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JS divergence is not suitable

• In most cases, 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎 are not overlapped.

• 1. The nature of data

• 2. Sampling

Both 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 are low-dim 
manifold in high-dim space.  

𝑃𝑑𝑎𝑡𝑎
𝑃𝐺

The overlap can be ignored.

Even though 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
have overlap.  

If you do not have enough 
sampling ……



𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

……

JS divergence is log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier 
achieves 100% accuracy

Equally bad

Same objective value is obtained. Same divergence



Least Square GAN (LSGAN)

• Replace sigmoid with linear (replace classification 
with regression)
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Wasserstein GAN (WGAN): 
Earth Mover’s Distance
• Considering one distribution P as a pile of earth, 

and another distribution Q as the target

• The average distance the earth mover has to move 
the earth.

𝑃 𝑄

d

𝑊 𝑃,𝑄 = 𝑑



WGAN: Earth Mover’s Distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to 
define the earth mover’s distance.

There many possible “moving plans”. 

Smaller 
distance?

Larger 
distance?



WGAN: Earth Mover’s Distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to 
define the earth mover’s distance.

There many possible “moving plans”. 

Best “moving plans” of this example



A “moving plan” is a matrix

The value of the element is the 
amount of earth from one 
position to another.

moving plan 𝛾
All possible plan Π

𝐵 𝛾 = 

𝑥𝑝,𝑥𝑞

𝛾 𝑥𝑝, 𝑥𝑞 𝑥𝑝 − 𝑥𝑞

Average distance of a plan 𝛾:

Earth Mover’s Distance: 

𝑊 𝑃,𝑄 = min
𝛾∈Π

𝐵 𝛾

The best plan

𝑃

𝑄

𝑥𝑝

𝑥𝑞



𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺50

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

…… ……
𝑑0 𝑑50

𝐽𝑆 𝑃𝐺50 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

𝑊 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑0

𝑊 𝑃𝐺50 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑50

𝑊 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

Why Earth Mover’s Distance?

𝐷𝑓 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺

𝑊 𝑃𝑑𝑎𝑡𝑎 , 𝑃𝐺



WGAN

𝑉 𝐺,𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

Evaluate wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

[Martin Arjovsky, et al., arXiv, 2017]

D has to be smooth enough.

real

−∞

generated

D

∞
Without the constraint, the 
training of D will not converge.

Keeping the D smooth forces 
D(x) become ∞ and −∞



WGAN

𝑉 𝐺,𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

Evaluate wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

[Martin Arjovsky, et al., arXiv, 2017]

How to fulfill this constraint?D has to be smooth enough.

𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝐾 𝑥1 − 𝑥2

Lipschitz Function

K=1 for "1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧"

Output 
change

Input 
change 1−Lipschitz?

1−Lipschitz?

Do not change fast

Weight Clipping
Force the parameters w between c and -c
After parameter update, if w > c, w = c; 
if w < -c, w = -c



𝑉 𝐺,𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

≈ max
𝐷

{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

−𝜆 𝑥 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 𝑑𝑥}

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

A differentiable function is 1-Lipschitz if and only if it has 
gradients with norm less than or equal to 1 everywhere.

𝛻𝑥𝐷 𝑥 ≤ 1 for all x

Improved WGAN (WGAN-GP)

𝑉 𝐺,𝐷

𝐷 ∈ 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

Prefer 𝛻𝑥𝐷 𝑥 ≤ 1 for all x

Prefer 𝛻𝑥𝐷 𝑥 ≤ 1 for x sampling from 𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦



Improved WGAN (WGAN-GP)

𝑃𝑑𝑎𝑡𝑎 𝑃𝐺

Only give gradient constraint to the region between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
because they influence how 𝑃𝐺 moves to 𝑃𝑑𝑎𝑡𝑎

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

≈ max
𝐷

{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥𝑉 𝐺,𝐷

𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦

“Given that enforcing the Lipschitz constraint everywhere is 
intractable, enforcing it only along these straight lines seems 
sufficient and experimentally results in good performance.”



“Simply penalizing overly large 
gradients also works in theory, but 
experimentally we found that this 
approach converged faster and to 
better optima.”

Improved WGAN (WGAN-GP)

𝑃𝑑𝑎𝑡𝑎

𝑃𝐺

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

≈ max
𝐷
{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥𝑉 𝐺,𝐷

𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝛻𝑥𝐷 𝑥 − 1 2

𝐷 𝑥𝐷 𝑥
Largest gradient in 

this region (=1)



Spectrum Norm Spectral Normalization → Keep 
gradient norm smaller than 1 
everywhere [Miyato, et al., ICLR, 2018]



• In each training iteration:

• Sample m examples 𝑥1, 𝑥2, … , 𝑥𝑚 from data distribution 
𝑃𝑑𝑎𝑡𝑎 𝑥

• Sample m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the prior 
𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Obtaining generated data 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑥𝑖 = 𝐺 𝑧𝑖

• Update discriminator parameters 𝜃𝑑 to maximize 

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝑥𝑖

• 𝜃𝑑 ← 𝜃𝑑 + 𝜂𝛻 ෨𝑉 𝜃𝑑
• Sample another m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the 

prior 𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Update generator parameters 𝜃𝑔 to minimize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑧𝑖

• 𝜃𝑔 ← 𝜃𝑔 − 𝜂𝛻 ෨𝑉 𝜃𝑔

Algorithm of Original GAN

Repeat 
k times

Learning 
D

Learning 
G

Only 
Once

𝐷 𝑥𝑖 𝐷 𝑥𝑖−

No sigmoid for the output of D

WGAN

Weight clipping / 
Gradient Penalty …

𝐷 𝐺 𝑧𝑖−



Energy-based GAN (EBGAN)

• Using an autoencoder as discriminator D

Discriminator

0 for the 
best images

Generator is 
the same.

-
0.1

EN DE

Autoencoder

X -1 -0.1

[Junbo Zhao, et al., arXiv, 2016]

➢Using the negative reconstruction error of 
auto-encoder to determine the goodness

➢Benefit: The auto-encoder can be pre-train 
by real images without generator. 



EBGAN

realgen gen

Hard to reconstruct, easy to destroy

m

0 is for 
the best.

Do not have to 
be very negative

Auto-encoder based discriminator 
only gives limited region large value.



Outlook: 
Loss-sensitive GAN (LSGAN)

D(x)

𝑥

WGAN LSGAN

𝑥′′
𝑥′

D(x)

Δ 𝑥, 𝑥′

Δ 𝑥, 𝑥′′

𝑥′′

𝑥′

𝑥
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