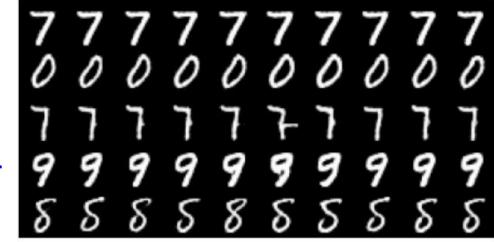
Feature Extraction

InfoGAN

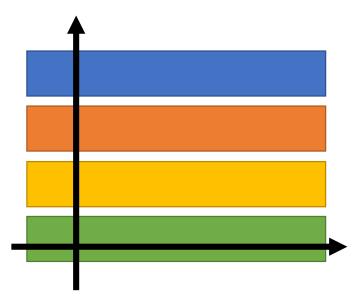
(The colors represents the characteristics.) Regular GAN

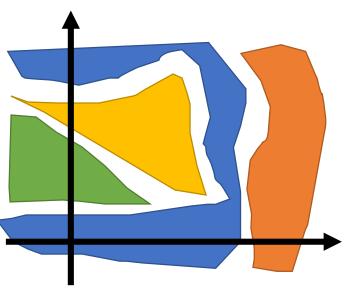


Modifying a specific dimension, no clear meaning

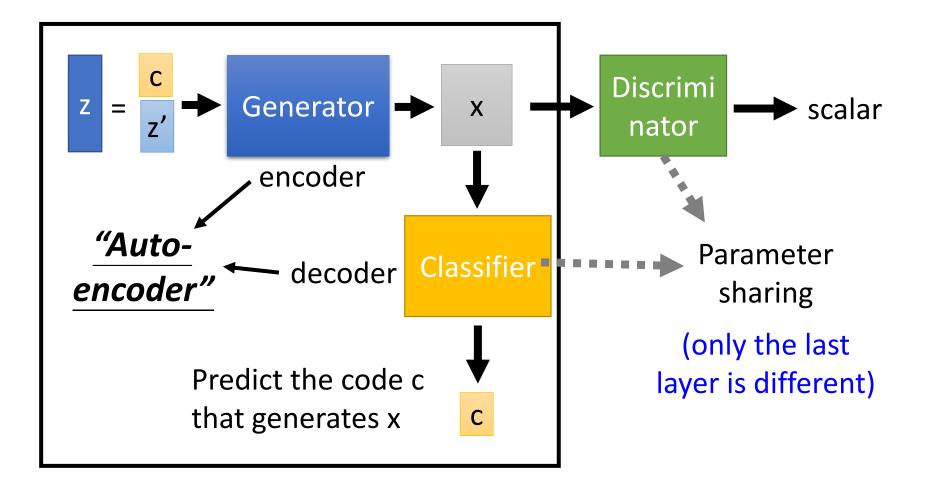
What we expect

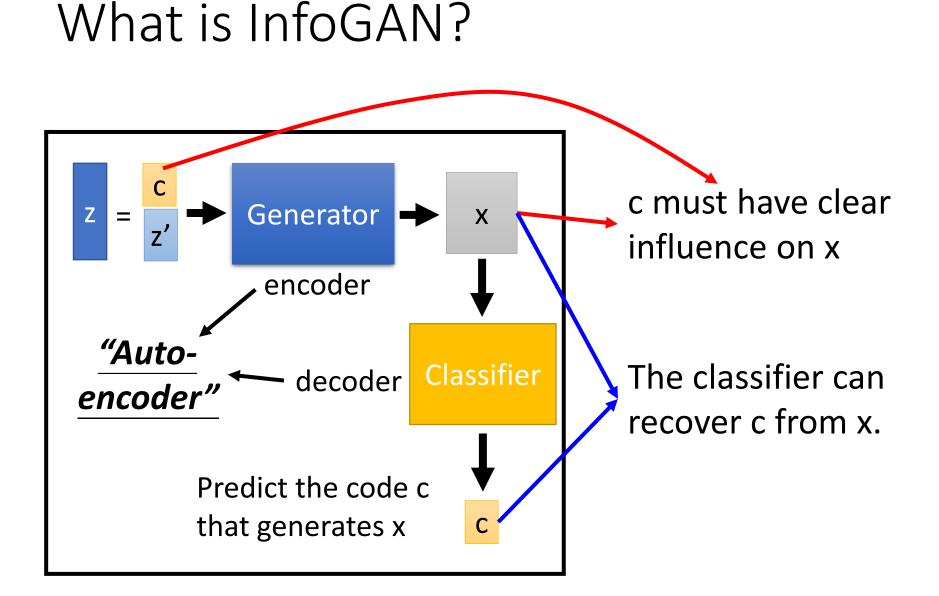
Actually ...





What is InfoGAN?





(a) Varying c_1 on InfoGAN (Digit type) (b) Varying c_1 on regular GAN (No clear meaning) 8 8 8 б 8 5

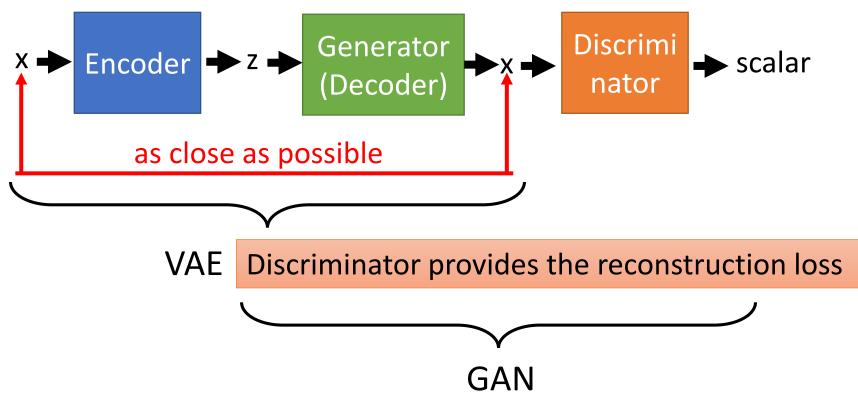
(c) Varying c_2 from -2 to 2 on InfoGAN (Rotation) (d) V

(d) Varying c_3 from -2 to 2 on InfoGAN (Width)

https://arxiv.org/abs/1606.03657

Anders Boesen, Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, Ole Winther, "Autoencoding beyond pixels using a learned similarity metric", ICML. 2016

- Minimize
 Minimize
 reconstruction error
 z close to normal
 Cheat discriminator
 - Discriminate real, generated and reconstructed images



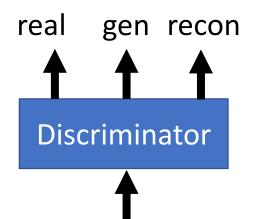
Algorithm

- Initialize En, De, Dis
- In each iteration:
 - Sample M images x^1, x^2, \cdots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \cdots, \tilde{z}^M$ from encoder

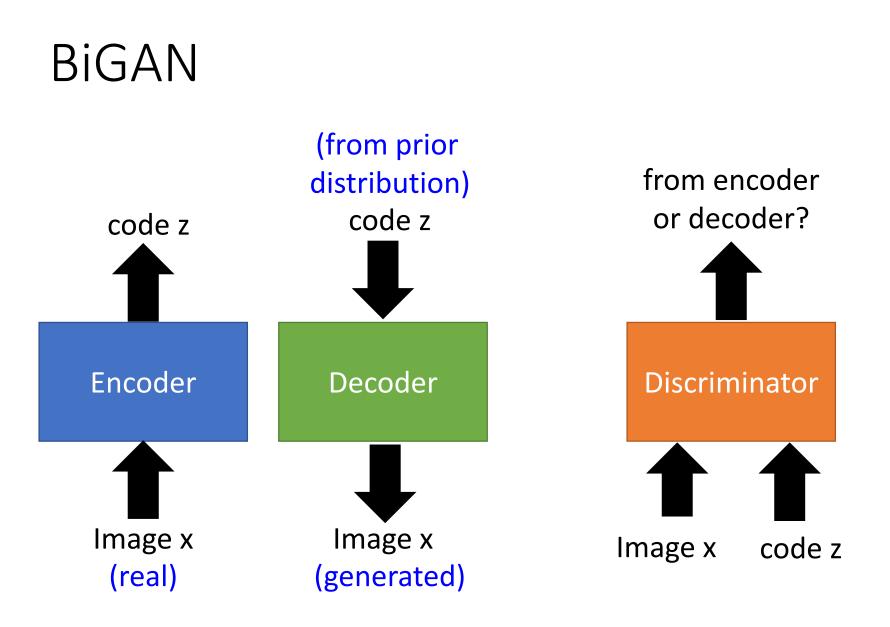
•
$$\tilde{z}^i = En(x^i)$$

- Generate M images \$\tilde{x}^1\$, \$\tilde{x}^2\$, \$\dots\$, \$\tilde{x}^M\$ from decoder
 \$\tilde{x}^i = De(\tilde{z}^i)\$
- Sample M codes z^1, z^2, \dots, z^M from prior P(z)
- Generate M images \$\hat{x}^1\$, \$\hat{x}^2\$, \$\dots\$, \$\hat{x}^M\$ from decoder
 \$\hat{x}^i = De(z^i)\$
- Update En to decrease $\|\tilde{x}^i x^i\|$, decrease KL(P($\tilde{z}^i | x^i$)||P(z))
- Update De to decrease $\|\tilde{x}^i x^i\|$, increase $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$
- Update Dis to increase $Dis(x^i)$, decrease $Dis(\tilde{x}^i)$ and $Dis(\hat{x}^i)$

Another kind of discriminator:



Х



Algorithm

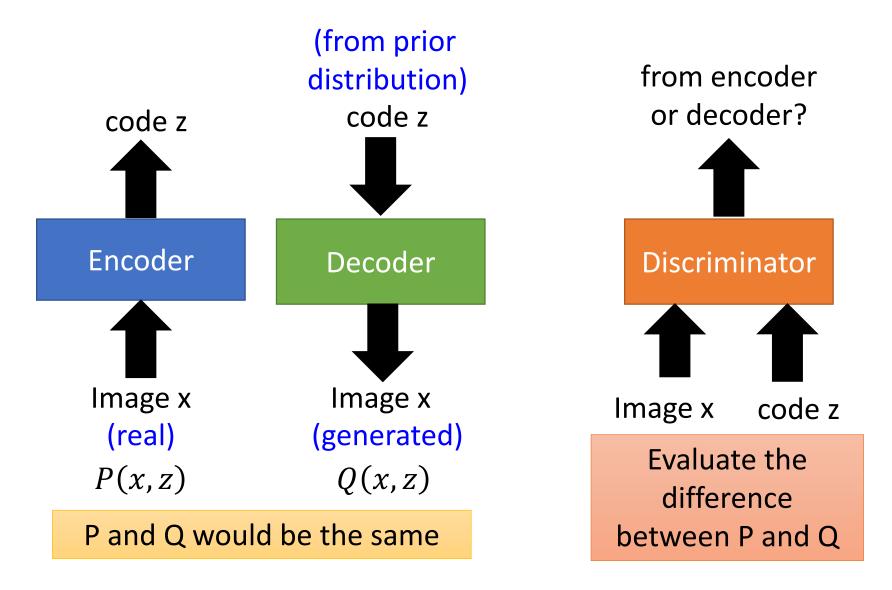
- Initialize encoder En, decoder De, discriminator Dis
- In each iteration:
 - Sample M images x^1, x^2, \cdots, x^M from database
 - Generate M codes $\tilde{z}^1, \tilde{z}^2, \dots, \tilde{z}^M$ from encoder

•
$$\tilde{z}^i = En(x^i)$$

- Sample M codes z^1, z^2, \dots, z^M from prior P(z)
- Generate M codes $\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^M$ from decoder

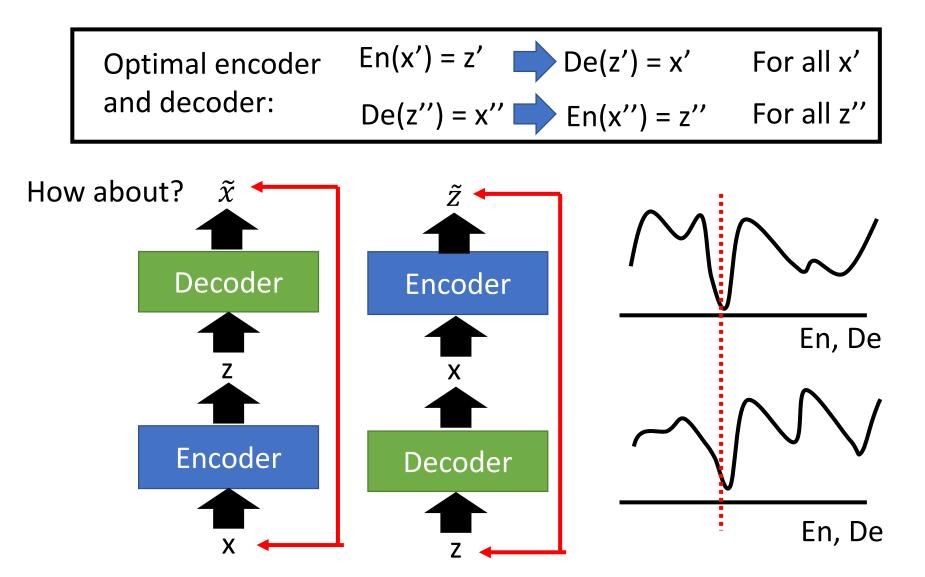
•
$$\tilde{x}^i = De(z^i)$$

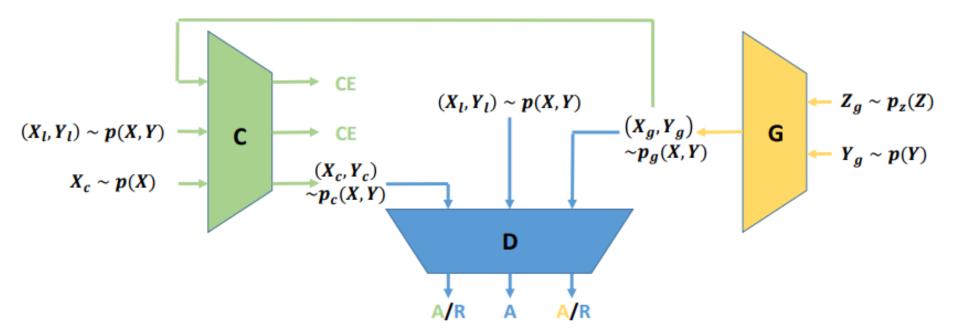
- Update Dis to increase $Dis(x^i, \tilde{z}^i)$, decrease $Dis(\tilde{x}^i, z^i)$
- Update En and De to decrease $Dis(x^i, \tilde{z}^i)$, increase $Dis(\tilde{x}^i, z^i)$



Optimal encoderEn(x') = z'De(z') = x'For all x'and decoder:De(z'') = x''En(x'') = z''For all z''

Bigan

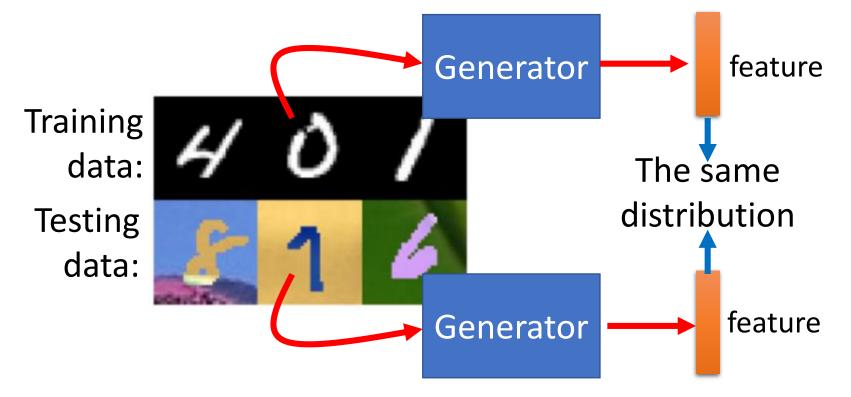




Chongxuan Li, Kun Xu, Jun Zhu, Bo Zhang, "Triple Generative Adversarial Nets", arXiv 2017

Domain-adversarial training

• Training and testing data are in different domains



Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Domain-adversarial training

Maximize label classification accuracy + minimize domain classification accuracy

Label predictor feature extractor eatures class label Domain classifier input + Not only cheat the domain 🍋 domain label d classifier, but satisfying label classifier at the same time Maximize domain

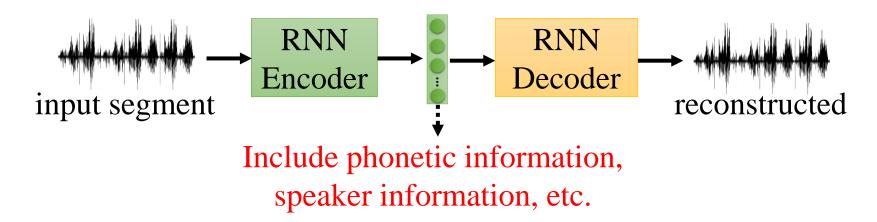
classification accuracy

Maximize label

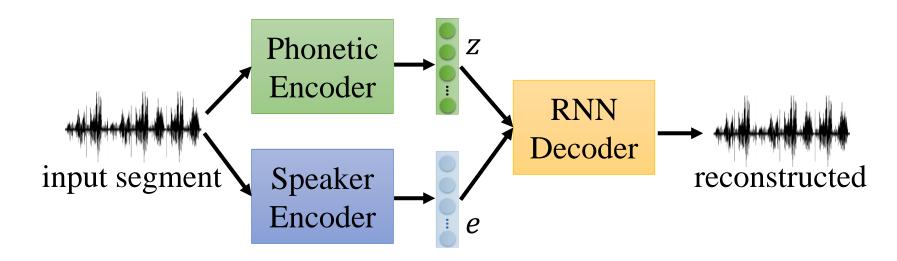
classification accuracy

This is a big network, but different parts have different goals.

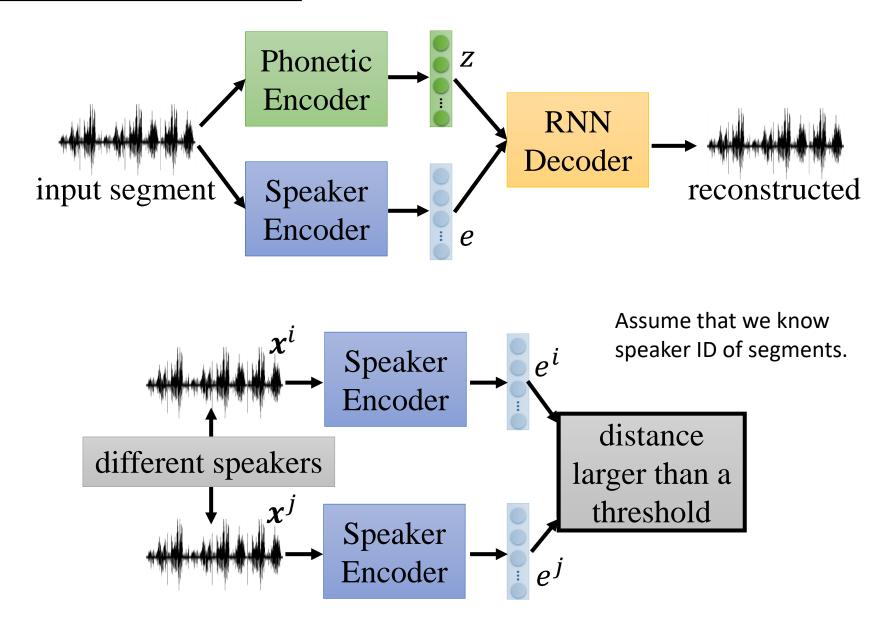
Original Seq2seq Auto-encoder



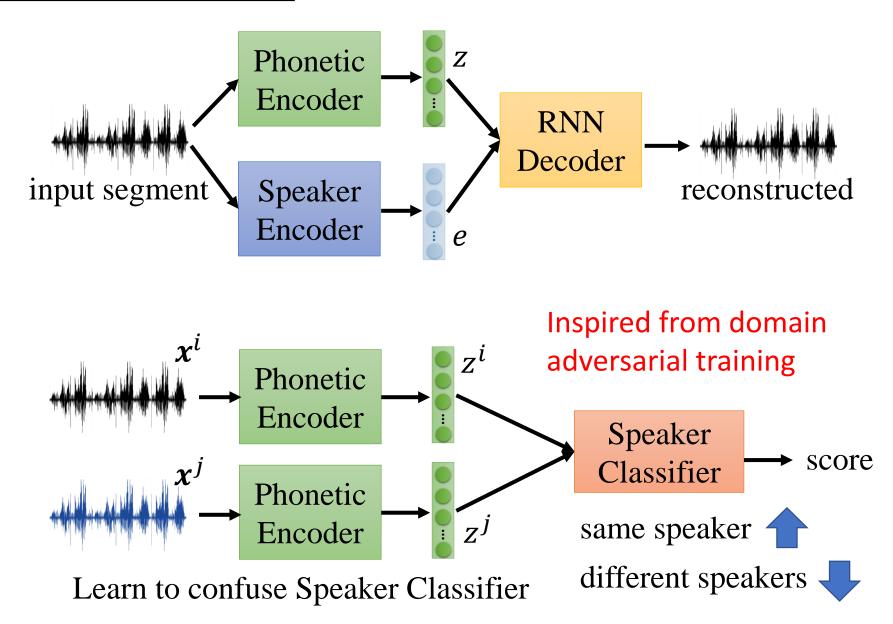
Feature Disentangle

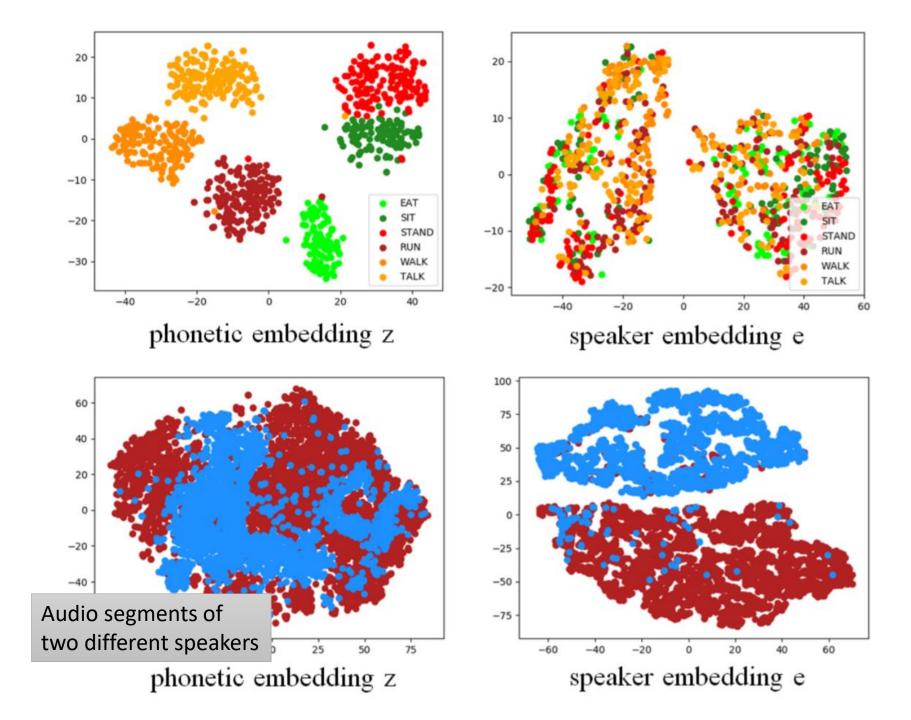


Feature Disentangle



Feature Disentangle





Acknowledgement

• 感謝許傑盛同學發現投影片上的打字錯誤