Theory behind GAN

Using Generative

Adversarial
Network (GAN)

Generation

» Drawing?

X: an image (a high-
dimensional vector)

Generation

* We want to find data distribution Py, (x)

Paata(x) 3 !
'S Y
e % . d;
High
Probability

Image
Space

Probability

Maximum Likelihood Estimation

* Given a data distribution P;,¢,(x) (We can sample from it.)

* We have a distribution P;(x; 8) parameterized by 6
* We want to find 8 such that P;(x; 8) close to P ¢q (x)

* E.g. P-(x; 0) is a Gaussian Mixture Model, 8 are means
and variances of the Gaussians

Sample {x1, x4, ..., x™} from Py ¢4 (x)

We can compute P, (xi; 0)

Likelihood of generating the samples oo

m
L = HPG(Xi; 9)
=1 O

Find 8™ maximizing the likelihood

Maximum Likelihood Estimation
= Minimize KL Divergence

m m
0" =arg m@axl_[PG(xi; 9) = arg max log HPG(xi; 0)
i=1 i=1

m

= arg meaxz logP(x%0) {xt,x?, ..., x™} from Pygrq (%)
i=1

~ arg max Ex-p . [logPs(x;0)]

= arg mgaxf Paata(x)logPg (x; 0)dx — f Pdata(x)l()gpdata(x)dx

X X

= arg mein KL(Pi4:4||1Pg) How to define a general P ?

X: an image (a high-
dimensional vector)

Generator

* A generator G is a network. The network defines a
probability distribution P

Normal P (x) Piata(x)

Distribution

as close as possible

G* =arg mGjn Div(Pg, Pigia)
Divergence between distributions P; and P44
How to compute the divergence?

Discriminator
G* = arg mGjn DiU(PG; Pdata)

Although we do not know the distributions of P; and P44,
we can sample from them.

,%W‘
g H/ } ‘

Sampling from P ;,;,

< < < . &y IR
sample from > |8 3 G TR YRS 4
normal S48 g N 20)

Sampling from P

Database fw g

Discriminator G* = argminDiv(Pg;, Pyata)

G

* . data sampled from P;,,, USingthe example objective

* . data sampled from P fun.ct.lon is gxactly the. s.ame as
training a binary classifier.

Discriminator

* * train

Example Objective Function for D

Sigmoid Output
-
V(G,D) = Exp,,,,[10gD(X)] + Ey-p,[log(1 = D(x))]

La (G is fixed)

Training: D* = arg‘mglx V(D, G)‘ The maximum objective value
is related to JS divergence.

[Goodfellow, et al., NIPS, 2014]

Discriminator 6" = arg min Div(Ps, Paqtra)

* : data sampled from Py,¢4 Training:
* : data sampled from P, D* = arg‘mgx V(D, G)‘

*
* *
Discriminator

* * ** train
small divergence hard to discriminate
* (cannot make objective large)

* ok
** I* train

*

Discriminator

large divergence easy to discriminate

V = Ex~Pdata [lOgD(X)]

mglx V(G , D) +Expg|log(1—D(x))]

* Given G, what is the optimal D* maximizing

V = Eyepygo[l0gD ()] + Exp,[log(1 — D(x))]

= J Pdata(x)lOgD(x) dx + f PG(x)log(l — D(X)) dx

X X

x Assume that D(x) can be any function

* Given x, the optimal D* maximizing
Paata (0)1ogD(x) + Pg(x)log(1 — D(x))

V =Ex piata [logD(x)]
M V(G,D) +E,_p[log(1—D())]

* Given x, the optimal D* maximizing

Pyata(x)logD (x) + Ps(x)log(1 — D(x))
a D b D

* Find D* maximizing: f(D) = alog(D) + blog(1 — D)

df(D)— ><1+b><
ao 7D 1-D

1 1 ax (1—-D*) =bxD*
=b X
D~ 1-D* a—aD*=bD* a=(a+b)D"

a Pdata(x)
‘ D*(x) =
a+tb O<() Pdata(x)+PG(x)<1

X(—=1) =0

a X

D* =

V =Exp,.. [logD(x)]
mDaX V(G, D) +Eyp, [log(l — D(x))]

max V(G,D) =V(G, D) br(x) = Pdatfgga*(‘x;a(x)
_ Pdata(x)
— Ex"'Pdata [log Pdata(x) + PG (X)]

+E lo Fe)
*~FPg g Pyata (x) + Pg (x)

1

E Pdata(x)
f Piata (x)log Piata (X) + P (X) dx 1
5 _
2 Pg(x)
+f P(;(x)lOg Pdata(x) + PG(x) dx

X 2

X

1
+2log= —2log?

JSD(P| Q) = 5 D(P || M) + 5 D(Q || M)
max V (G, D) volpio
D 2
— * « Paata(x)
Paata(x)
= -2l 2+fPaa z d
29 | Paara 00 (o0 + PeG) 2
Pg(x)
P
+xf O ea) + Po0)2 "
= —2log2 + KL (Pdatau Pdata; PG) +KL (PG|| Pdata; PG)

= —2log2 + 2JSD(Py4:4||P;) Jensen-Shannon divergence

G = arg mGjn mlgiX V(G,D)

D* = arg‘max V(D, G)‘ The maximum objective value
D is related to JS divergence.

V(Gl)D) V(GZ ,D) V(G3 ,D)

Gy

Divergence between P; and P4

[Goodfellow, et al., NIPS, 2014]

G* =arg mGjn max V(G,D)

D* = arg‘maxV(D, G)‘ The maximum objective value
D is related to JS divergence.

* |nitialize generator and discriminator

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

Algorithm G*=arg mGjn mgle(G,D)l

L(G)
 To find the best G minimizing the loss function L(G),

QG — BG —n aL(G)/aQG QG defines G

df (x)
dx

=2 df;(x)/dx
If f;(x) is the
max one

f(x) = max{f;(x), f2(x), f3(x)}

f1(x) f3(x)

dfi(x)/dx df,(x)/dx dfs(x)/dx

max V (G, DJ/
D

Algorithm

* Given G, gl >
Find Dy maximizing V(G,, D) Using Gradient Ascent

V (G, Dy) is the JS divergence between P, (x) and Pg ()

O; < 0; —ndV(G,Dy)/08, ‘ Obtain G; Decrease JS
Find D maximizing V (G, D) divergence(?)

V(Gy, D) is the JS divergence between Py, (x) and Pg, (x)

* 0 < 0 —ndV(G,D;)/06, My Obtain G, |pacrease IS
...... divergence(?)

Algorithm

* Given G,
* Find Dy maximizing V(Gy, D)

V (G, Dy) is the JS divergence between P, (x) and Pg ()
* O« 0;—n OV(G,D(’,‘)/(?HC,-‘ Obtain G; ' Decrease JS

divergence(?)
V(G,,D;) ~smaller
0. 0 “\ V(Gl ,Dg) A

Assume Dy = Df

» Don’tupdate G
V(G,,D) too much

V = Ex~Pdata [lOgD(X)]

In practice ... +Eyp[log(1 - D(O)]

* Given G, how to compute max V(G,D)

 Sample {x1,x?, ..., x™} from Py ., (x), sample
{x1,%2,...,X™} from generator P (x)

m m
-1 . 1 .
. . _ l _ ~l
Maximize V = — iil logD(x!) + — iil log (1 D(%))

» C V @

D is a binary classifier with sigmoid output (can be deep)
{x%,x2,...,x™} from Py, (x) H) Positive examples

{1, %2,..,%™} from P;(x) mm) Negative examples
Minimize Cross-entropy

for G

Canonly find ' max (G, D)
* In each training iteration: lower found of =2

*ISample m examples {x1, x?, ..., x™} from data distribution

Pyata(x)
*ISample m noise samples {z%, z%, ..., 2™} from the prior

Learning Pprio.r(.z) L o .
D *|Obtaining generated data {¥!, %%, ..., ™}, ¥' = G(z‘)
*|Update discriminator parameters 8, to maximize
-V = %Z}ﬁl logD(x') + %Z’iﬁl log (1 — D(fi))

* 0g < 04 +1VV(0,y)
*|Sample another m noise samples {z-, z
prior Pprior(Z)

Learning . Update generator parameters 6, to minimize

G . V:%ﬂ.@@+%2ﬁllog(l—D(G(zi)))

Only 3
Once * 0, <0, — nVV(Hg)

Initialize 6,4 for D and 6

Algorithm

Repeat
k times

Objective Function for Generator
in Real Implementation

V = Epep—tdog-biii

\ —l:og D(x):
By p, [log(1 = DCO)] | Tlog(p®)
Slow at the beginning
Minimax GAN (MMGAN)

V= ExNPG[—log(D(x))]

Real implementation:
label x from P as positive

Non-saturating GAN (NSGAN)

log(1-D@) |

