Q-Learning Hung-yi Lee

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Critic

The output values of a critic depend on the actor evaluated.

- A critic does not directly determine the action.
- Given an actor π , it evaluates how good the actor is
- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after visiting state s

 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

Critic

V^{以前的阿光}(大馬步飛) = badV^{變強的阿光}(大馬步飛) = good

How to estimate $V^{\pi}(s)$

Monte-Carlo (MC) based approach

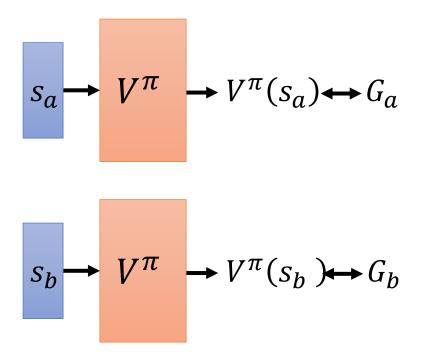
• The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

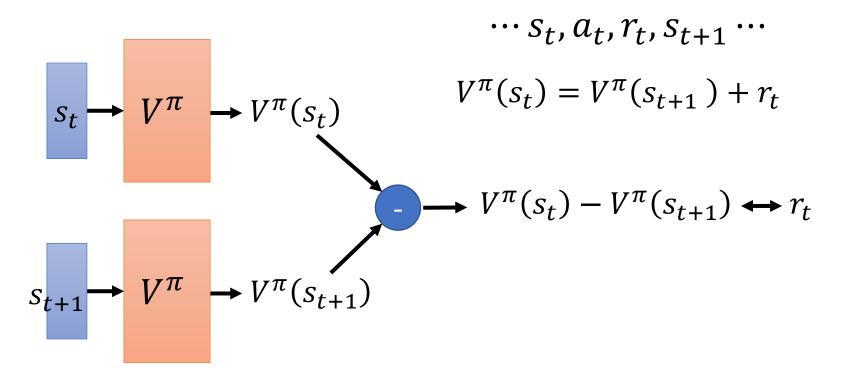
After seeing s_b ,

Until the end of the episode, the cumulated reward is G_b



How to estimate $V^{\pi}(s)$

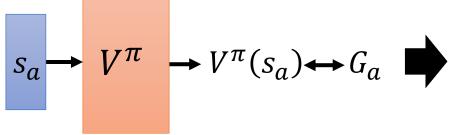
• Temporal-difference (TD) approach



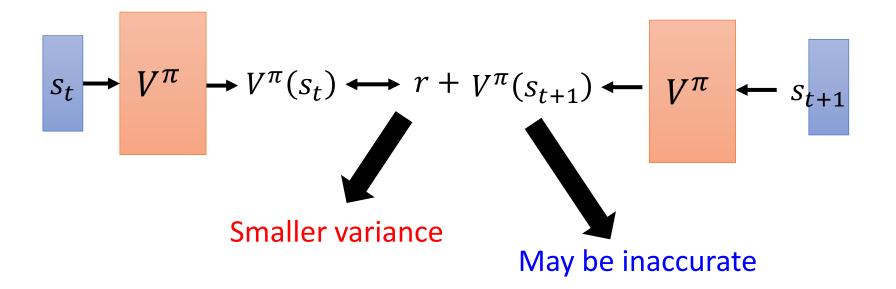
Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

$Var[kX] = k^2 Var[X]$

MC v.s. TD



Larger variance G_a is the summation of many steps



MC v.s. TD

[Sutton, v2, Example 6.4]

- The critic has the following 8 episodes
 - $s_a, r = 0, s_b, r = 0$, END
 - $s_b, r = 1$, end
 - $s_b, r = 0$, END

$$V^{\pi}(s_b) = 3/4$$

$$V^{\pi}(s_a) =? \quad 0? \quad 3/4?$$

Monte-Carlo: $V^{\pi}(s_a) = 0$

Temporal-difference:

$$V^{\pi}(s_a) = V^{\pi}(s_b) + r$$

3/4 3/4 0

(The actions are ignored here.)

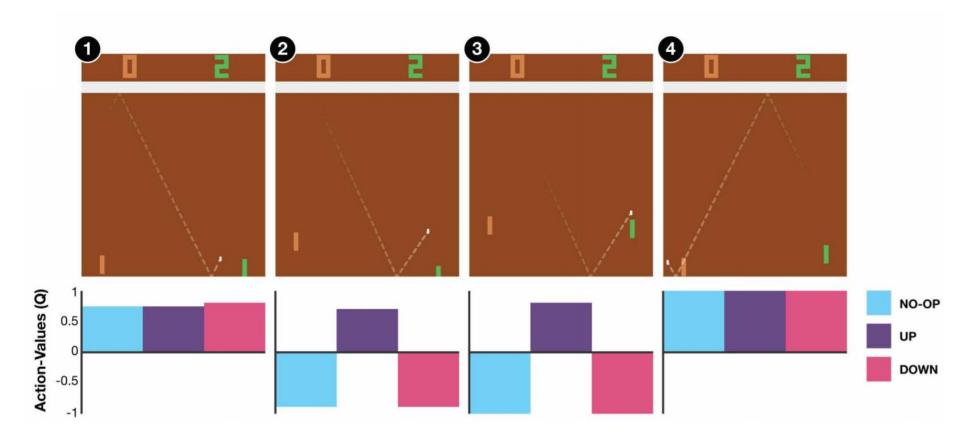
Another Critic

- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after taking a at state s

s
$$Q^{\pi}$$
 $Q^{\pi}(s,a)$
s $Q^{\pi}(s,a)$ s $Q^{\pi}(s,a) \rightarrow Q^{\pi}(s,a)$
scalar $Q^{\pi}(s,a) \rightarrow Q^{\pi}(s,a)$ s $Q^{\pi}(s,a)$

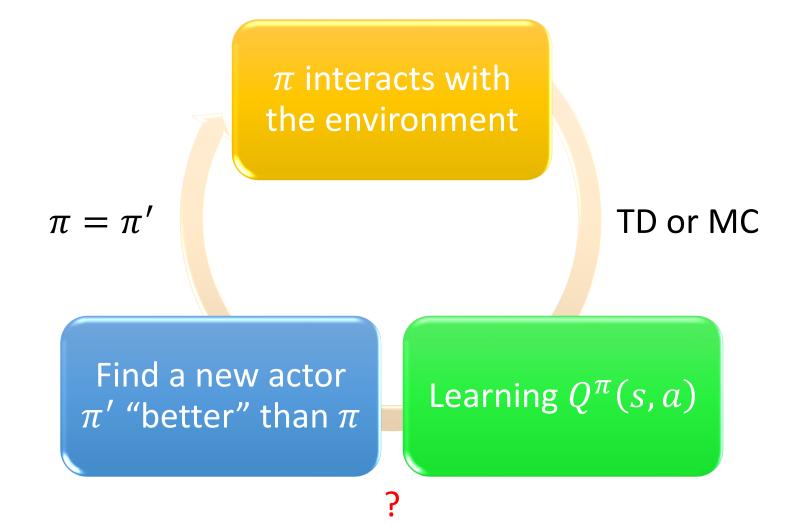
for discrete action only

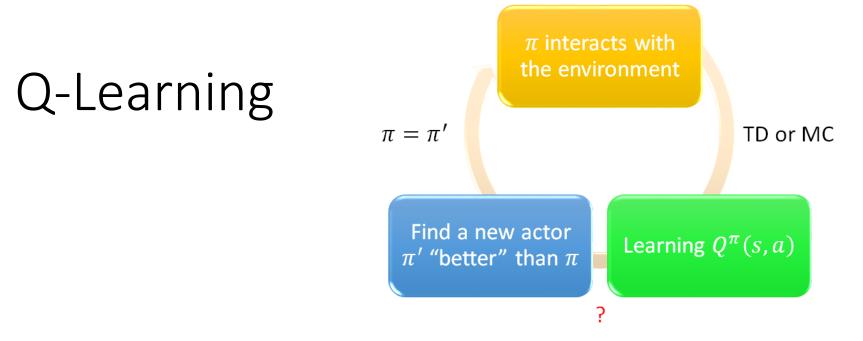
State-action value function



https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15N atureControlDeepRL.pdf

Another Way to use Critic: Q-Learning





- Given $Q^{\pi}(s, a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

π' does not have extra parameters. It depends on Q
 Not suitable for continuous action a (solve it later)

Q-Learning

$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$

$$V^{\pi'}(s) \ge V^{\pi}(s), \text{ for all state } s$$

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

$$\leq \max_{a} Q^{\pi}(s, a) = Q^{\pi}(s, \pi'(s))$$

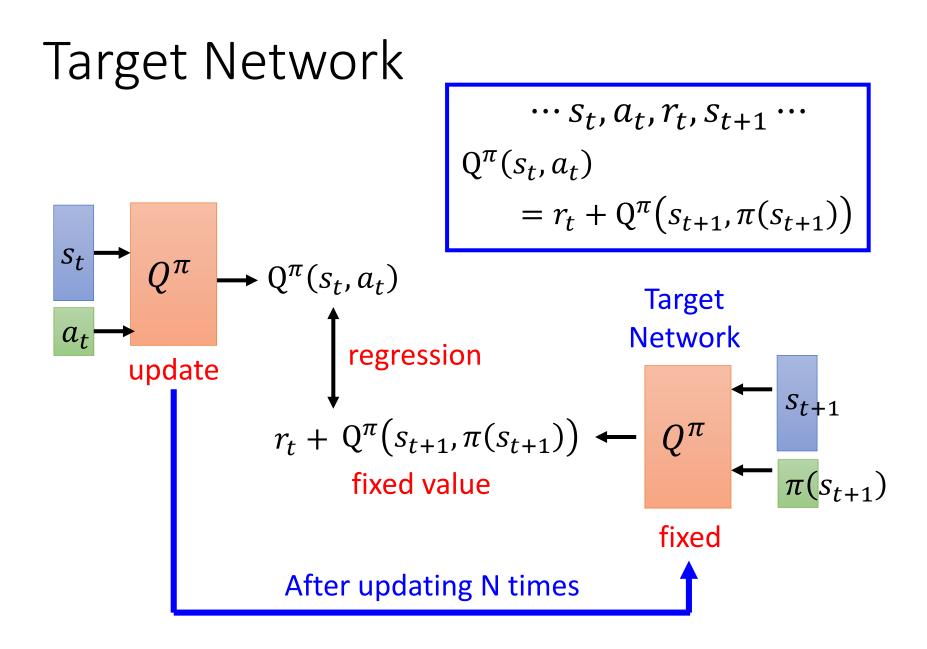
$$V^{\pi}(s) \le Q^{\pi}(s, \pi'(s))$$

$$= E[r_{t+1} + V^{\pi}(s_{t+1})|s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$\leq E[r_{t+1} + Q^{\pi}(s_{t+1}, \pi'(s_{t+1}))|s_{t} = s, a_{t} = \pi'(s_{t})]$$

$$= E[r_{t+1} + r_{t+2} + V^{\pi}(s_{t+2})|...]$$

$$\leq E[r_{t+1} + r_{t+2} + Q^{\pi}(s_{t+2}, \pi'(s_{t+2}))|...] ... \le V^{\pi'}(s)$$



Exploration
$$s \leftarrow a_1 \quad Q(s,a) = 0$$
 Never explore
 $a_2 \quad Q(s,a) = 1$ Always sampled
 $a_3 \quad Q(s,a) = 0$ Never explore

• The policy is based on Q-function

 $a = \arg \max Q(s, a)$

This is not a good way for data collection.

Epsilon Greedy ε would decay during learning

$$a = \begin{cases} \arg \max_{a} Q(s, a), \\ random, \end{cases}$$

with probability $1 - \varepsilon$

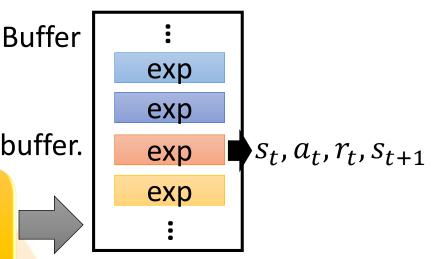
otherwise

Boltzmann Exploration

$$P(a|s) = \frac{exp(Q(s,a))}{\sum_{a} exp(Q(s,a))}$$

Put the experience into buffer.

 π interacts with the environment

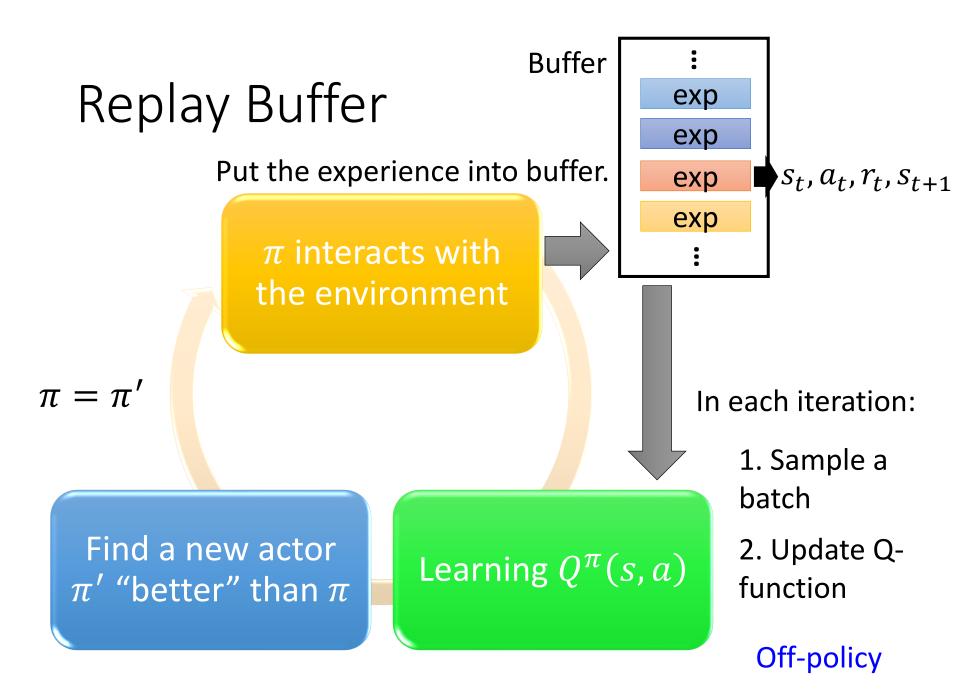


The experience in the buffer comes from different policies. Drop the old experience if the buffer is full.

Find a new actor π' "better" than π

 $\pi = \pi'$

Learning $Q^{\pi}(s, a)$



Typical Q-Learning Algorithm

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$
- In each episode
 - For each time step t
 - Given state s_t, take action a_t based on Q (epsilon greedy)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t , a_t , r_t , s_{t+1}) into buffer
 - Sample (s_i , a_i , r_i , s_{i+1}) from buffer (usually a batch)
 - Target $y = r_i + \max_a \hat{Q}(s_{i+1}, a)$
 - Update the parameters of Q to make Q(s_i, a_i) close to y (regression)
 - Every C steps reset $\hat{Q} = Q$

Outline

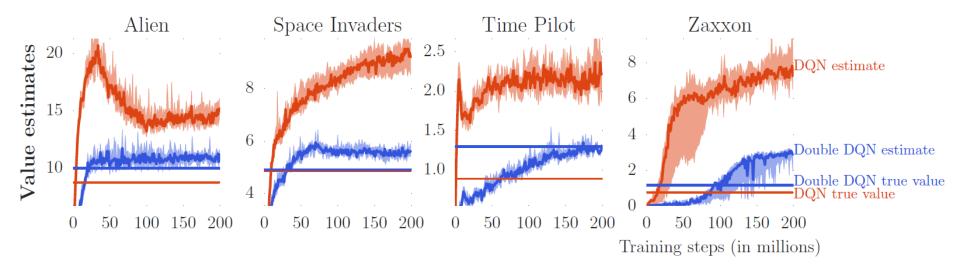
Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Double DQN

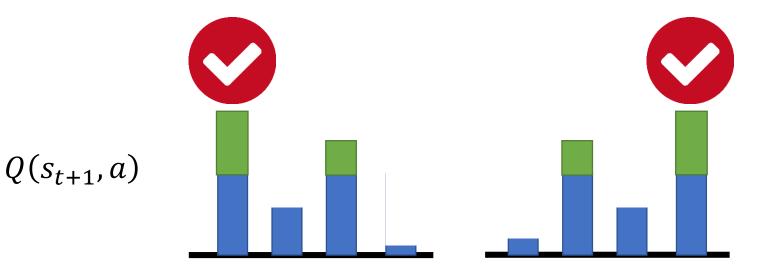
• Q value is usually over-estimated



Double DQN

• Q value is usually over estimate

 $Q(s_t, a_t)$ \longrightarrow $r_t + \max_a Q(s_{t+1}, a)$ Tend to select the action that is over-estimated



Double DQN

• Q value is usually over estimate

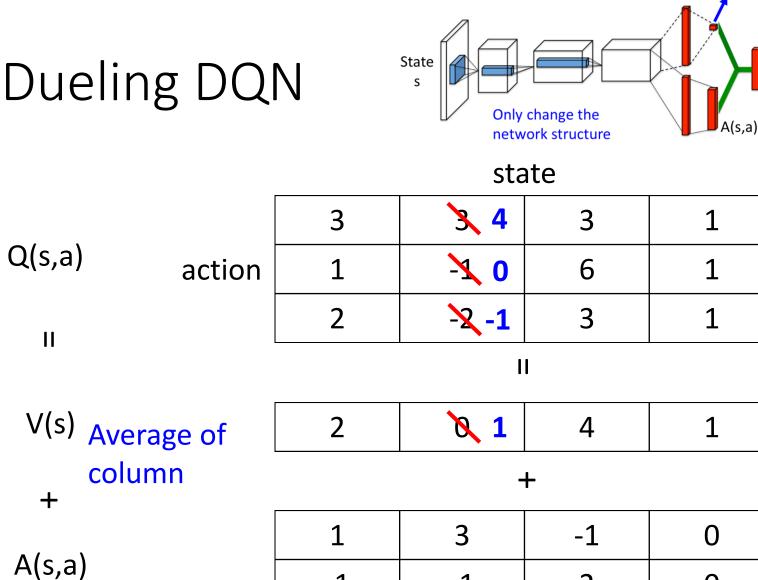
$$Q(s_t, a_t) \longleftarrow r_t + \max_a Q(s_{t+1}, a)$$

• Double DQN: two functions Q and Q' Target Network $Q(s_t, a_t) \longleftrightarrow r_t + Q'\left(s_{t+1}, \arg\max_a Q(s_{t+1}, a)\right)$

If Q over-estimate a, so it is selected. Q' would give it proper value. How about Q' overestimate? The action will not be selected by Q.

Hado V. Hasselt, "Double Q-learning", NIPS 2010 Hado van Hasselt, Arthur Guez, David Silver, "Deep Reinforcement Learning with Double Q-learning", AAAI 2016

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, Nando de Freitas, "Dueling Network Architectures for Deep Reinforcement **Dueling DQN** Learning", arXiv preprint, 2015 Q(s,a) State S V(s) Q(s,a) State = A(s,a)+V(s) S Only change the A(s,a) network structure



sum of column = 0

 1
 3
 -1
 0

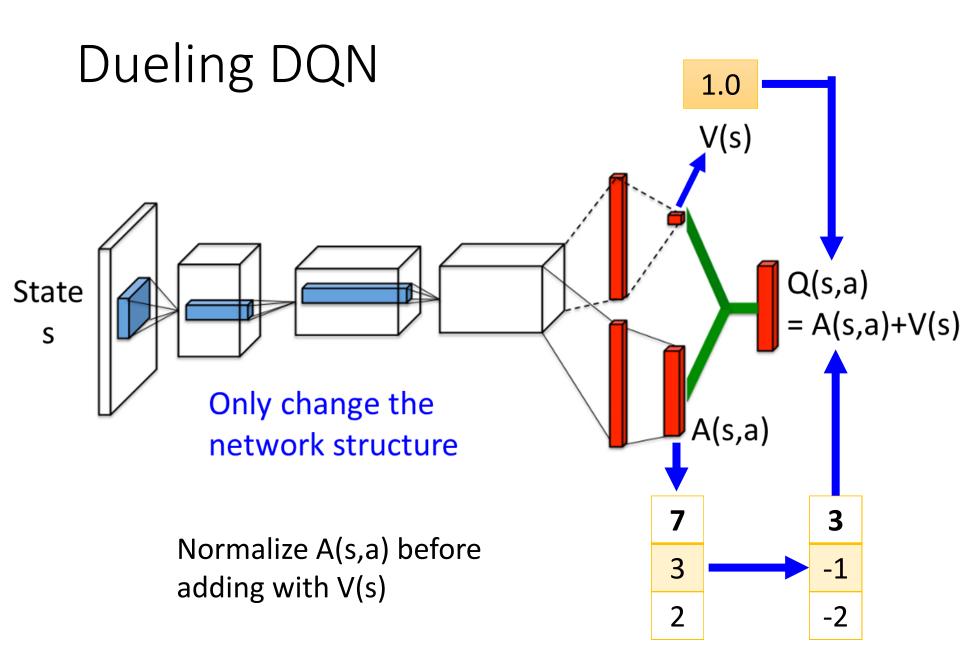
 -1
 -1
 2
 0

 0
 -2
 -1
 0

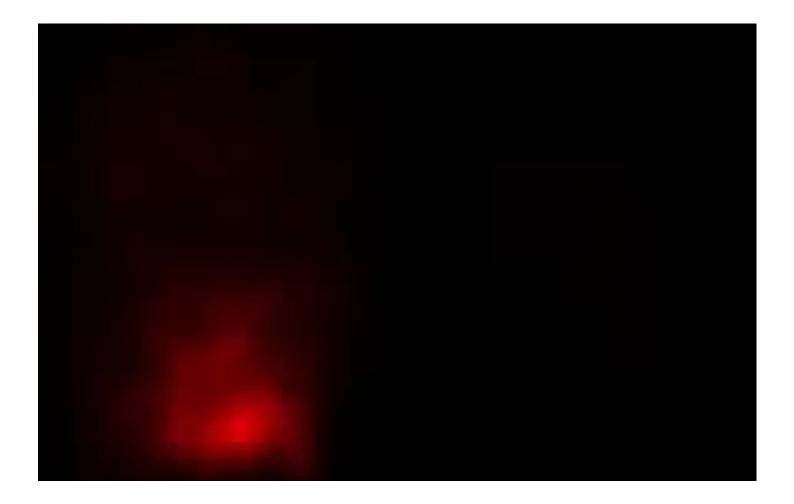
V(s)

Q(s,a)

= A(s,a)+V(s)

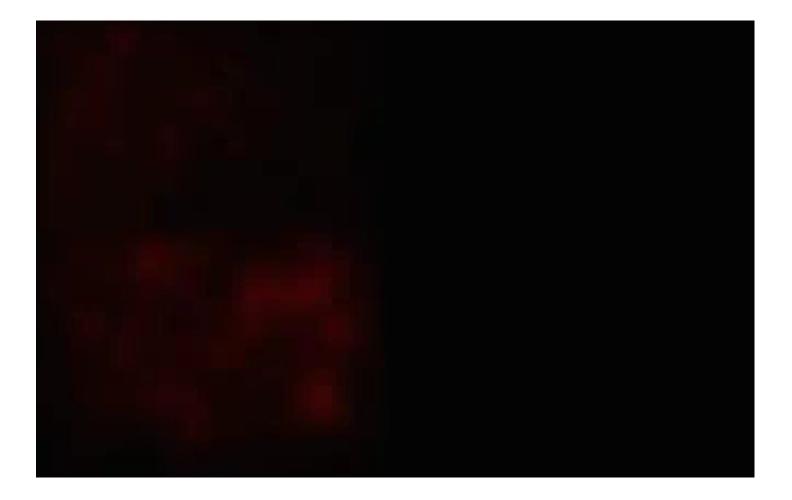


Dueling DQN - Visualization



(from the link of the original paper)

Dueling DQN - Visualization



(from the link of the original paper)

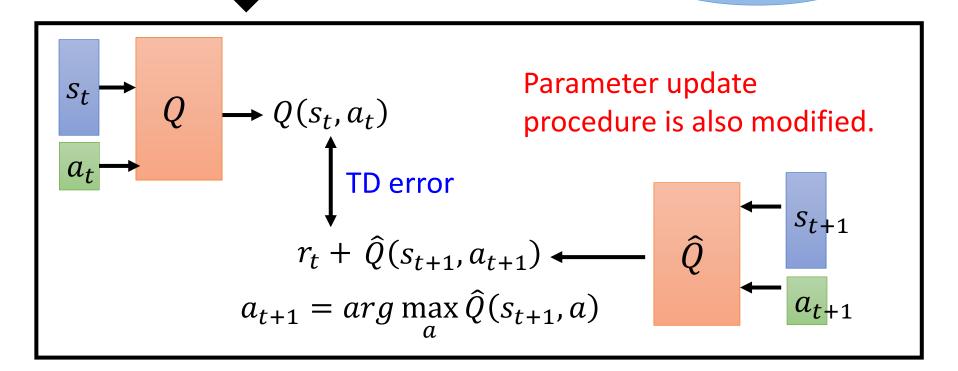
https://arxiv.org/abs/1511.05952?context=cs

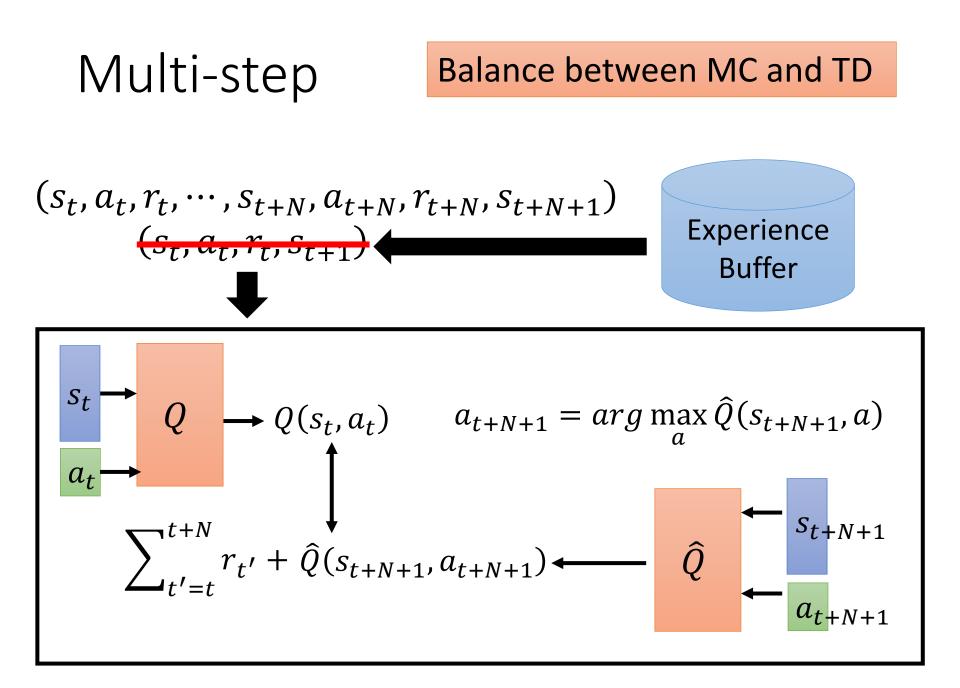
Prioritized Reply

 (s_t, a_t, r_t, s_{t+1})

The data with larger TD error in previous training has higher probability to be sampled.

Experience Buffer





Noisy Net

Noise on Action (Epsilon Greedy)

$$a = \begin{cases} \arg \max_{a} Q(s, a), & \text{with probability } 1 - \varepsilon \\ random, & \text{otherwise} \end{cases}$$

Noise on Parameters

Inject noise into the parameters of Q-function **at the beginning of each episode**

$$a = \arg\max_{a} \frac{\tilde{Q}}{Q}(s, a)$$

 $Q(s,a) \longrightarrow \tilde{Q}(s,a)$ Add noise

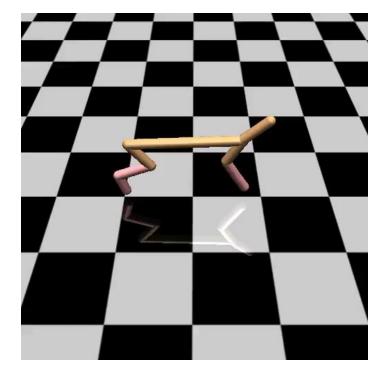
The noise would **NOT** change in an episode.

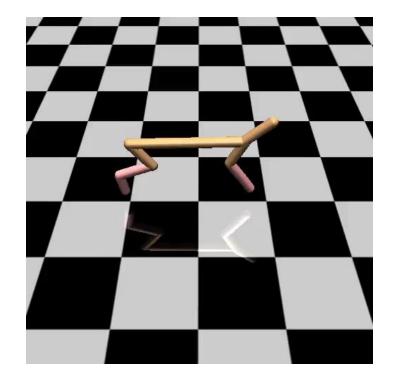
Noisy Net

- Noise on Action
 - Given the same state, the agent may takes different actions. 隨機亂試
 - No real policy works in this way
- Noise on Parameters
 - Given the same (similar) state, the agent takes the same action.
 - → State-dependent Exploration
 - Explore in a *consistent* way

Demo

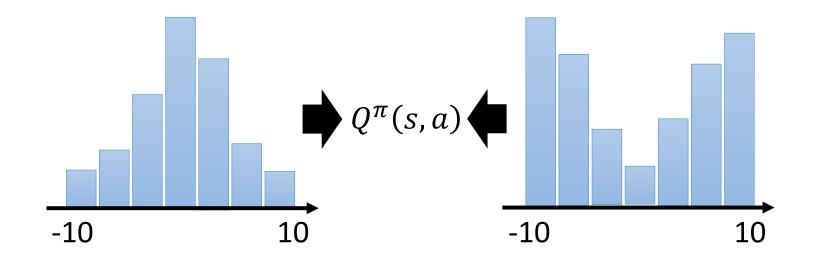
https://blog.openai.com/betterexploration-with-parameter-noise/





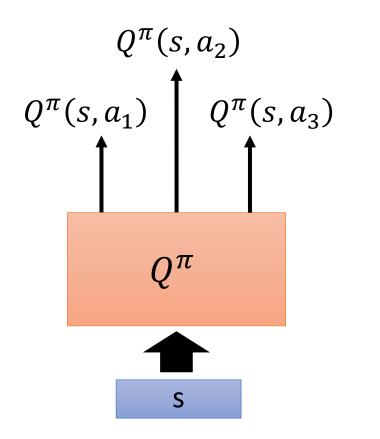
Distributional Q-function

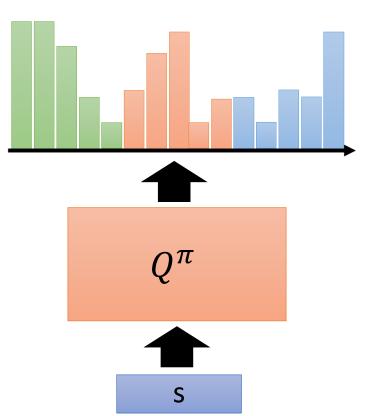
- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a



Different distributions can have the same values.

Distributional Q-function

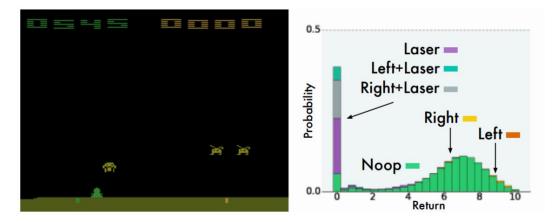


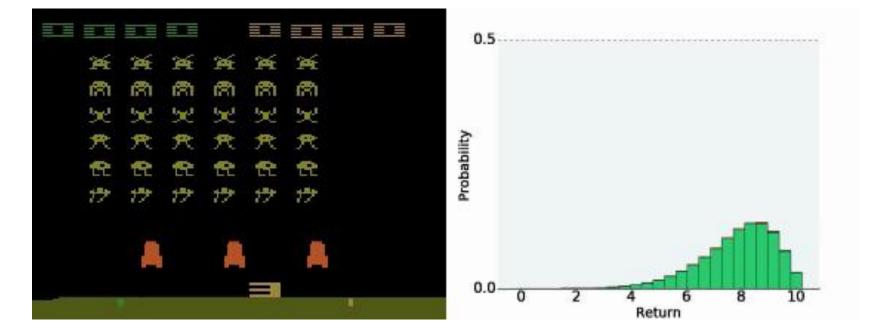


A network with 3 outputs

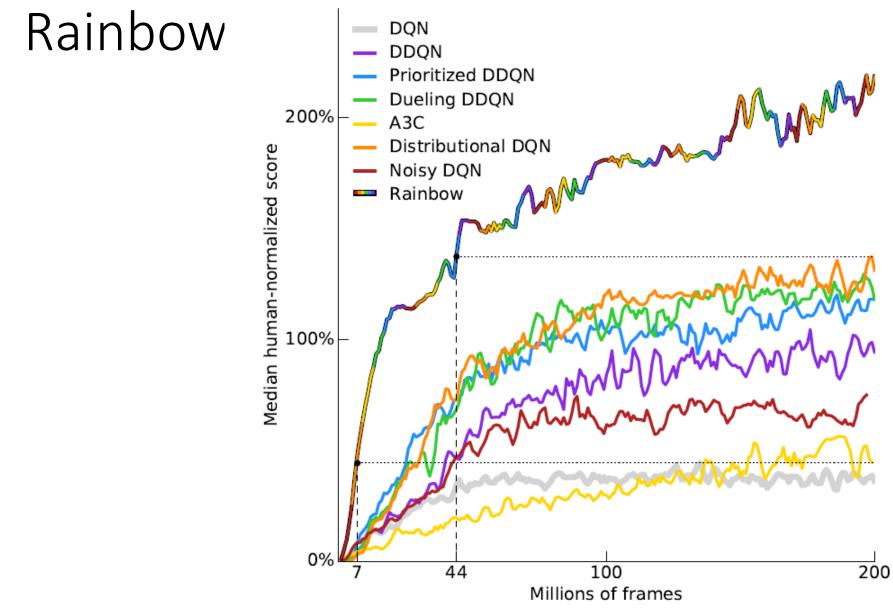
A network with 15 outputs (each action has 5 bins)

Demo

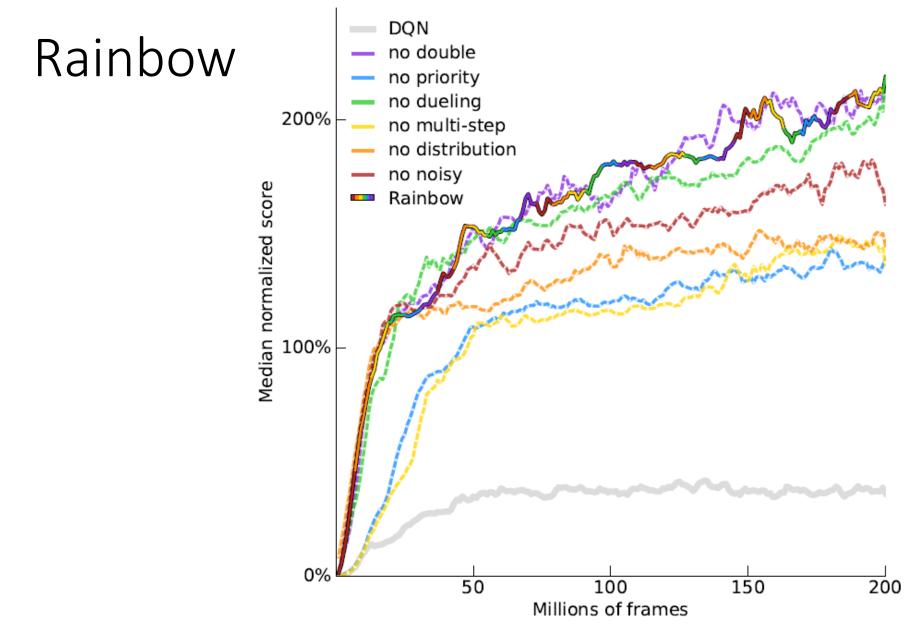




https://youtu.be/yFBwyPuO2Vg



https://arxiv.org/abs/1710.02298



https://arxiv.org/abs/1710.02298

Outline

Introduction of Q-Learning

Tips of Q-Learning

Q-Learning for Continuous Actions

Continuous Actions

• Action *a* is a *continuous vector*

$$a = \arg \max_{a} Q(s, a)$$

Solution 1

Sample a set of actions: $\{a_1, a_2, \dots, a_N\}$

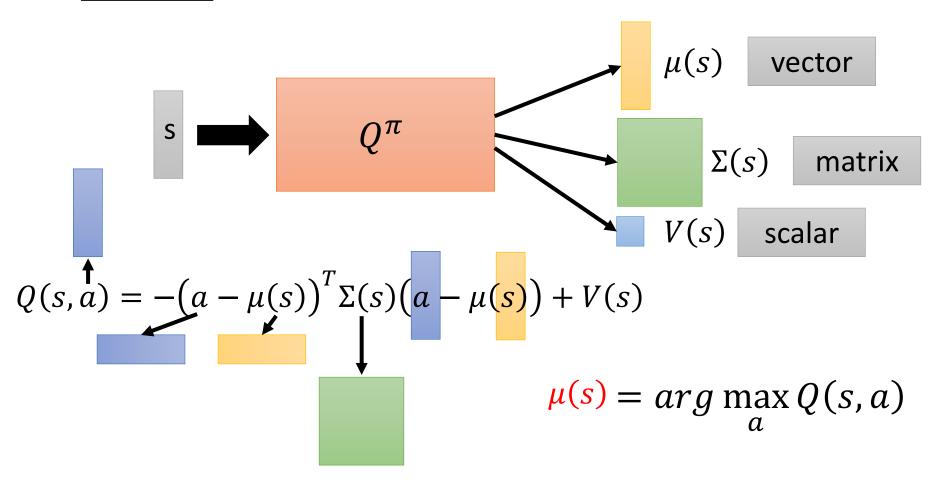
See which action can obtain the largest Q value

Solution 2

Using gradient ascent to solve the optimization problem.

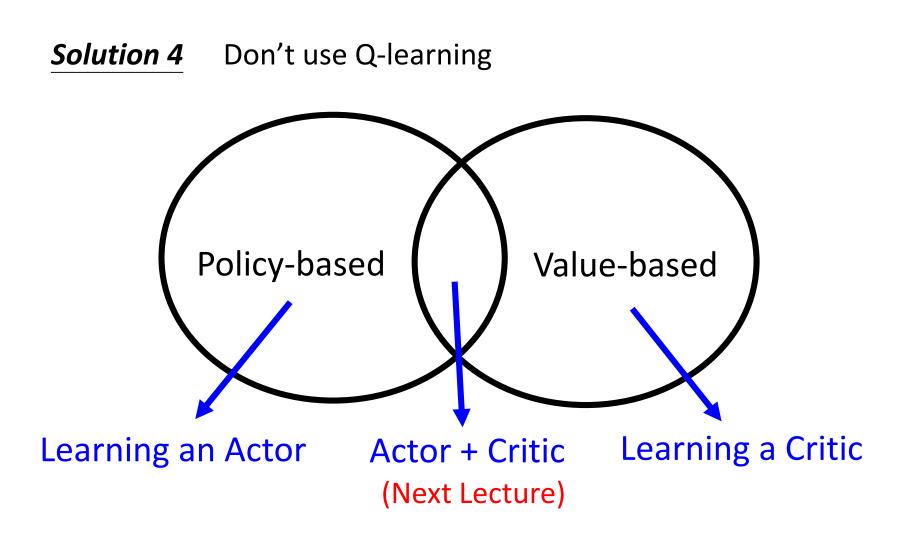
Continuous Actions

Solution 3 Design a network to make the optimization easy.



https://www.youtube.com/watch?v=ZhsEKTo7V04

Continuous Actions



Acknowledgement

• 感謝林雨新同學發現投影片上的錯字