Deep Learning



Deep learning
attracts lots of attention.

* | believe you have seen lots of exciting results
before.
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Ups and downs of Deep Learning

e 1958: Perceptron (linear model)
* 1969: Perceptron has limitation

e 1980s: Multi-layer perceptron
* Do not have significant difference from DNN today

e 1986: Backpropagation
* Usually more than 3 hidden layers is not helpful

e 1989: 1 hidden layer is “good enough”, why deep?
e 2006: RBM initialization (breakthrough)

e 2009: GPU

e 2011: Start to be popular in speech recognition

* 2012: win ILSVRC image competition



Three Steps for Deep Learning

Neural
Network

Deep Learning is so simple ......

Step 2: Step 3: pick
goodness of . the best
function function
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Neural Network
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Neural Network

Different connection leads to different network
structures

Network parameter 0: all the weights and biases in the “neurons”
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This is a function.
Input vector, output vector
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Given network structure, define a function set



-ully Connect Feedforward
Network
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http://cs231n.stanford.e
du/slides/winter1516 le
cture8.pdf
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101 layers

Special
structure
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Matrix Operation
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Neural Network
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Neural Network
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Output Layer

Feature extractor replacing
feature engineering
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Example Application

Input Output

7 1 \\F> X1

EEER TN

. TN
- =] | H X

SaanEna"  .unasiEEEAS ‘ ‘ The image
:%: Emmas :_- Is “2
r*g'—zzli.tu_liii ‘C/XZSG
16 x 16 = 256

Ink 2> 1

Each dimension represents
Noink - 0 the confidence of a digit.




Example Application

* Handwriting Digit Recognition
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Example Application

Layer1  Layer 2

A function set containing the

candidates for
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You need to decide the network structure to
let a good function in your function set.




Layer L  Output

FAQ

Layer Hidden Layers

* Q: How many layers? How many neurons for each

layer?
Trial and Error ks

* Q: Can the structure be automatically determined?
* E.g. Evolutionary Artificial Neural Networks

e Q: Can we design the network structure?

Convolutional Neural Network (CNN)
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Loss for an Example
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Total Loss

For all training data ...

— NN

— NN

Total Loss:

Find a function in
function set that
minimizes total loss L

Find the network

parameters 0 that
minimize total loss L
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Gradient Descent
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Gradient Descent
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Gradient Descent

This is the “learning” of machines in deep
learning ......

| hope you are not too disappointed :p



Backpropagation

* Backpropagation: an efficient way to compute dL/dw in
neural network
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Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 2015 2/Lecture/DNN%20b
ackprop.ecm.mp4/index.html

Deep Learning library produced by Amazon




Concluding Remarks

Neural y
Network

What are the benefits of deep architecture?

Step 2: Step 3: pick
goodness of . the best
function function




Deeper is Better?

Word Error
Rate (%)

Layer X Size

Not surprised, more
parameters, better
performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Universality Theorem

N U
0

Any continuous function f
f:RY >RV

Can be realized by a network
with one hidden layer

Reference for the reason:

(glven enough h Idden http://neuralnetworksandde
neurons) eplearning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?

(next lecture)
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« My Course: Machine learning and having it deep and
structured

. Httpi//speech.ee.ntu.edu.tw/~tlkagk/courses_l\/lLSD15_2.
tm

* 6 hour version: http://www.slideshare.net/tw_dsconf/ss-
62245351
* “Neural Networks and Deep Learning”
* written by Michael Nielsen
* http://neuralnetworksanddeeplearning.com/

* “Deep Learning”
* written by Yoshua Bengio, lan J. Goodfellow and Aaron
Courville

* http://www.deeplearningbook.org
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