-trick.html ) .
https://casmls.github.i s
o/general/2017/02/01 Deterministic.
/GumbelSoftmax.html differentiable node

http://blog.evjang.com/ () Stochastc node
2016/11/tutorial- a
categorical-

variational.html | Backpropagatioe

Forward pass

()

el

v



Three Categories of Solutions

Gumbel-softmax

e [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

\J

e [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMINLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,
2017]

“Reinforcement Learning”

\J

* [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William

Fedus, et al., ICLR, 2018]




m Discrimi ﬁ
Chatbot » nator »scalar scalarﬁ

update Discriminator

Use the distribution 711
as the input of
discriminator

Avoid the sampling
process

We can do
backpropagation /'
NOW. <BOS> O




What is the problem?

* Real sentence

1 0 0 0 0
0 1 0 0 0 \
0 0 1 0 0 Discriminator can
0 0 0 1 0 immediately find
e Generated 0 0 0] |0 1 the difference.
09||01]|01]| 0 0 /

0.1 0.9 0.1 0 0

Can never
be 1-of-N

0 0 01|08 ||01||] WGAN is helpful




Three Categories of Solutions

Gumbel-softmax

e [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

\J

e [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMINLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,
2017]

“Reinforcement Learning”

e [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William

Fedus, et al., ICLR, 2018]




Reinforcement Learning?

m Discrimi »scalar

Chatbot nator
update

e Consider the output of discriminator as reward

* Update generator to increase discriminator = to get
maximum reward

* Using the formulation of policy gradient, replace reward
R(c, x) with discriminator output D(c, x)
 Different from typical RL
* The discriminator would update



D(Ci,xi is positive
Updating 6 to increase Py(x*|c?)

' ' D(ct, x') is negative
(cV,xN)  D(c",x™) Updating 6 to decrease Pg(x!|c?)

4




Reward for Every Generation Step
VRy ~ %z D(ct, x)ViogPg(xt|ct)

c' = “What is your name?” D(ci,xi) is negative
x' = “ don’t know” Update 6 to decrease logPy (xi|ci)

logPy (xi|ci) = logP(xﬂci) + logP(x§|ci,x{) + logP(x§|ci,x1i:2)
P("1"c) -2 $ ¥
¢t = “What is your name?” D(ct, xt) is positive
x' = “l am John” Update 0 to increase logPy(x!|ct)

logPg(xt|ct) = logP(x}|ct) + logP(x5|ct, x}t) + logP(xk|ct xt.,)

P("I"|cb) 4  » 2 »



Reward for Every Generation Step

hi = “What is your name?”  x* =“l don’t know”

logPg (xi|hi) = logP(x{|ci) + logP(xi|ct, xt) + logP(xk|ct, xt )
P("I"|C‘) P("don’t"|c‘, Ig} P("know"|cl, "I don@
=

VRy ~ —ED(C x‘)Vlqu (xt]ct)

b VR ~ NZE(Q(C x}.t) — b)VlogPq(x{|ct, xi. )

llt

Method 1. Monte Carlo (MC) Search [Yu, et al., AAAI, 2017]

Method 2. Discriminator For Partially Decoded Sequences
[Li, et al., EMNLP, 2017]




Kevin Lin, Dianqi Li, Xiaodong

. He, Zh Zhang, Ming-Ting Sun,
Tl pS Ra ﬂ kGA N ”Aedversear;iggcl);;nki:gn%r Lz;:gualgr;g .

Generation”, NIPS 2017

Input sentences Reference U Ranked sentences

@-O---0O-0O Q1.
N ' /6o
Geng;ator \@_O_.O_O — RankerR; —» @_O_

Image caption generation:

Method BLEU-2 BLEU-3 BLEU-4 Method Human score
MLE 0.781 0.624 0.589 SeqGAN 3.44
SeqGAN 0.815 0.636 0.587 RankGAN 4.61

RankGAN 0.845 0.668 0.614 Human-written 6.42




Experimental Results

Input | We've got to look for another route.

MLE |I'm sorry.

GAN |You're not going to be here for a while.

Input | You can save him by talking.

MLE |1 don't know.

GAN | You know what's going on in there, you know what |
mean?

 MLE frequently generates “I'm sorry”, “I don’t know”, etc.
(corresponding to fuzzy images?)

* GAN generates longer and more complex responses
(however, no strong evidence shows that they are better)

Find more comparison in the survey papers.
[Lu, et al., arXiv, 2018][Zhu, et al., arXiv, 2018]



More Applications

e Supervised machine translation [wuy, etal., arxiv
2017][Yang, et al., arXiv 2017]

e Supervised abstractive summarization [Liy, et al.,, Aaal
2018]

* Image/video caption generation [rRakshith Shetty, et al., ICCV
2017][Liang, et al., arXiv 2017]

If you are using seq2seq models,
consider to improve them by GAN.
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Text Style Transfer

Domain X DomainY

e e
T g - 2
v \ [0 g g %
e i 1R
o pial i J HImT
—_ 1. =t 5 g e
€ ¥ | i
=2 ? e %757 ]

s UL
4 P Y
S T

male female

It is good. It is bad.
It’s a good day. < > It’s a bad day.
| love you. | don’t love you.

positive sentences negative sentences




Direct Transformation

as close as possible

scalar: belongs to
domain Y or not

scalar: belongs to
domain X or not -

as close as possible




Direct Transformation

as close as possible

1

It is bad.

negative

| love you.

positive

1

» GX—>Y -

g Ov-x g

It is good.

pomnve

| hate you.

negative

1

g Ov-x Lag

It is bad.

negative

negative sentence? «m‘ E positive sentence?

» GX—>Y »

| love you.
positive

as close as possible

1




Direct Transformation

Discrete?

[Lee, et al.,

as close as possible

Word embedding

ICASSP, 2018]

l
I

1k

1

» GX—>Y -

g Ov-x g

Ils i l

i

1

g Ov-x Lag

negative sentence? «E‘ E positive sentence?

» GX—>Y »

g

as close as possible

1




- Negative sentence to positive sentence:
it's a crappy day — it's a great day
| wish you could be here - you could be here
it's not a good idea — it's good idea
| miss you — i love you
| don't love you — i love you
| can't do that — | can do that
| feel so sad — 1 happy
it's a bad day — it's a good day
it's a dummy day — it's a great day
sorry for doing such a horrible thing — thanks for doing a
great thing
my doggy Is sick - my doggy is my doggy
my little doggy is sick — my little doggy is my little doggy




Projection to Common Space

Discriminator
of X domain

Discriminator
of Y domain



Projection to Common Space

Decoder hidden layer as discriminator input

[Shen, et al., NIPS, 2017]

Positive
Sentence » ENy ’

Negative » EN, ’

Sentence

ENy and ENy fool the
domain discriminator

[Zhao, et al., arXiv, 2017]
[Fu, et al., AAAI, 2018]

/ Discriminator
of X domain

Positive
DE »
X Sentence D X

o
) DE,

Negative » D
Y

Sentence
Discriminator
of Y domain

Domain

Discriminator oM ENy or ENy
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Abstractive Summarization

* Now machine can do abstractive summary by
seg2seq (write summaries in its own words)

summary 1

N summary 2

summary |
(in its own words) w i Bl summary 3
seqg2seq “ A
Supervised: We need lots of Training Data

labelled training data.



Review:
Unsupervised Conditional Generation

Domain X DomainY

Aol )

Speaker A

L T T

Speaker B

document|| “ summary



Unsupervised Abstractive Summarization

Human written summaries » 1.,.@ » Real or not
EF Discriminator
& mm‘%.

word
seguence

EraB—

Seqg2seq

document



Unsupervised Abstractive Summarization

Human written summaries » %Q » Real or not

n Et Discriminator

Il

word

document sequence document
|r 5 . 2 |r
E"? o | g
4 I ‘ J I 4. ry
Seqg2seq Seqg2seq

minimize the reconstruction error




Unsupervised Abstractive >
Summarization Only need a lot &=

of documents to #
train the model &—2#

This is a seq2seq2seq auto-encoder.

Using a sequence of words as latent representation.

not readable ...

word
document sequence document




Unsupervised Abstractive
SU Mima rization REINFORCE algorithm is used.

» %g » Real or not
ﬂ E'$ Discriminator

Human written summaries

Let Discriminator considers

my output as real

Il

4

word
sequence document

ﬁ»lﬁr»»ﬂ t->r|i

Seq2seq Seqg2seq




Summarization

* Document:;FA K Fl| oK Bl
& e, 5 L1058

* Summary:.

 Human: B A Kl goEid13
* Unsupervised:}t

=gl

. Bl FEE RIS E R R
Unsupervised Abstractive

& [ LB M hess
WK o 5RES B st < Y MY EE g &

113 A BH 5 7 J/ [z SALEE TS
YN SE i A A T TR

* Document: " 2 (BRI PRI se e B 87 > KBE]— L4

R B

(TR, R

* Summary:

K, EH R 3

Jﬁt A AR E & A RIS

FIERS4E Hanik

N ans

* Human:— UL = F L FREG ARSI
* Unsupervised: B Z & B L B & R 1Y

e RN A



Elaff THEE RS et iR

Unsupervised Abstractive

Summa

rization

* Document: {5 [E I AG 27 H ¥, Bl e 7Y a R TE AL
H A e AT H A e g bl LI 2 B B 20 7, 226 H f b
£/PEA60 AFEAE,10025 AKHE ...

* Summary:

e Human:EIE7K £ %R 60 AFET™

* Unsupervised:EJJE 1 7/KZ EE2URM

—a

* Document: 25 e S AE T BT Ry ST N BRI 1R

LR, N BRI TE ~ AR ...

TE R E
* Summary:.
* Human:

EACHE SRR A S E e i

+ Unsupervised: & TS84 81 T H B A CE AL

— 2



(unpublished result)

Semi-supervised Learning  Usine

ROUGE-1

34
33
32
31
30
29
28
27
26
25

matched data

0 10k 500k
Number of document-summary pairs used

--\WGAN -®-Reinforce —Supervised
(3.8M pairs are used)
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Unsupervised Machine Translation

DomainyY

BN

""’"e’”ﬂ/ate "_ "f%« o R '7
% $ e > 1Z A 2
ZeelNod, 8y, o Rt > S f
< ¢/ pstrs - 0p 93 o0 “ ié,g 4q 4
2 . ¥ " = fl 2 ¥
Voeg % \\S N 4?% ' 4
Uspy % ﬁl‘ é 47@‘ ﬁ ,
& & LERL B o
§
A4 [Alexis Conneau, et al., ICLR, 2018]

[Guillaume Lample, et al., ICLR, 2018]



supervised

. K\\V/’_ =~
unsupervised 7

104 10° 10° 107
number of parallel training sentences

Unsupervised learning  __ Supervised learning with
with 10M sentences 100K sentence pairs



Unsupervised Speech Recognition

~atdb-avif-o Bl D, D, D
#lsoppan P1 P3 P,
L TN o Ps Ps Ps
~at-wor-o I D, D5 0. D

Acoustic Pattern Discovery

Can we achieve
unsupervised speech
recognition?

S
E—

Cycle GAN

The dog is ......

The cats are ......

The woman is ......

The cat is ......

The maniis ......

[Liu, et al., arXiv, 2018] [Chen, et al., arXiv, 2018]




Unsupervised Speech Recognition

- Audio: TIMIT
* Phoneme recognition Text: WMT
80 .
supervised
gﬁﬁ'
3\5{?-
S 403627 Gumbel-softmax
T — o~
< 30 -
713 é WGAN-GP

20 5

10

0 : : : :

10" 0.001 0.01 0.1 1.0

Labeled Data Ratio
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Concluding Remarks

fromAtoZ



A B C D E F

ACGAN BiGAN CycleGAN DCGAN EBGAN fGAN
DuelGAN

G H | J K L

GAN ? InfoGAN ? ? LSGAN

(only list those mentioned in class)



M N O P Q R

MMGAN NSGAN ?  Progressive ? Rank
GAN GAN

S T U VvV W X

StackGAN Triple Unroll VAEGAN WGAN XGAN
StarGAN GAN GAN

SeqGAN

Y » >
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