Q-Learning

Hung-yi Lee

Outline

‘Introduction of Q-Learning

.

Tips of Q-Learning '

Q-Learning for Continuous Actions

C - The output values of a critic
rtiC depend on the actor evaluated.

* A critic does not directly determine the action.
e Given an actor T, it evaluates how good the actor is

* State value function V™ (s)

 When using actor m, the cumulated reward expects to
be obtained after visiting state s

V”(S)
» v
scalar

V™(s) is large V™(s) is smaller

BI5E (2577 = bad

Critic
iy

LI

ek

SoR e

V

LS4 N 313
TR AR

NigW tk
L

B it
EnWHEN
SER-IK
L B

How to estimate V™ (s)

* Monte-Carlo (MC) based approach

* The critic watches m playing the game

After seeing s,,

Until the end of the episode,

Sa— V™ —V"(s)e>G,
the cumulated reward is G,

After seeing s,

Until the end of the episode,

— /7 174U G
the cumulated reward is G, Sp—> V= —V7(sp J=Gp

How to estimate V™ (s)

* Temporal-difference (TD) approach

S A T St

T — T
St — VT[—_— Vn(St) V (St) =V (5t+1) T Tt

— V7 (s¢) =V (Sty1) —> 17

Slf+1_> Vﬂ: _>V7T(St+1)

Some applications have very long episodes, so that
delaying all learning until an episode's end is too slow.

Var[kX] = k*Var[X]

MCv.s. TD

Larger variance
Sa— V™ —V™(sy)+>G, »

G, is the summation
of many steps

ss— V' — Vn(St) > T+ VT(seq1) «— YT <+ sp4q

Smaller variance
May be inaccurate

MCv.s. TD

[Sutton, v2,
Example 6.4]

* The critic has the following 8 episodes
* s, T =0,s,5,7=0,END

* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =1,END
* s, 7 =0,END

(The actions are ignored here.)

V*(sp) = 3/4
Vi(s,) =2 07 3/4?

Monte-Carlo: V™ (s,) =0
Temporal-difference:

Vi(s,) =VT(sy) + 1
3/4 3/4 0

Another Critic

* State-action value function Q™ (s, a)

 When using actor m, the cumulated reward expects to
be obtained after taking a at state s

: » 07 (s, a) — Q7(s,a = lef't)
Qm > |S Q" — Q™(s,a =right)
scalar - _
3 » — Q™ (s,a = fire)

for discrete action only

Action-Values (Q)

'
4
(%))

State-action value function

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N
atureControlDeepRL.pdf

o
13 DS

O

)
-t

Another Way to use Critic:
Q-Learning

’ 1T interacts with

the environment

T = TD or MC

Find a new actor e T,

T’ “better” than T |
\ A\

Q-Learning

T=r TD or MC

Find a new actor ’ : -
' “better” than Learning @*(s. &)
\ \

?

* Given Q™ (s, a), find a new actor '’ “better” than
. “Better”: VT (s) = V™(s), for all state s

n'(s) = arg max 0™ (s,a)

» ' does not have extra parameters. It depends on Q
» Not suitable for continuous action a (solve it later)

Q-Learning

n'(s) =argmax Q™ (s,a)
’ V™ (s) = V™(s), for all state s

VT(s) = Q”(s,n(s))

< max Q"(s,a) = Q™(s,m'(s))
VT (s) < Q" (s, ' (s))
= E[rt41 T V(xS = s,a¢ = 7' (s¢)]
) Qn(5t+1»”’(5t+1))|5t =s,a; = (s)]
= E[tt41 + Teqp + V7 (Se42)] -]

S E[regq + 142 + Qn(5t+2:ﬂ’(5t+2))| e] < Vn’(S)

Target Network

St A T St+1 7

Qn(st' at)

=1 + QT[(St+1; T[(St+1))

| Qn — Q™ (s¢, at)
Target
- - Network
undate regression
T Sp41
T + Qn(5t+1:”(5t+1)) — Q"
fixed value T m(see)

fixed

After updating N times

a; Q(s,a) =0 Neverexplore
EXplOratiOn S<a2 Q(s,a) = 1 Always sampled
az Q(s,a) =0 Neverexplore

* The policy is based on Q-function

This is not a good way

a=argmaxQ(s,a .
9 a Qs a) for data collection.

Epsilon Greedy &€ would decay during learning

{arg max Q(s,a), with probability 1 — ¢
a = a

random, otherwise

Boltzmann Exploration

Buffer :
Cexp
Replay Buffer —

Put the experience into buffer.| | exp Ws:, a;, 14, Si41

1T interacts with »

the environment

exp

The experience in the
buffer comes from

T =1 different policies.

Drop the old experience
if the buffer is full.

Find a new actor

q T
' “better” than i | Learning Q" (s, a)
\ A\

Buffer

Replay Buffer

Put the experience into buffer.

1T interacts with »

the environment
T =1 In each iteration:
1. Sample a

Sty Aty Tty St+1

exp

batch
Find a new actor : 2. Update Q-
Learning Q™ (s, a) Fnction

" “better” than T |
\ A\

Off-policy

Typical Q-Learning Algorithm

* Initialize Q-function Q, target Q-function (j =
* In each episode
* For eachtimestept

* Given state s;, take action a; based on Q (epsilon
greedy)

* Obtain reward r;, and reach new state s, 1

* Store (s¢, ag, 11, S¢4+1) into buffer

* Sample (s;, a;, 13, S;+1) from buffer (usually a batch)
e Targety =1; + max Q(s;11,Q)

Update the parameters of Q to make Q(s;, a;) close
to y (regression)

Every C steps reset Q = Q

Outline

‘Introduction of Q-Learning

N\

Tips of Q-Learning

Q-Learning for Continuous Actions '

Double DQN

* Qvalue is usually over-estimated

Alien Space Invaders Time Pilot Zaxxon
20 2 :
s - DQN estimate
6 -
15

%

Value estimates

Double DQN estimate
9 |
Double DQN true value
I 0 ; DQN true value

0 50 100 150 200 0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)

Double DQN

e Q value is usually over estimate

Q(s¢, ar) < > Tt + max Q(s¢41,a)

Q(St+1; a) I I

Tend to select the action
that is over-estimated

&

Double DQN

e Q value is usually over estimate

Q(se, ar) < > Tt + max Q(Sts1, @)

 Double DQN: two functions Q and Q' = Target Network

st ar) ~— 7+ Q' (Str1,arg max Q(se41,a))

If Q over-estimate a, so it is selected. Q" would give it proper value.

How about Q’ overestimate? The action will not be selected by Q.

Hado V. Hasselt, “Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “Deep Reinforcement Learning with
Double Q-learning”, AAAI 2016

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van
Hasselt, Marc Lanctot, Nando de Freitas, "Dueling

| . Network Architectures for Deep Reinforcement
D U e | n g D QN Learning”, arXiv preprint, 2015

7
% Q(s,a)

State c
/ V(s)

-~
~
~
~
~

4
/
/

= A(s,a)+V(s)

State ﬁ> Q(s,a)
/

! Only change the A(s,a)
network structure ’

Dueling DQN

Q(s,a)

action

V(s) Average of
column

+

A(s,a)

sum of

column=20

J’ "
,
)
,
,

V(s)

@ﬁf =4 >-|?iiz‘;‘,’a)+ws)
network soucture q]ma)
state
3 3. 4 1
1 X0 6 1
2 -1 1
1
2 B 1 4 1
+
1 3 -1
-1 -1 2
0 -2 1

Dueling DQN .

V(s)

-~
Fs "'...‘
’
P -~
, =)
’
’ ’
r ’

State #) Q(s,a)
S ﬁ ' = A(s,a)+V(s)

_/ Only change the
network structure

A(s,a)

7 3

Normalize A(s,a) before 3 > 1

adding with V(s)

Dueling DQON - Visualization

(from the link of the original paper)

Dueling DQON - Visualization

(from the link of the original paper)

https://arxiv.org/abs/1511.05952?context=cs

Prioritized Reply

The data with larger TD error in previous
training has higher probability to be sampled.

(St, Ap, Te) Sp11) ———— Experience
‘ Buffer

Sp — Parameter update
Q — Q(spap) procedure is also modified.
—
4 ‘TD error
P—
St+1

e+ Q(5t+1» Aptq) — é
Pa—

Apyq = arg max Q(Se4q, @) Qt+1
a

Mu |ti—step Balance between MC and TD

(St» Ae, Tty St+N» At + N>y T+ N 5t+N+1)

Srrér oD — CXPCTIENCE

‘ Buffer

St — A

Q — Q(stap) At+N+1 = ATG m;lx Q(St+n+1, @)
Clt_> '

Pa—
t+N R _ St+N+1
z o Tyt Q(St+n+1, Apsn+1) +——— @
t'=t —

At N+1

https://arxiv.org/abs/1706.01905

N O | Sy N et https://arxiv.org/abs/1706.10295

* Noise on Action (Epsilon Greedy)

argmax Q(s,a), with probability 1 — ¢
a = a
random, otherwise

* Noise on Parameters Inject noise into the parameters
of Q-function at the beginning of

each episode

Q(S,a) EEe——) Q(S,Cl)
Add noise

a = arg max Q(s,a)
a

The noise would NOT change in an episode.

Noisy Net

* Noise on Action

* Given the same state, the agent may takes
different actions.

* No real policy works in this way fEHE B
* Noise on Parameters

e Given the same (similar) state, the agent takes
the same action.

 — State-dependent Exploration
* Explore in a consistent way -
B Z 4 inE

https://blog.openai.com/better-
exploration-with-parameter-noise/

Distributional Q-function

* State-action value function Q™ (s, a)

* When using actor 7, the cumulated reward|expects|to
be obtained after seeing observation s and taking a

BoGod@

> >

-10 10 -10 10

Different distributions can have the same values.

Distributional Q-function

QTC(SJ aZ)
Qn(s' al) QT[(SJ Cl3)
|]] *

Q" Q"
x

*

S S

A network with 15 outputs

A net k with 3 output
NELWOrK With 3 outputs (each action has 5 bins)

Laser
g Left+Laser ==
Demo 1=
:g — Right
& l Left w=
Noop 1

Return

0.5

Probability

Return

https://youtu.be/yFBwyPuO2Vg

Rainbow

200% —

Median human-normalized score

https://arxiv.org/abs/1710.02298

100% -

DON
DDQON

A3C

Noisy

Prioritized DDQN
Dueling DDQN

Distributional DQN

DQN

Rainbow

| |
44 100 200
Millions of frames

. DQN
Rainbow — o double
=== NO priority
no dueling .,
Q ¥
200% - no multi-step
no distribution “
. f

o — No noisy A
e == Rainbow el v \
8 Pl
Ly g 4 1*;"—!“'#" W
D
N - ,_"'H‘l_..a*t.i
© -y p*h ‘!...ult_"d ~f -
E n--'"'-f‘f', -
(&)
-
- Q,
E 100%
]
@
=

0% | | |

° 50 100 150 200

Millions of frames

https://arxiv.org/abs/1710.02298

Outline

‘Introduction of Q-Learning

N\

Tips of Q-Learning '

Q-Learning for Continuous Actions

LS

Continuous Actions

e Action a is a continuous vector

a=argmaxQ(s,a)
a

Solution 1

Sample a set of actions: {a,a,, -, ay}

See which action can obtain the largest Q value

Solution 2

Using gradient ascent to solve the optimization
problem.

Continuous Actions

Solution 3 Design a network to make the optimization easy.

("

/ u(s) | vector

? Y(s) = matrix
V(s)

scalar

65, = ~(a - u(5)) 3(5)(

— () +V(s)

u(s) = arg max O(s,a)

https://www.youtube.com/watch?v=ZhsEKTo7V04

Continuous Actions

Solution 4 Don’t use Q-learning

Policy-based Value-based

Learning an Actor Actor + Critic Learning a Critic
(Next Lecture)

Acknowledgement

S SRR AT i 32Tk e A M

