
Q-Learning
Hung-yi Lee



Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions



Critic

• A critic does not directly determine the action.

• Given an actor π, it evaluates how good the actor is

• State value function 𝑉𝜋 𝑠

• When using actor 𝜋, the cumulated reward expects to 
be obtained after visiting state s 

𝑉𝜋s
𝑉𝜋 𝑠

scalar

𝑉𝜋 𝑠 is large 𝑉𝜋 𝑠 is smaller

The output values of a critic 
depend on the actor evaluated.



Critic

𝑉以前的阿光 大馬步飛 = bad

𝑉變強的阿光 大馬步飛 = good



How to estimate 𝑉𝜋 𝑠

• Monte-Carlo (MC) based approach
• The critic watches 𝜋 playing the game

After seeing 𝑠𝑎,

Until the end of the episode, 
the cumulated reward is 𝐺𝑎

After seeing 𝑠𝑏,

Until the end of the episode, 
the cumulated reward is 𝐺𝑏

𝑉𝜋 𝑠𝑎𝑉𝜋𝑠𝑎 𝐺𝑎

𝑉𝜋 𝑠𝑏𝑉𝜋𝑠𝑏 𝐺𝑏



How to estimate 𝑉𝜋 𝑠

• Temporal-difference (TD) approach 

⋯𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⋯

𝑉𝜋 𝑠𝑡𝑉𝜋𝑠𝑡

𝑉𝜋 𝑠𝑡+1𝑉𝜋𝑠𝑡+1

𝑉𝜋 𝑠𝑡 = 𝑉𝜋 𝑠𝑡+1 + 𝑟𝑡

𝑉𝜋 𝑠𝑡 − 𝑉𝜋 𝑠𝑡+1 𝑟𝑡-

Some applications have very long episodes, so that 
delaying all learning until an episode's end is too slow.



MC v.s. TD

𝑉𝜋 𝑠𝑎𝑉𝜋𝑠𝑎 𝐺𝑎
Larger variance

𝑉𝜋 𝑠𝑡𝑉𝜋𝑠𝑡 𝑉𝜋 𝑠𝑡+1 𝑉𝜋 𝑠𝑡+1𝑟 +

Smaller variance
May be inaccurate

𝐺𝑎 is the summation 
of many steps

𝑉𝑎𝑟 𝑘𝑋 = 𝑘2𝑉𝑎𝑟 𝑋



MC v.s. TD

• The critic has the following 8 episodes
• 𝑠𝑎 , 𝑟 = 0, 𝑠𝑏 , 𝑟 = 0, END

• 𝑠𝑏 , 𝑟 = 1, END 

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 1, END

• 𝑠𝑏 , 𝑟 = 0, END

[Sutton, v2, 
Example 6.4]

(The actions are ignored here.)

𝑉𝜋 𝑠𝑎 =?

𝑉𝜋 𝑠𝑏 = 3/4

0? 3/4?

Monte-Carlo:

Temporal-difference:

𝑉𝜋 𝑠𝑎 = 0

𝑉𝜋 𝑠𝑎 = 𝑉𝜋 𝑠𝑏 + 𝑟

3/43/4 0



Another Critic

• State-action value function 𝑄𝜋 𝑠, 𝑎

• When using actor 𝜋, the cumulated reward expects to 
be obtained after taking a at state s

𝑄𝜋
s 𝑄𝜋 𝑠, 𝑎

scalar
a

𝑄𝜋 𝑠, 𝑎 = 𝑙𝑒𝑓𝑡

𝑄𝜋 𝑠, 𝑎 = 𝑓𝑖𝑟𝑒

𝑄𝜋 𝑠, 𝑎 = 𝑟𝑖𝑔ℎ𝑡𝑄𝜋

for discrete action only

s



State-action value function

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N
atureControlDeepRL.pdf



Another Way to use Critic: 
Q-Learning

𝜋 interacts with 
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor 
𝜋′ “better” than 𝜋

TD or MC

?

𝜋 = 𝜋′



Q-Learning

• Given 𝑄𝜋 𝑠, 𝑎 , find a new actor 𝜋′ “better” than 𝜋

• “Better”: 𝑉𝜋′ 𝑠 ≥ 𝑉𝜋 𝑠 , for all state s

𝜋′ 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎

➢𝜋′ does not have extra parameters. It depends on Q

➢Not suitable for continuous action a (solve it later)



𝜋′ 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄𝜋 𝑠, 𝑎

𝑉𝜋′ 𝑠 ≥ 𝑉𝜋 𝑠 , for all state s

𝑉𝜋 𝑠 ≤ 𝑄𝜋 𝑠, 𝜋′ 𝑠

= 𝐸[𝑟𝑡+1 + 𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝜋′ 𝑠𝑡 ]

≤ 𝐸[𝑟𝑡+1 + 𝑄𝜋 𝑠𝑡+1, 𝜋
′ 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝜋′ 𝑠𝑡 ]

= 𝐸[𝑟𝑡+1 + 𝑟𝑡+2 + 𝑉𝜋 𝑠𝑡+2 | … ]

≤ 𝐸[𝑟𝑡+1 + 𝑟𝑡+2 + 𝑄𝜋 𝑠𝑡+2, 𝜋
′ 𝑠𝑡+2 | … ]

𝑉𝜋 𝑠 = 𝑄𝜋 𝑠, 𝜋 𝑠

≤ max
𝑎

𝑄𝜋 𝑠, 𝑎 = 𝑄𝜋 𝑠, 𝜋′ 𝑠

Q-Learning

… ≤ 𝑉𝜋′ 𝑠



Target Network

𝑄𝜋𝑠𝑡

𝑄𝜋
𝑠𝑡+1

𝑟𝑡 +

𝑎𝑡

𝜋 𝑠𝑡+1

Q𝜋 𝑠𝑡 , 𝑎𝑡

Q𝜋 𝑠𝑡+1, 𝜋 𝑠𝑡+1

⋯𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⋯

Q𝜋 𝑠𝑡 , 𝑎𝑡

= 𝑟𝑡 + Q𝜋 𝑠𝑡+1, 𝜋 𝑠𝑡+1

regression

fixed

fixed value

update

After updating N times

Target 
Network



Exploration

• The policy is based on Q-function

𝑎 = 𝑎𝑟𝑔max
𝑎

𝑄 𝑠, 𝑎

𝑎 = ൝
𝑎𝑟𝑔max

𝑎
𝑄 𝑠, 𝑎 ,

𝑟𝑎𝑛𝑑𝑜𝑚,

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

This is not a good way 
for data collection.

𝑠

𝑎1

𝑎2

𝑎3 𝑄 𝑠, 𝑎 = 0

𝑄 𝑠, 𝑎 = 0

𝑄 𝑠, 𝑎 = 0

1 Always sampled

Never explore

Never explore

Epsilon Greedy

Boltzmann Exploration

𝑃 𝑎|𝑠 =
𝑒𝑥𝑝 𝑄 𝑠, 𝑎

σ𝑎 𝑒𝑥𝑝 𝑄 𝑠, 𝑎

𝜀 would decay during learning



Replay Buffer

𝜋 interacts with 
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor 
𝜋′ “better” than 𝜋

𝜋 = 𝜋′

Buffer 

…
…

exp
exp

exp

exp

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1Put the experience into buffer.

The experience in the 
buffer comes from 
different policies.

Drop the old experience 
if the buffer is full.



Replay Buffer

𝜋 interacts with 
the environment

Learning 𝑄𝜋 𝑠, 𝑎
Find a new actor 
𝜋′ “better” than 𝜋

𝜋 = 𝜋′

Buffer 

…
…

exp
exp

exp

exp

Put the experience into buffer.

In each iteration:

1. Sample a 
batch

2. Update Q-
function

Off-policy

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1



Typical Q-Learning Algorithm

• Initialize Q-function 𝑄, target Q-function ෠𝑄 = 𝑄

• In each episode

• For each time step t

• Given state 𝑠𝑡, take action 𝑎𝑡 based on Q (epsilon 
greedy)

• Obtain reward 𝑟𝑡, and reach new state 𝑠𝑡+1
• Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) into buffer

• Sample (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) from buffer (usually a batch)

• Target 𝑦 = 𝑟𝑖 +max
𝑎

෠𝑄 𝑠𝑖+1, 𝑎

• Update the parameters of 𝑄 to make 𝑄 𝑠𝑖, 𝑎𝑖 close 
to 𝑦 (regression)

• Every C steps reset ෠𝑄 = 𝑄



Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions



Double DQN

• Q value is usually over-estimated



Double DQN

• Q value is usually over estimate

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 +max
𝑎

𝑄 𝑠𝑡+1, 𝑎

Tend to select the action 
that is over-estimated

𝑄 𝑠𝑡+1, 𝑎



Double DQN

• Q value is usually over estimate

• Double DQN: two functions Q and Q’

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 +max
𝑎

𝑄 𝑠𝑡+1, 𝑎

Hado V. Hasselt, “Double Q-learning”, NIPS 2010
Hado van Hasselt, Arthur Guez, David Silver, “Deep Reinforcement Learning with 
Double Q-learning”, AAAI 2016

𝑄 𝑠𝑡 , 𝑎𝑡 𝑟𝑡 + 𝑄′ 𝑠𝑡+1, 𝑎𝑟𝑔max
𝑎

𝑄 𝑠𝑡+1, 𝑎

If Q over-estimate a, so it is selected. Q’ would give it proper value.

How about Q’ overestimate? The action will not be selected by Q.

Target Network



Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van 

Hasselt, Marc Lanctot, Nando de Freitas, “Dueling 
Network Architectures for Deep Reinforcement 
Learning”, arXiv preprint, 2015

State
s

State
s

Q(s,a)

Q(s,a)
= A(s,a)+V(s)

V(s)

A(s,a)Only change the 
network structure

Dueling DQN



Dueling DQN

3 3 3 1

1 -1 6 1

2 -2 3 1

state

action

1 3 -1 0

-1 -1 2 0

0 -2 -1 0

Q(s,a)

A(s,a)

V(s) 2 0 4 1

0

1

4

-1=
+

=
+

Average of 
column

sum of 
column = 0



1.0Dueling DQN

7

3

2

3

-1

-2

Normalize A(s,a) before 
adding with V(s)



Dueling DQN - Visualization

(from the link of the original paper)



Dueling DQN - Visualization

(from the link of the original paper)



Prioritized Reply

𝑄
𝑠𝑡

෠𝑄
𝑠𝑡+1

𝑟𝑡 +

𝑎𝑡

𝑎𝑡+1

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1

𝑄 𝑠𝑡 , 𝑎𝑡

෠𝑄 𝑠𝑡+1, 𝑎𝑡+1

Experience
Buffer

https://arxiv.org/abs/1511.05952?context=cs

TD error

The data with larger TD error in previous 
training has higher probability to be sampled.

Parameter update 
procedure is also modified.

𝑎𝑡+1 = 𝑎𝑟𝑔max
𝑎

෠𝑄 𝑠𝑡+1, 𝑎



Multi-step

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1
Experience

Buffer

Balance between MC and TD

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , ⋯ , 𝑠𝑡+𝑁 , 𝑎𝑡+𝑁 , 𝑟𝑡+𝑁 , 𝑠𝑡+𝑁+1

𝑄
𝑠𝑡

෠𝑄
𝑠𝑡+𝑁+1

෍
𝑡′=𝑡

𝑡+𝑁

𝑟𝑡′ +

𝑎𝑡

𝑎𝑡+𝑁+1

𝑄 𝑠𝑡 , 𝑎𝑡

෠𝑄 𝑠𝑡+𝑁+1, 𝑎𝑡+𝑁+1

𝑎𝑡+𝑁+1 = 𝑎𝑟𝑔max
𝑎

෠𝑄 𝑠𝑡+𝑁+1, 𝑎



Noisy Net

• Noise on Action (Epsilon Greedy)

• Noise on Parameters

https://arxiv.org/abs/1706.01905

https://arxiv.org/abs/1706.10295

𝑎 = ൝
𝑎𝑟𝑔max

𝑎
𝑄 𝑠, 𝑎 ,

𝑟𝑎𝑛𝑑𝑜𝑚,

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑎 = 𝑎𝑟𝑔max
𝑎

෨𝑄 𝑠, 𝑎

The noise would NOT change in an episode.

Inject noise into the parameters 
of Q-function at the beginning of 
each episode

𝑄 𝑠, 𝑎 ෨𝑄 𝑠, 𝑎
Add noise



Noisy Net 

• Noise on Action

• Given the same state, the agent may takes 
different actions. 

• No real policy works in this way

• Noise on Parameters

• Given the same (similar) state, the agent takes 
the same action. 

• ⟶ State-dependent Exploration

• Explore in a consistent way

隨機亂試

有系統地試



Demo
https://blog.openai.com/better-
exploration-with-parameter-noise/



Distributional Q-function

• State-action value function 𝑄𝜋 𝑠, 𝑎

• When using actor 𝜋, the cumulated reward expects to 
be obtained after seeing observation s and taking a

Different distributions can have the same values.

-10 10 -10 10

𝑄𝜋 𝑠, 𝑎



Distributional Q-function

𝑄𝜋 𝑠, 𝑎1 𝑄𝜋 𝑠, 𝑎3

𝑄𝜋 𝑠, 𝑎2

𝑄𝜋

s

A network with 3 outputs
A network with 15 outputs

(each action has 5 bins)

𝑄𝜋

s



Demo

https://youtu.be/yFBwyPuO2Vg



Rainbow

https://arxiv.org/abs/1710.02298



Rainbow

https://arxiv.org/abs/1710.02298



Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions



Continuous Actions

• Action 𝑎 is a continuous vector

𝑎 = 𝑎𝑟𝑔max
𝑎

𝑄 𝑠, 𝑎

Solution 1

Solution 2

Using gradient ascent to solve the optimization 
problem.

Sample a set of actions: 𝑎1, 𝑎2, ⋯ , 𝑎𝑁

See which action can obtain the largest Q value



Continuous Actions

Solution 3 Design a network to make the optimization easy.

𝑄𝜋s

𝜇 𝑠

Σ 𝑠

𝑉 𝑠

𝑄 𝑠, 𝑎 = − 𝑎 − 𝜇 𝑠
𝑇
Σ 𝑠 𝑎 − 𝜇 𝑠 + 𝑉 𝑠

= 𝑎𝑟𝑔max
𝑎

𝑄 𝑠, 𝑎𝜇 𝑠

vector

matrix

scalar



https://www.youtube.com/watch?v=ZhsEKTo7V04



Continuous Actions

Solution 4 Don’t use Q-learning 

Policy-based Value-based

Learning an Actor Learning a CriticActor + Critic
(Next Lecture)



Acknowledgement 

•感謝林雨新同學發現投影片上的錯字


