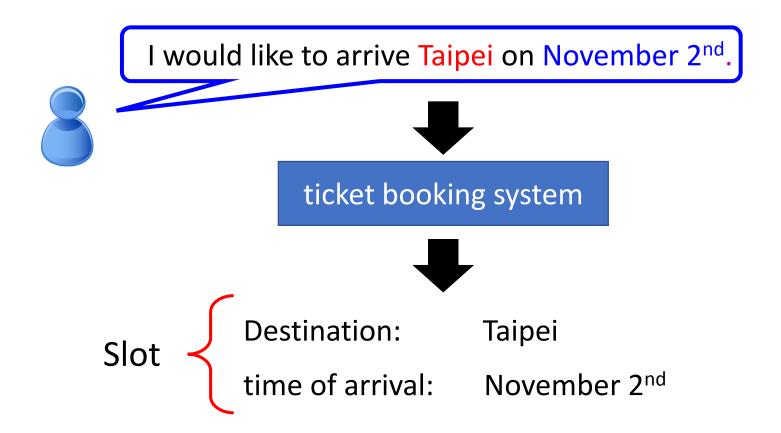
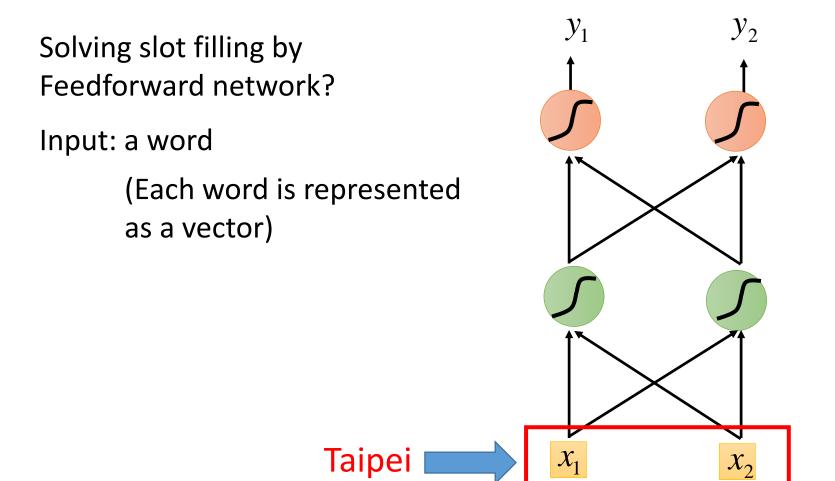
Recurrent Neural Network (RNN)

Example Application

• Slot Filling



Example Application

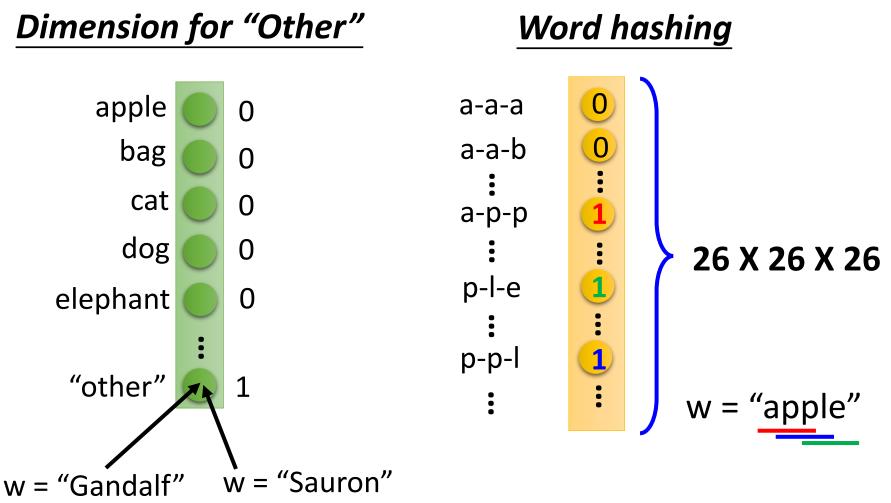


1-of-N encoding

How to represent each word as a vector?

1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size. $apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ Each dimension corresponds $bag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ to a word in the lexicon $cat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ The dimension for the word $dog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}

Beyond 1-of-N encoding



Example Application

Solving slot filling by Feedforward network?

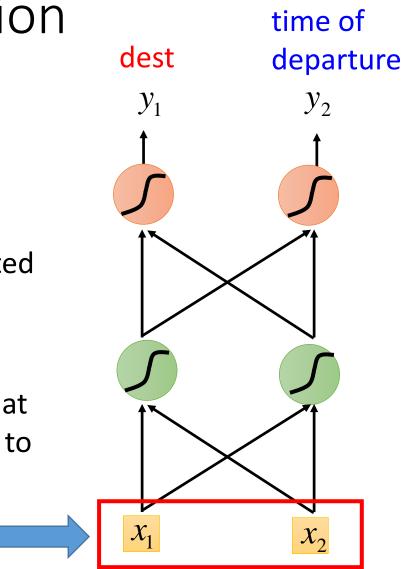
Input: a word

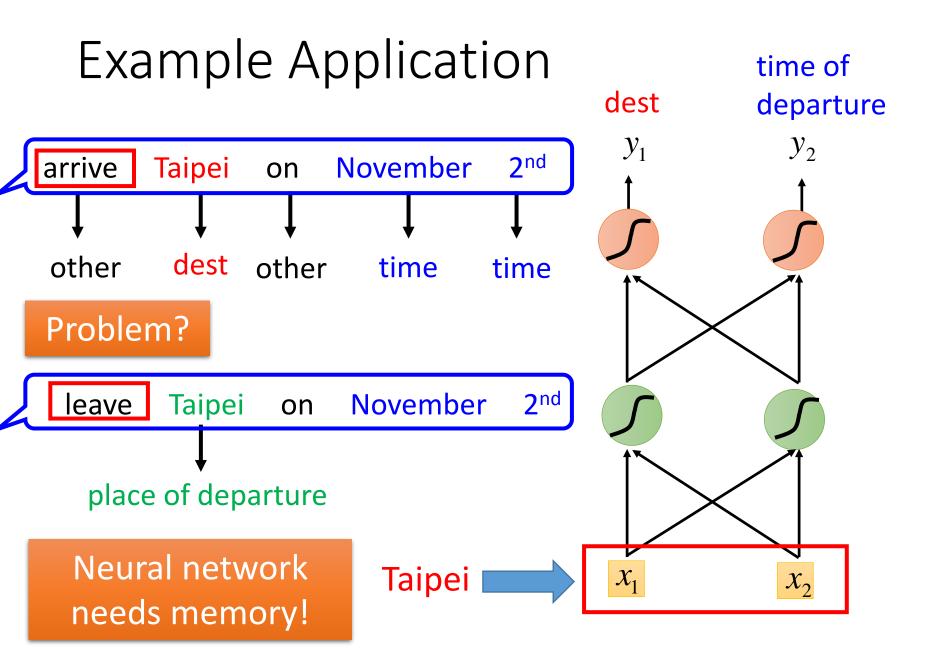
(Each word is represented as a vector)

Output:

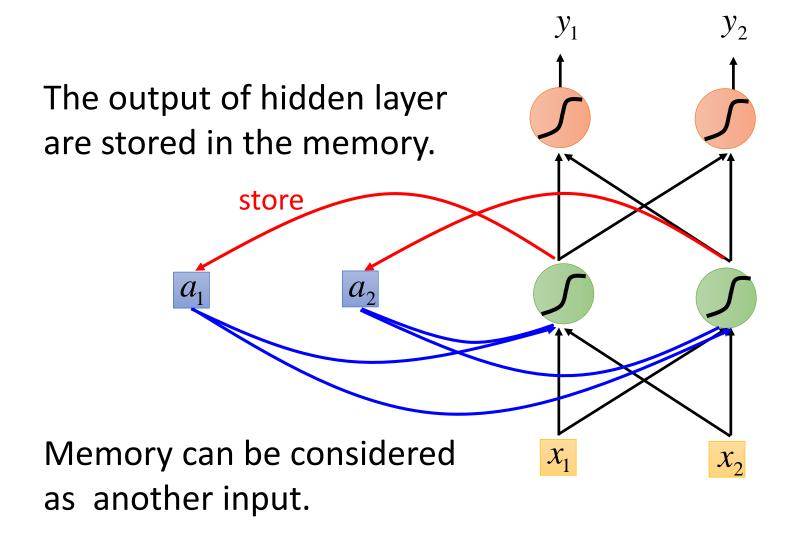
Probability distribution that the input word belonging to the slots

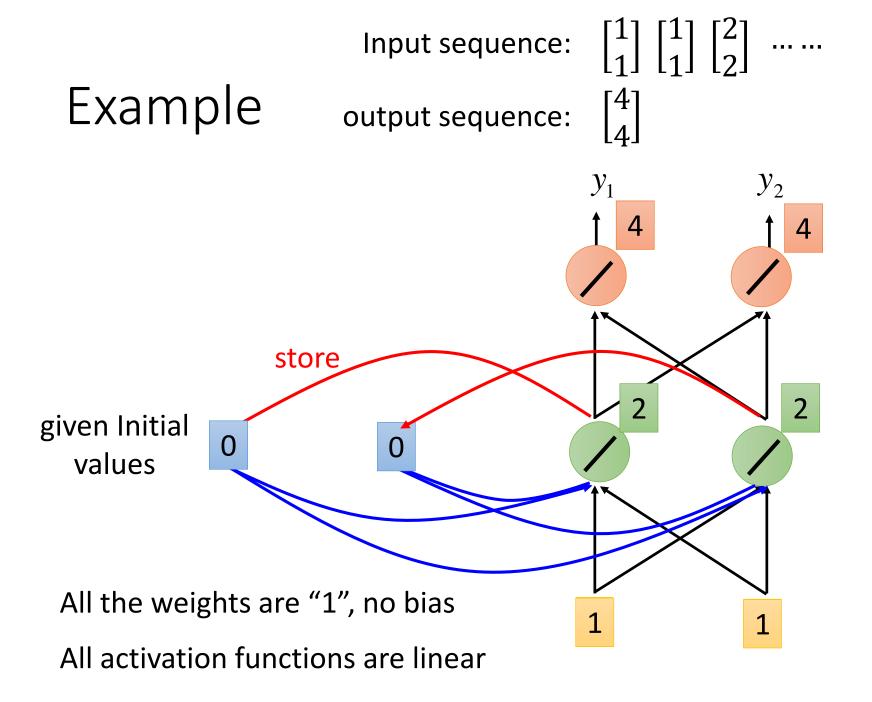
Taipei

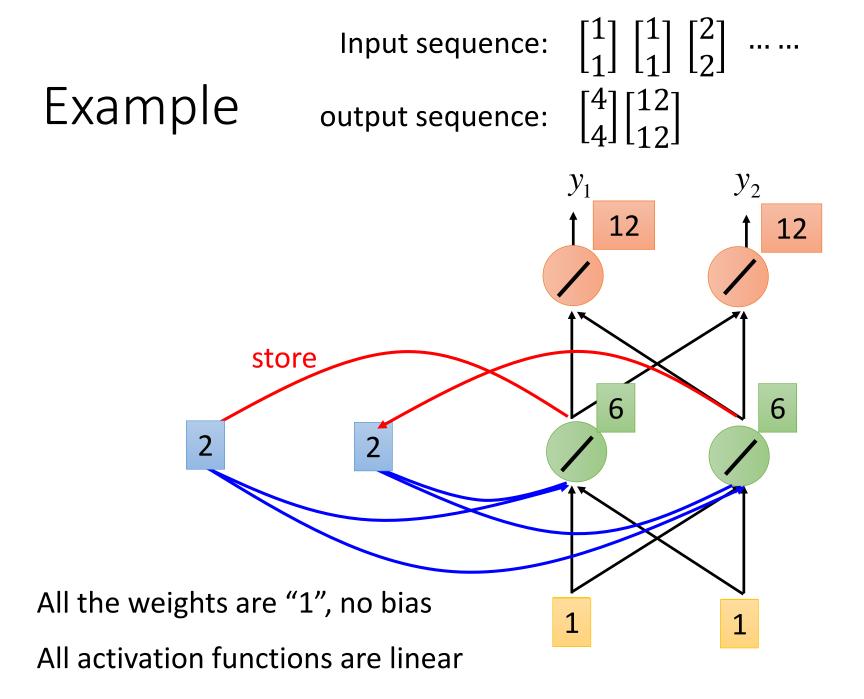


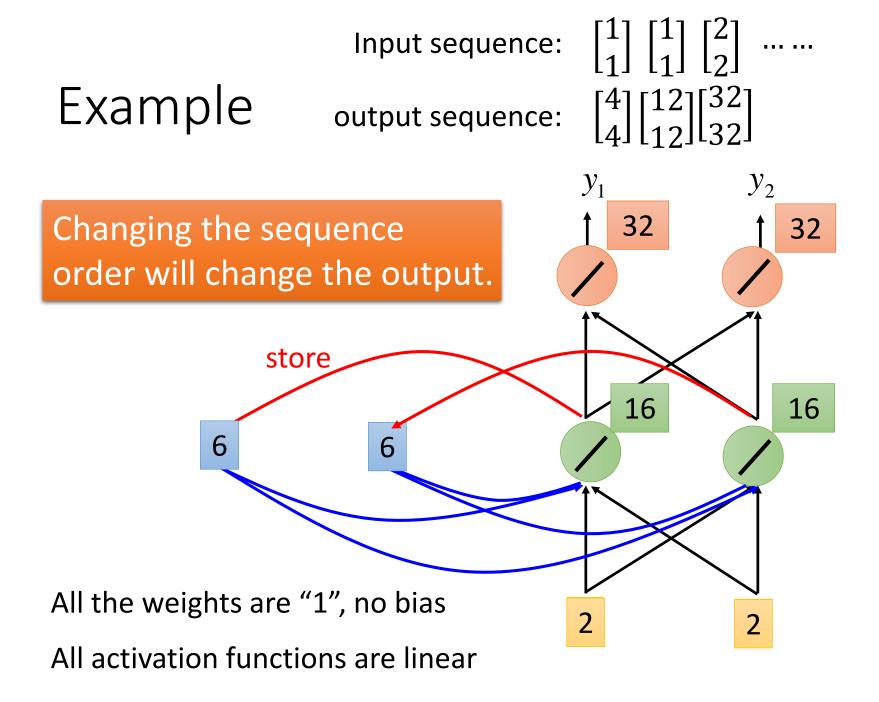


Recurrent Neural Network (RNN)



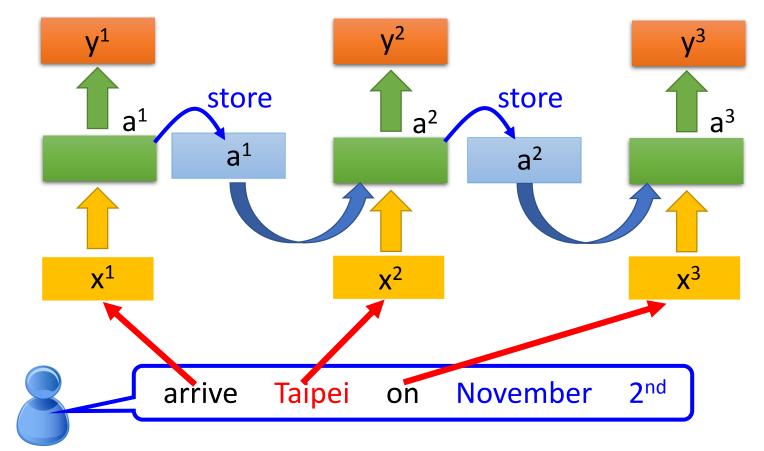


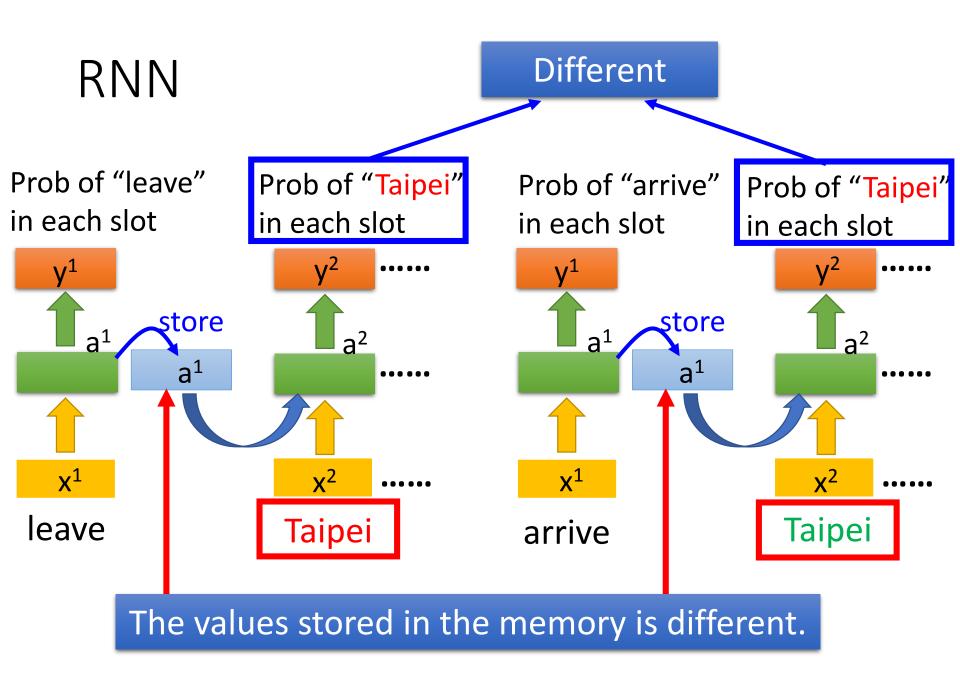




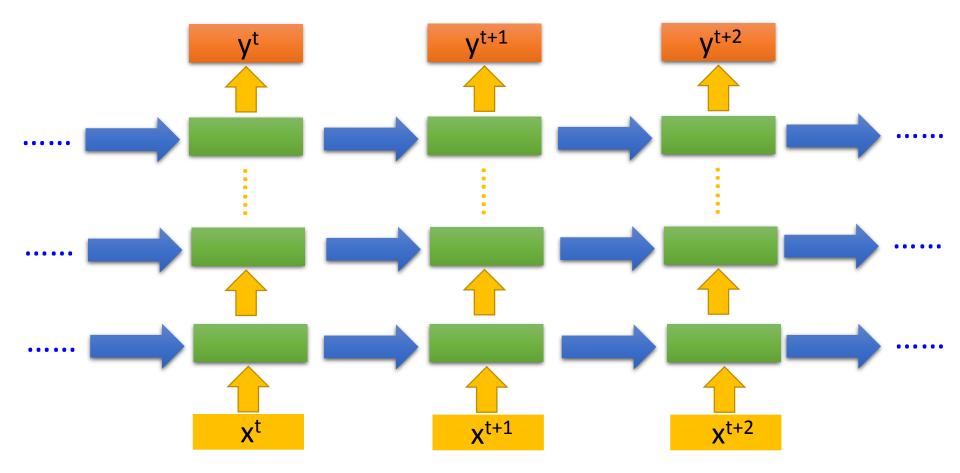
RNN The same network is used again and again.

Probability of "arrive" in each slot Probability of "Taipei" in each slot Probability of "on" in each slot

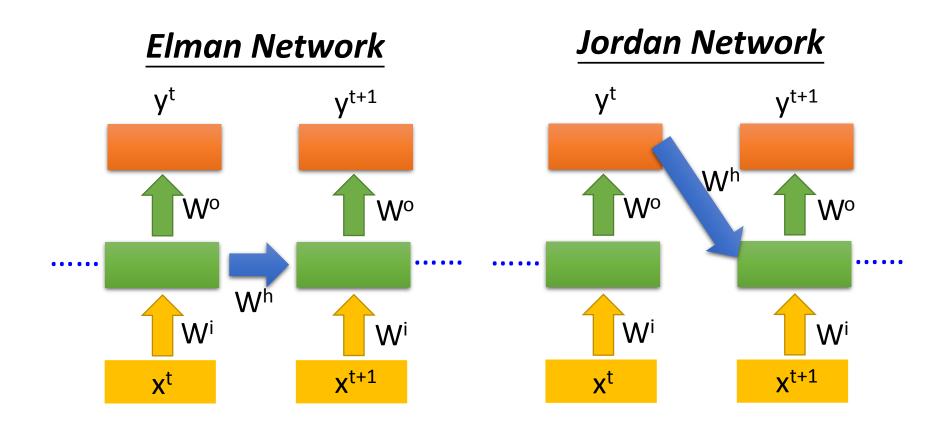




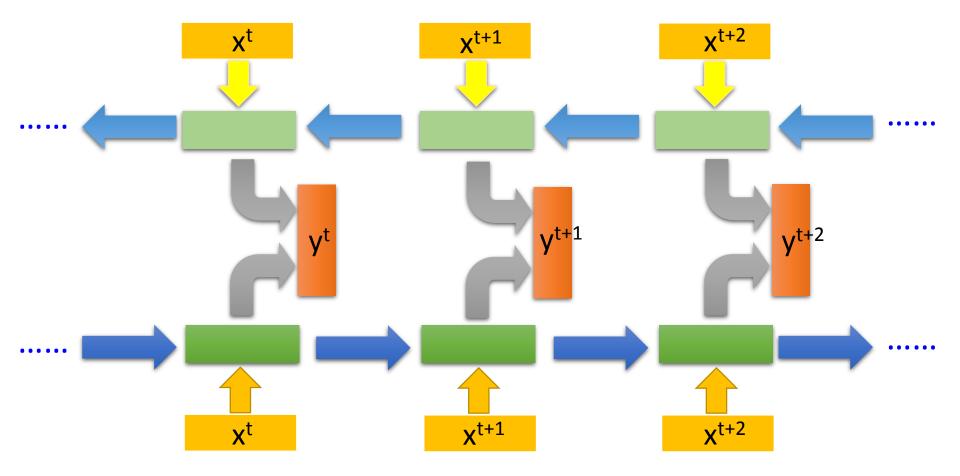
Of course it can be deep ...

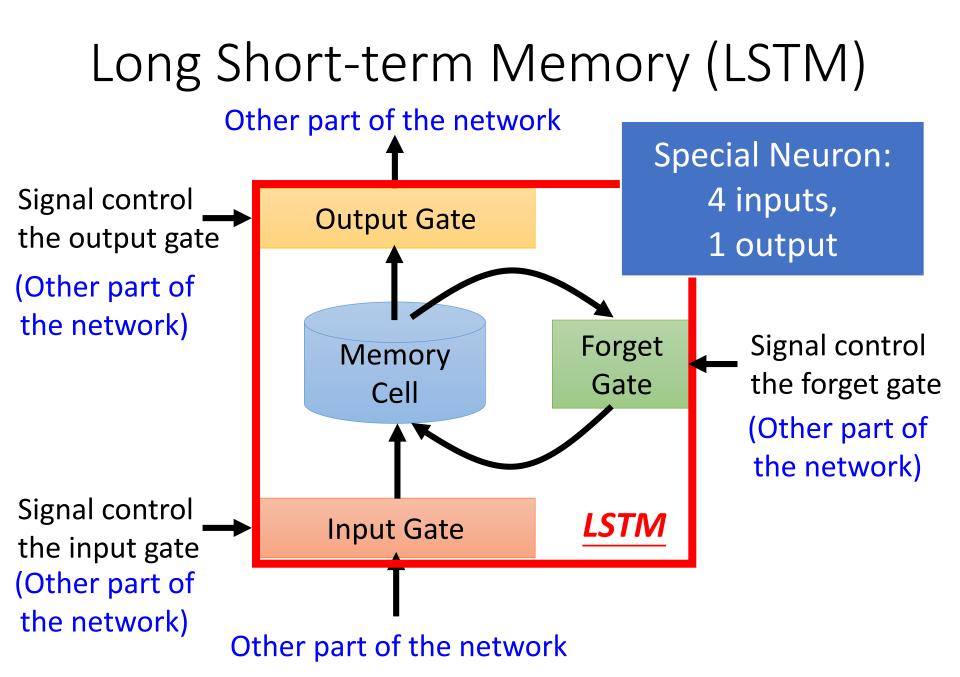


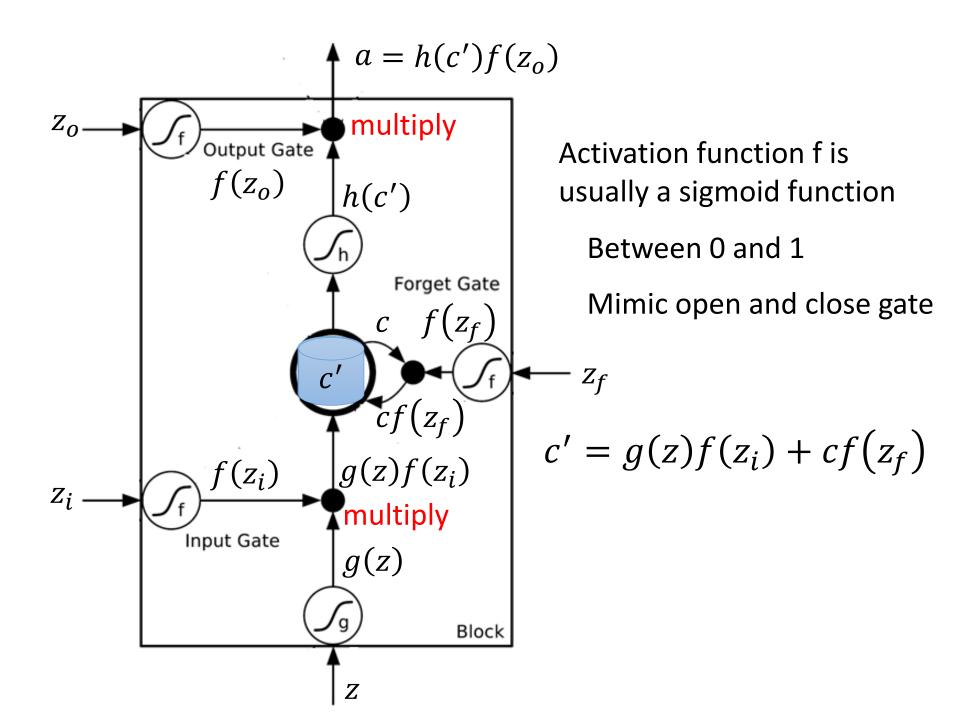
Elman Network & Jordan Network



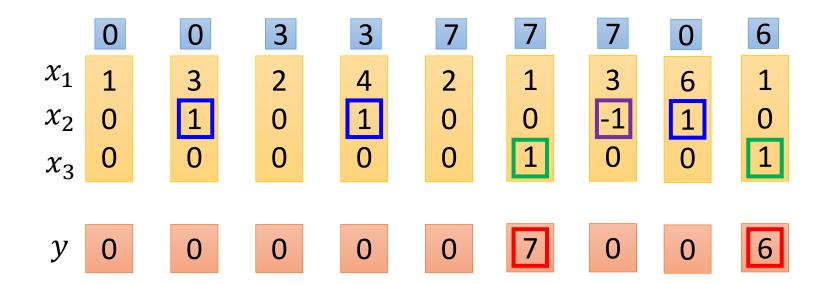
Bidirectional RNN





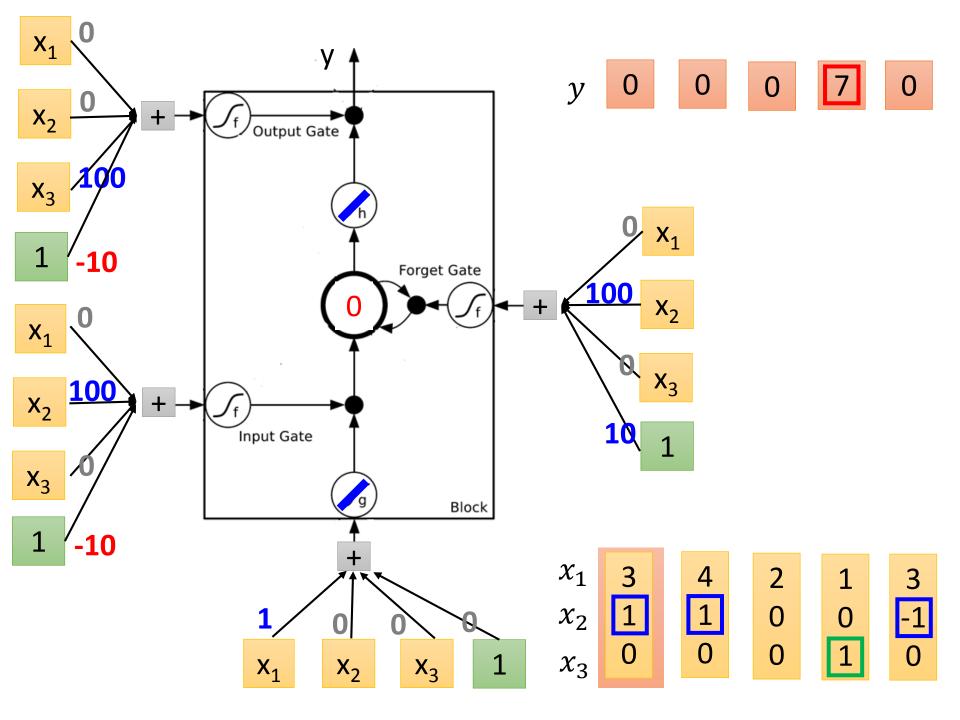


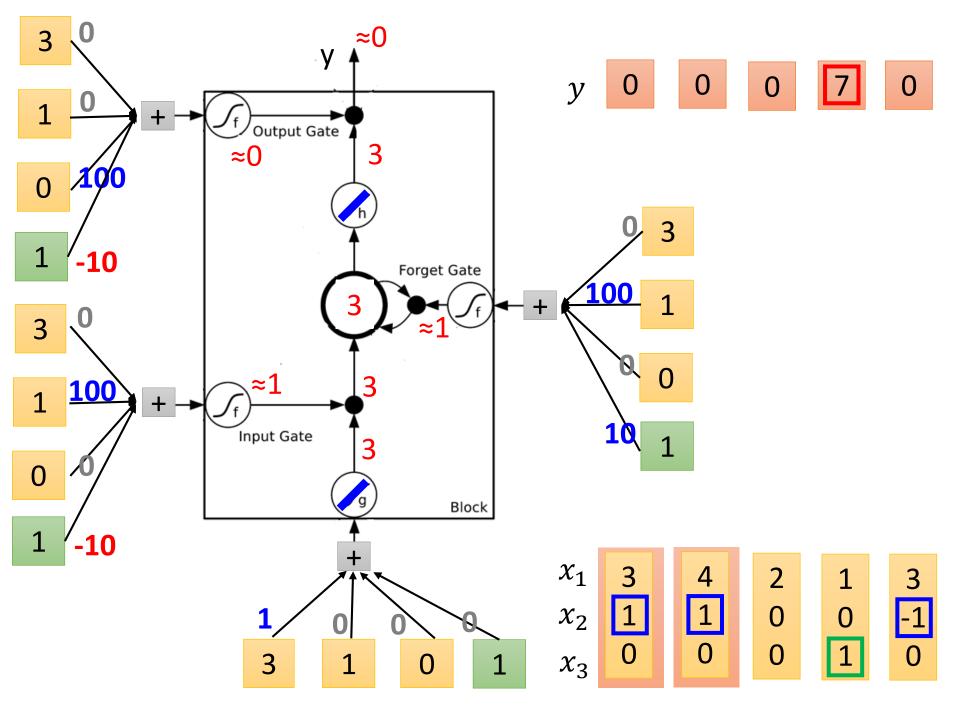
LSTM - Example

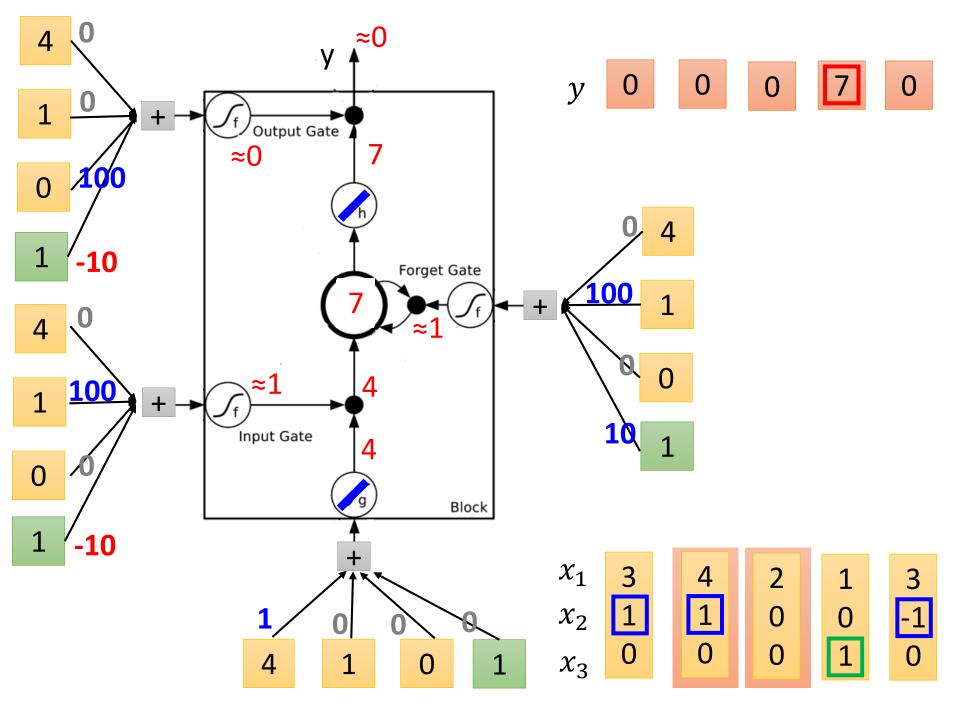


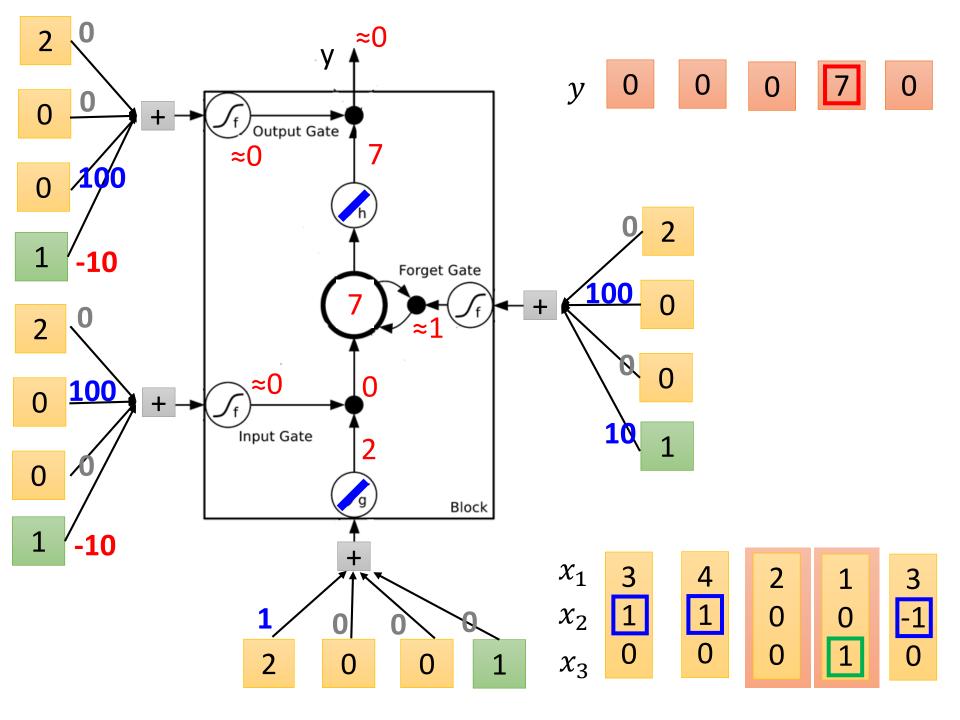
When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory

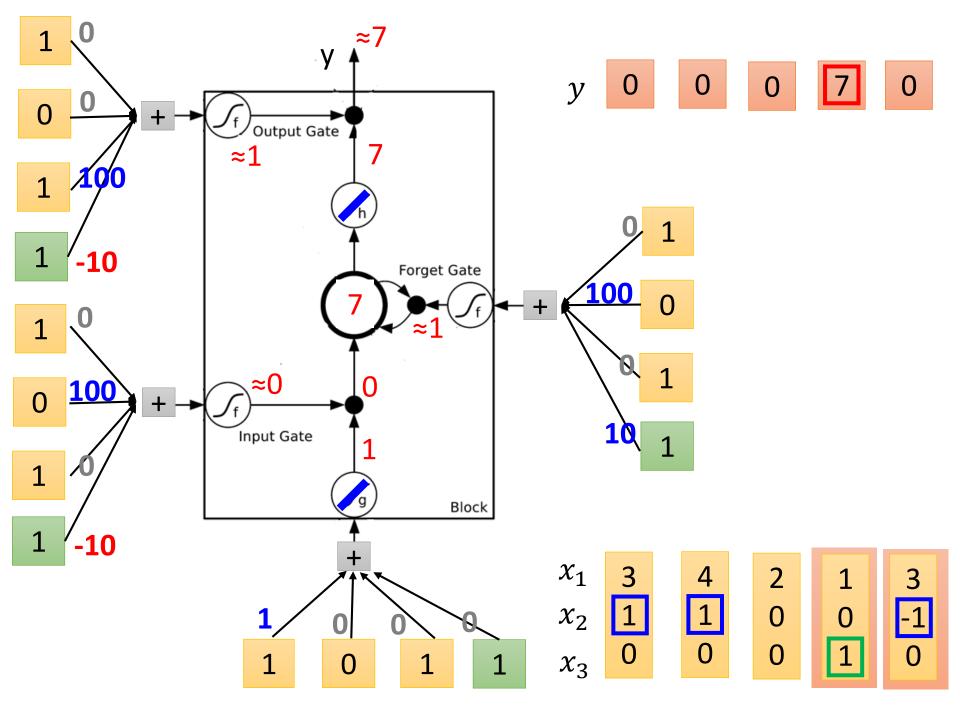
When $x_3 = 1$, output the number in the memory.

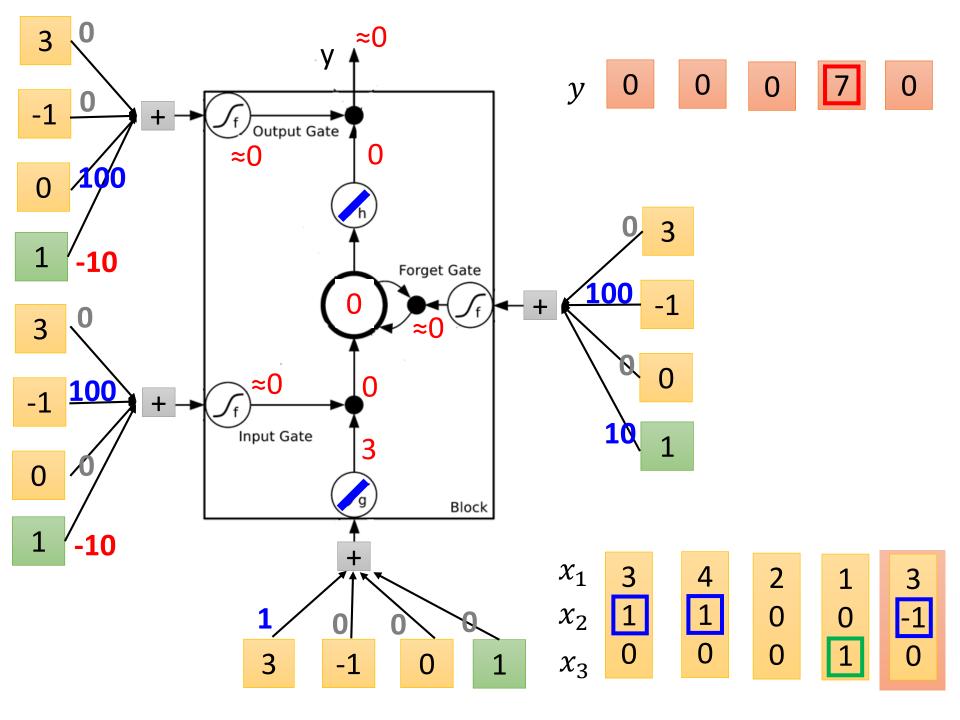






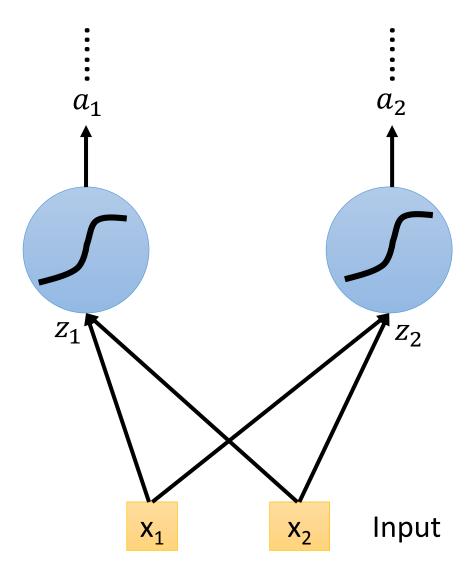


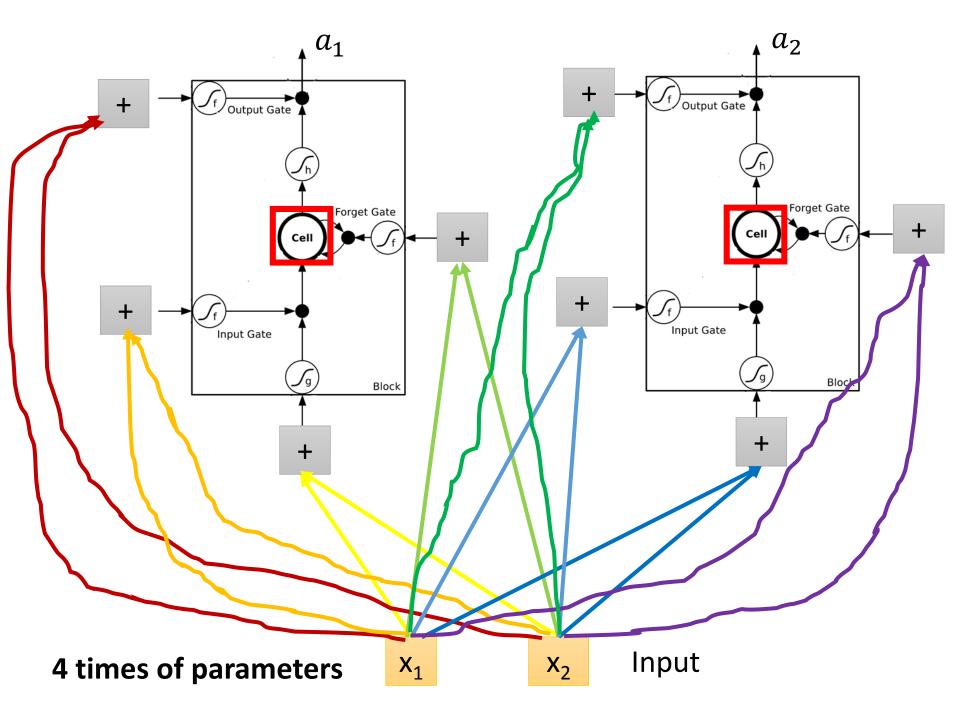


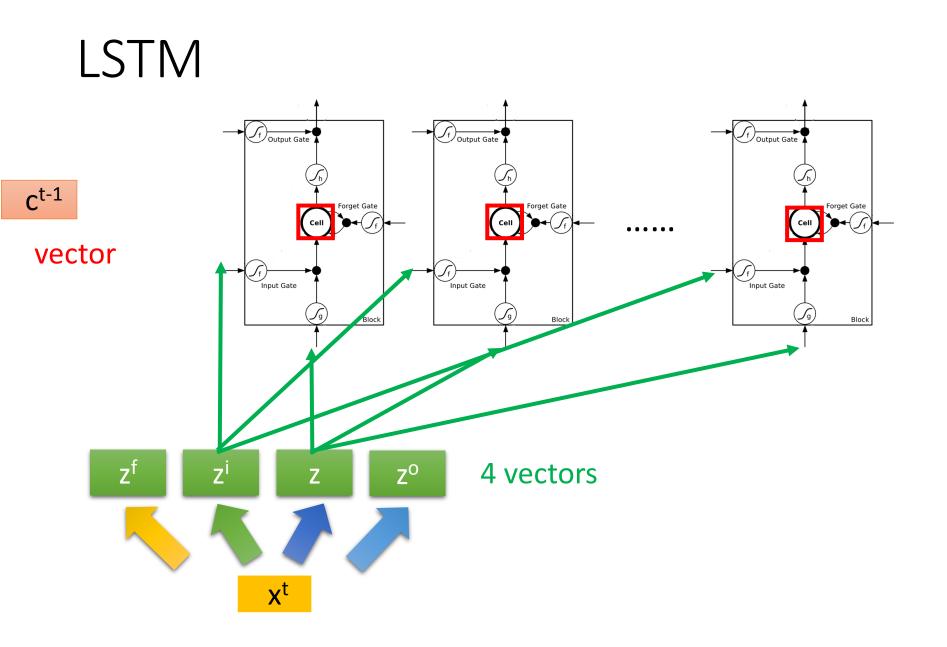


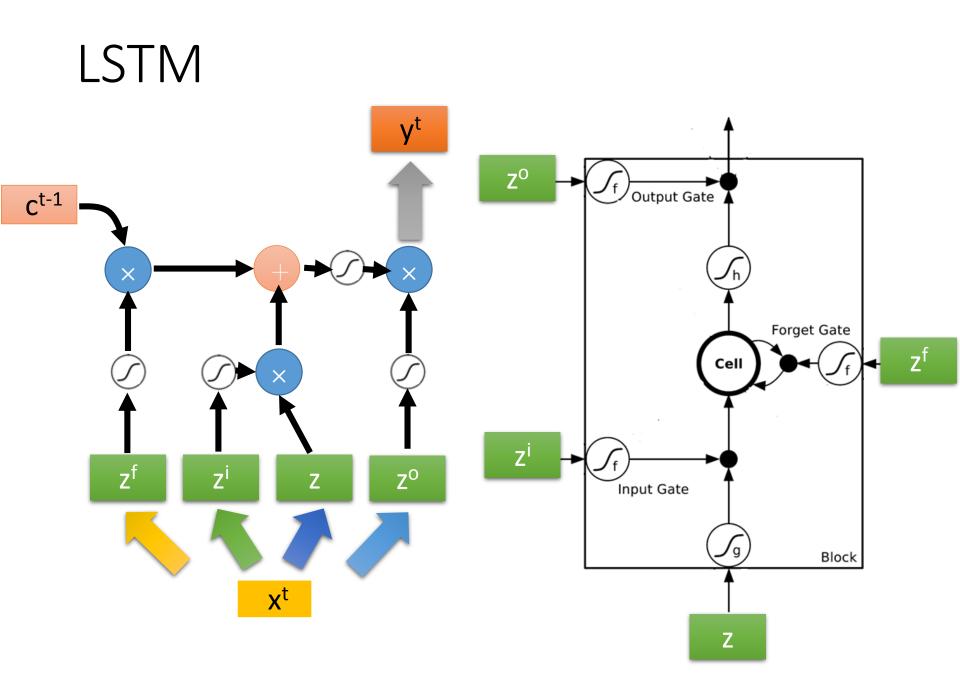
Original Network:

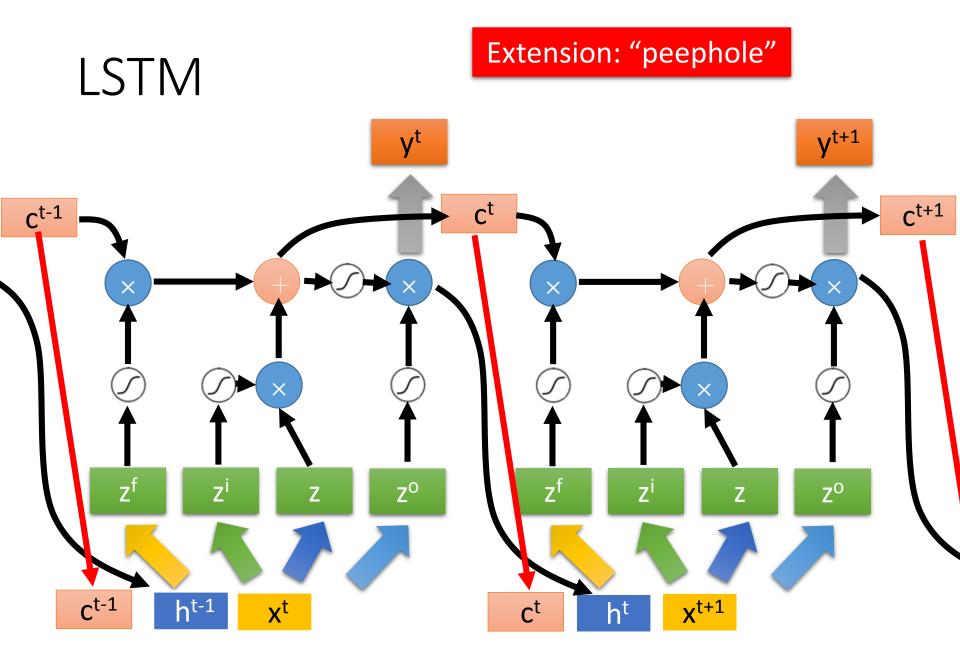
Simply replace the neurons with LSTM

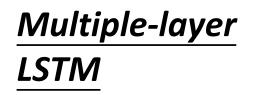








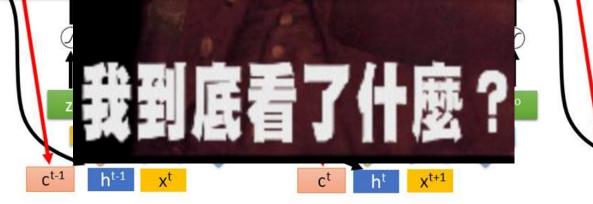




Don't worry if you cannot understand this. Keras can handle it.

Keras supports "LSTM", "GRU", "SimpleRNN" layers

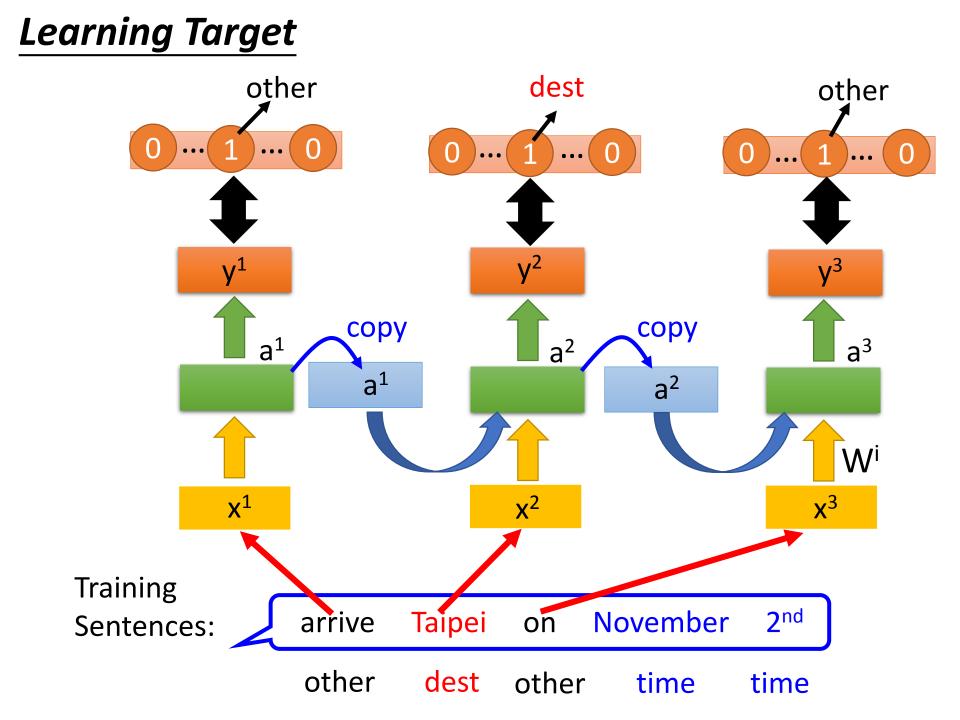
This is quite standard now.

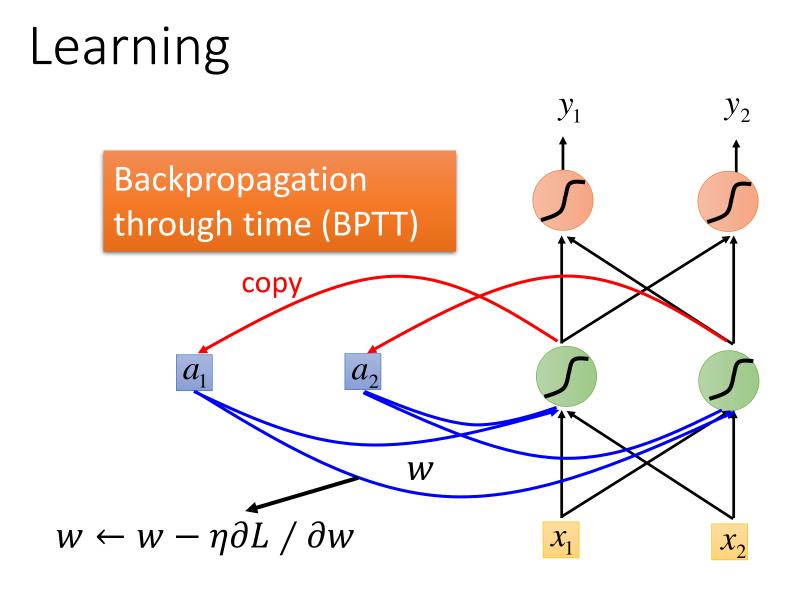


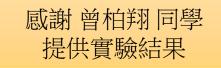
ct+1

ct+1

https://img.komicolle.org/2015-09-20/src/14426967627131.gif



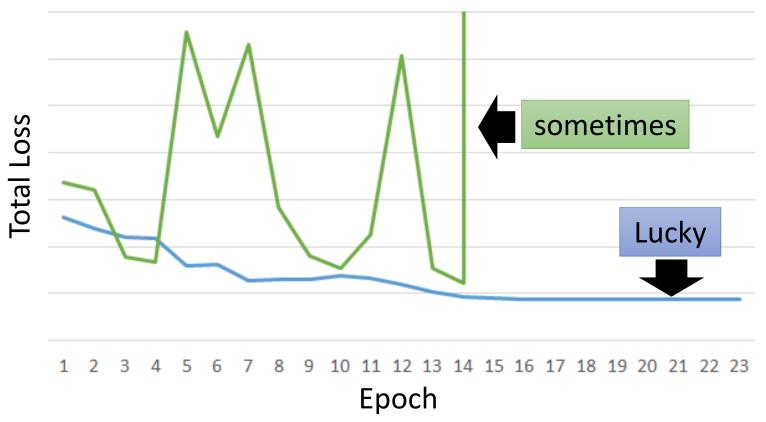




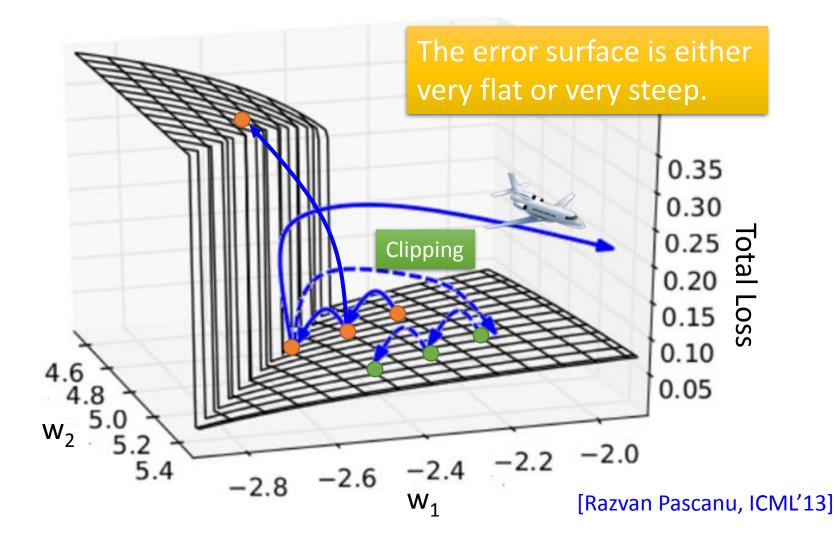
Unfortunately

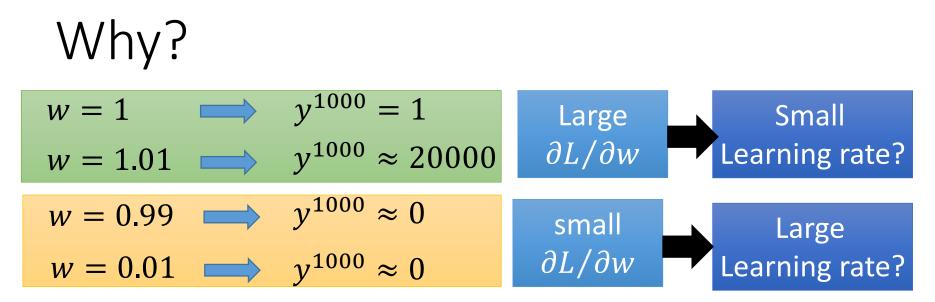
• RNN-based network is not always easy to learn

Real experiments on Language modeling

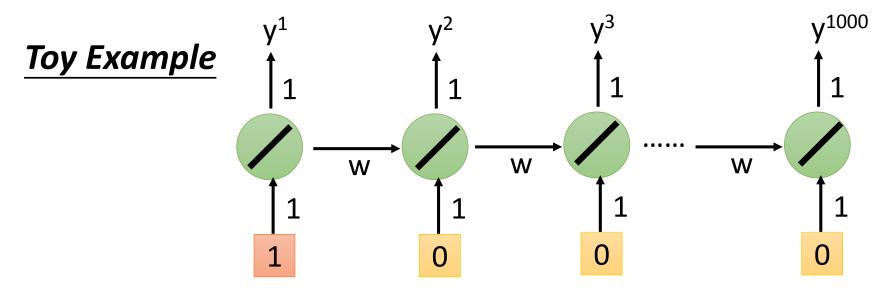


The error surface is rough.





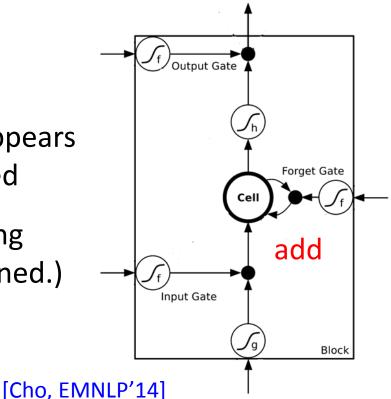
=w⁹⁹⁹



Helpful Techniques

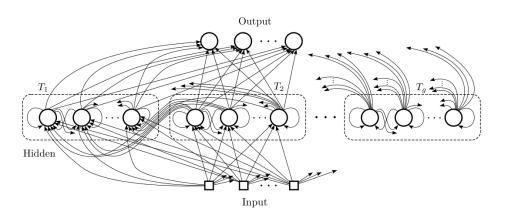
- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)
 - Memory and input are <u>added</u>
 - The influence never disappears unless forget gate is closed
- No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

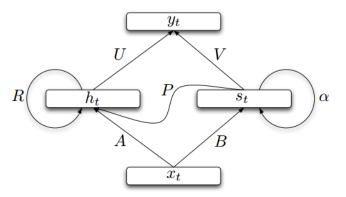


Helpful Techniques

Clockwise RNN



Structurally Constrained Recurrent Network (SCRN)



[Jan Koutnik, JMLR'14]

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

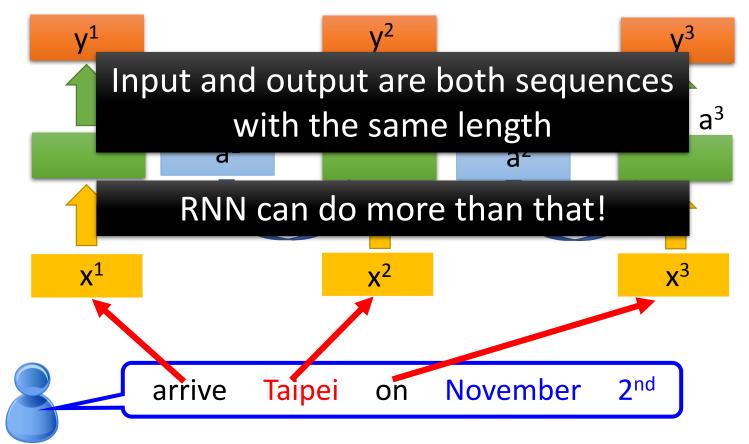
Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of "arrive" in each slot

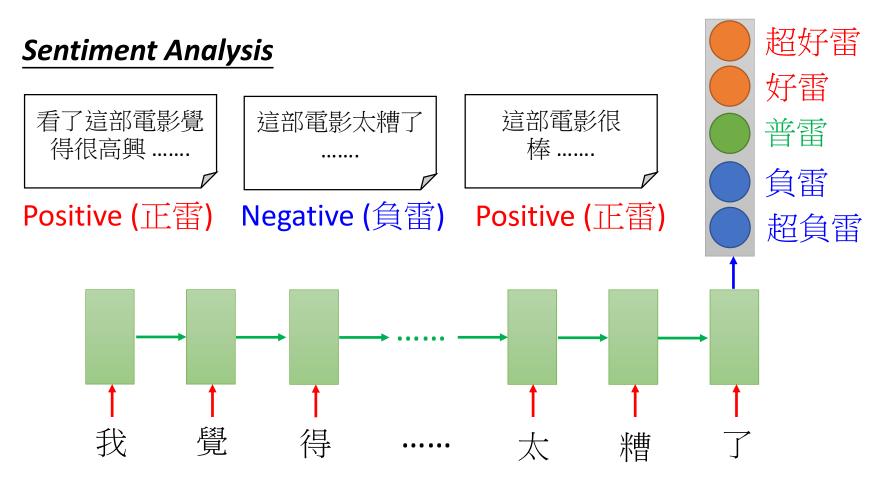
Probability of "Taipei" in each slot "on" in each slot

Probability of



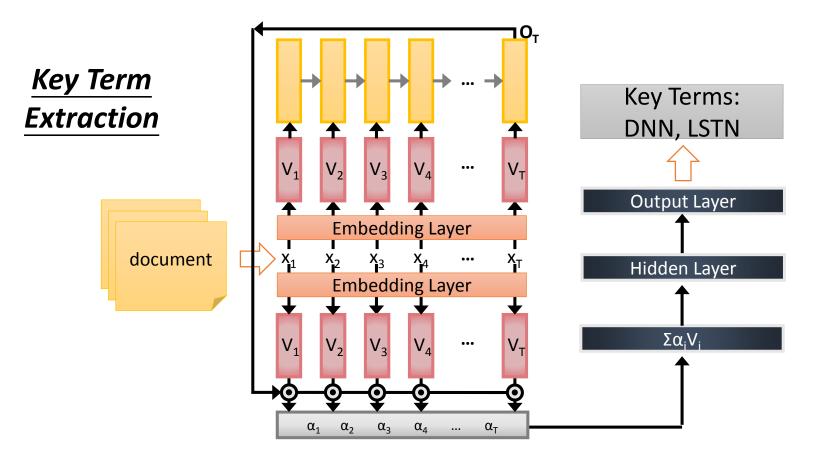
Many to one

• Input is a vector sequence, but output is only one vector

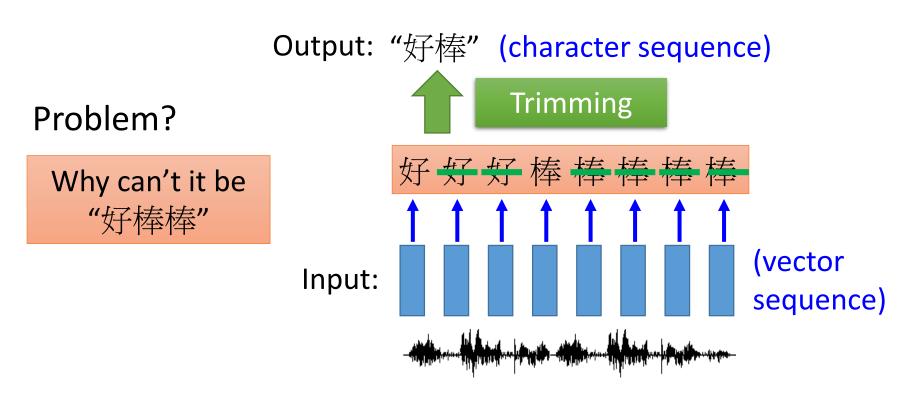


Many to one

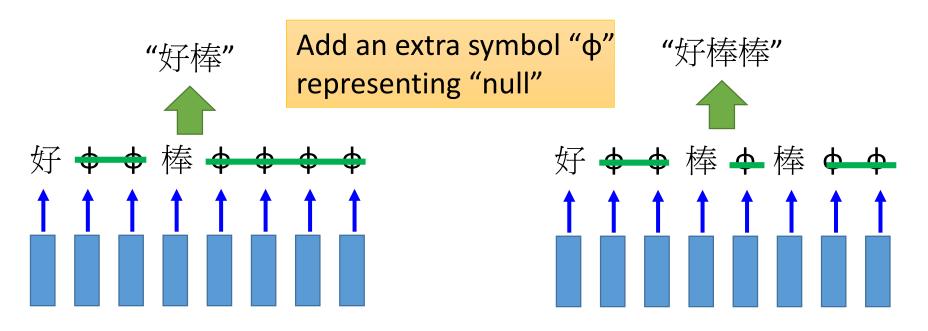
• Input is a vector sequence, but output is only one vector



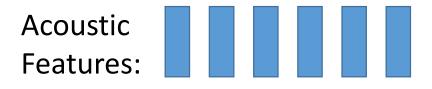
- Both input and output are both sequences, <u>but the output</u> is shorter.
 - E.g. Speech Recognition



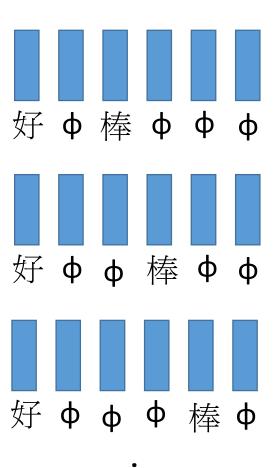
- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]



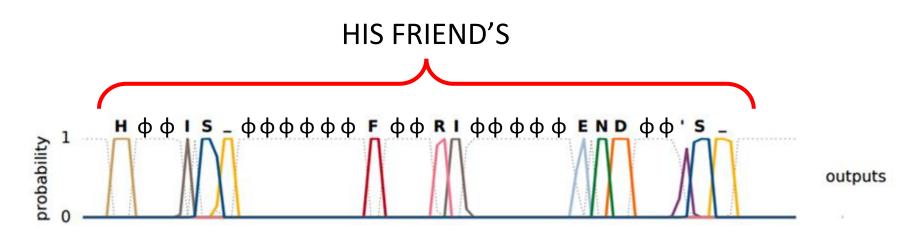
• CTC: Training



- Label: 好棒
- All possible alignments are considered as correct.

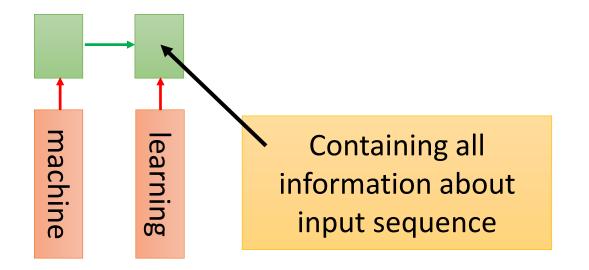


• CTC: example

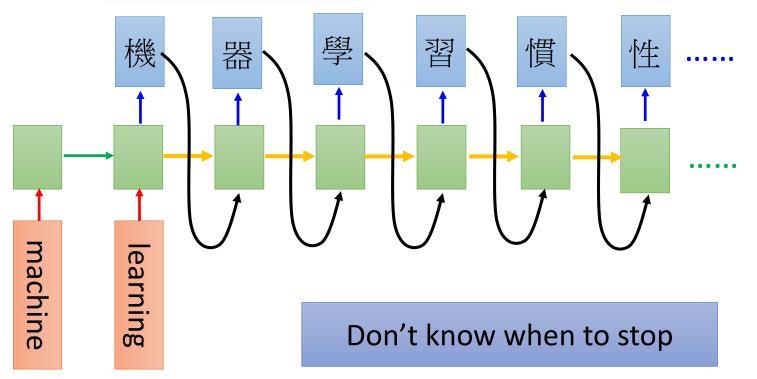


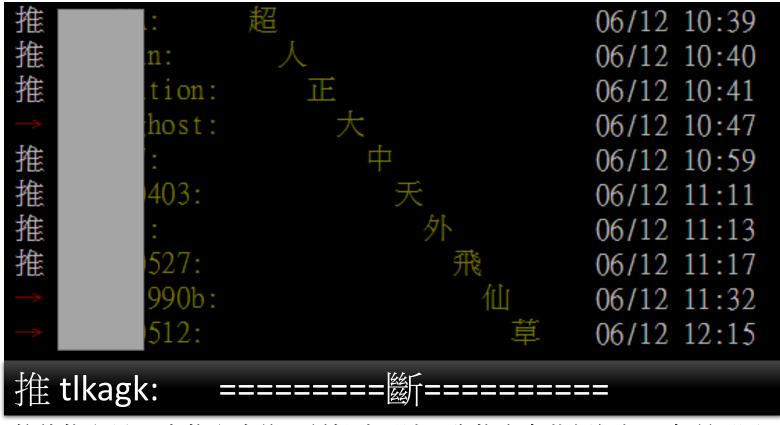
Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*. 2014.

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)



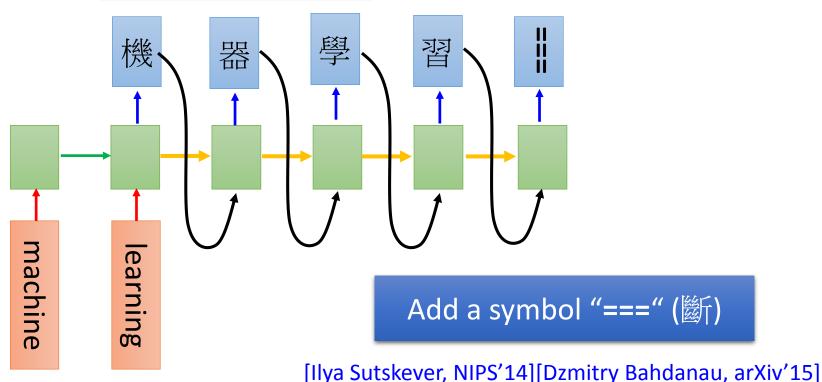
- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)



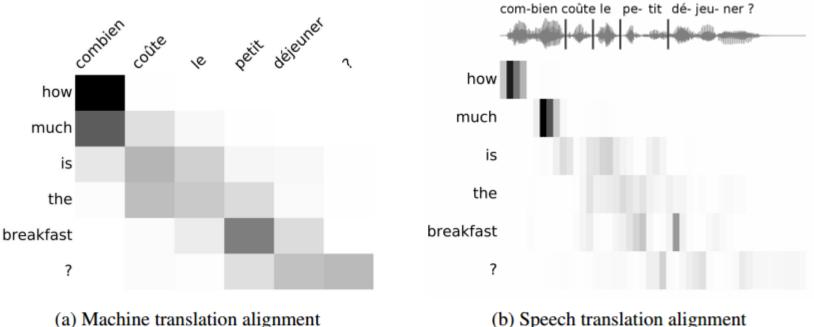


接龍推文是ptt在推文中的一種趣味玩法,與推齊有些類似但又有所不同, 是指在推文中接續上一樓的字句,而推出連續的意思。該類玩法確切起 源已不可知(鄉民百科)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. Machine Translation (machine learning→機器學習)



- Both input and output are both sequences *with different* lengths. \rightarrow Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)



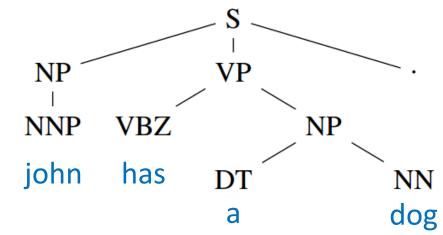
(b) Speech translation alignment

Figure 1: Alignments performed by the attention model during training

Beyond Sequence

Syntactic parsing

John has a dog . -

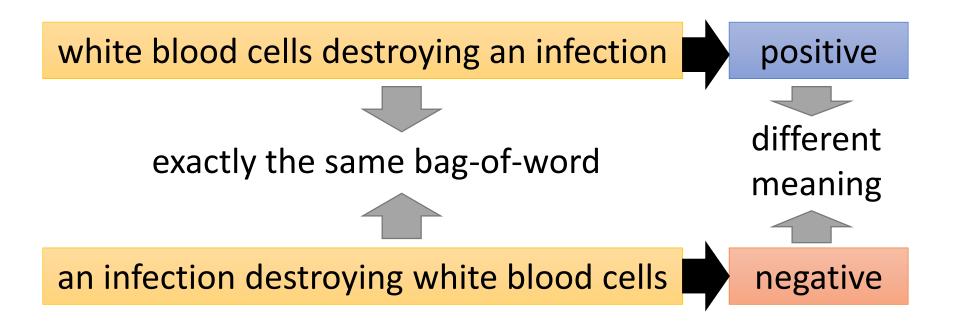


John has a dog . \rightarrow (S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP} .)_S

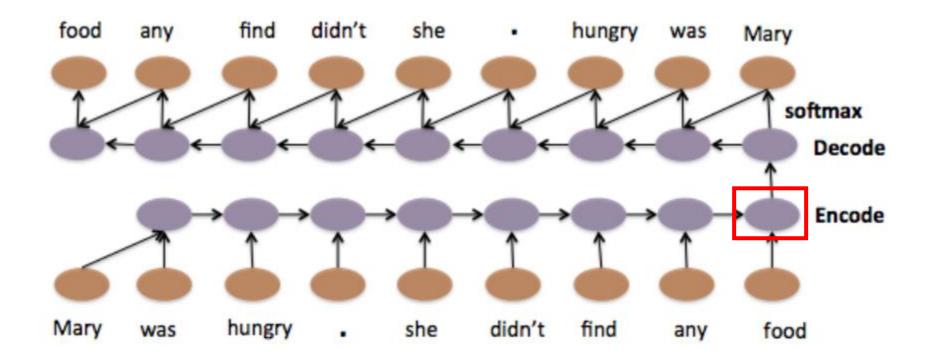
Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton, Grammar as a Foreign Language, NIPS 2015

Sequence-to-sequence Auto-encoder - Text

• To understand the meaning of a word sequence, the order of the words can not be ignored.

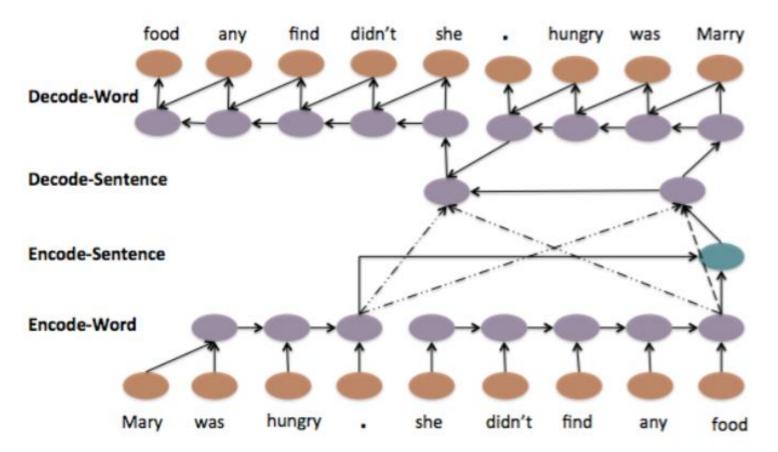


Sequence-to-sequence Auto-encoder - Text



Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

Sequence-to-sequence Auto-encoder - Text



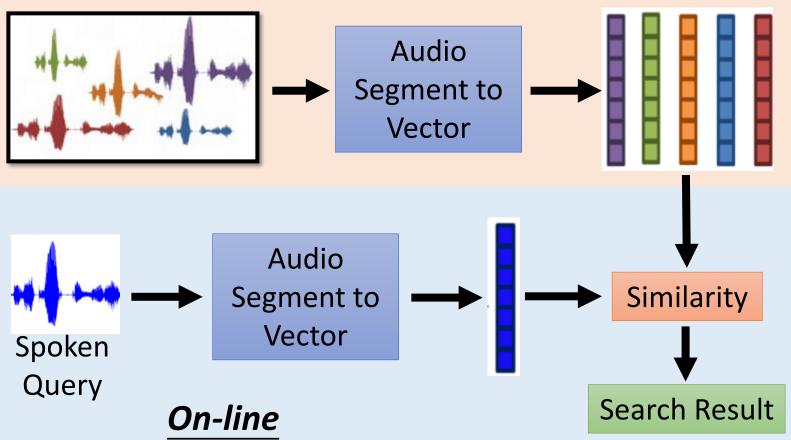
Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

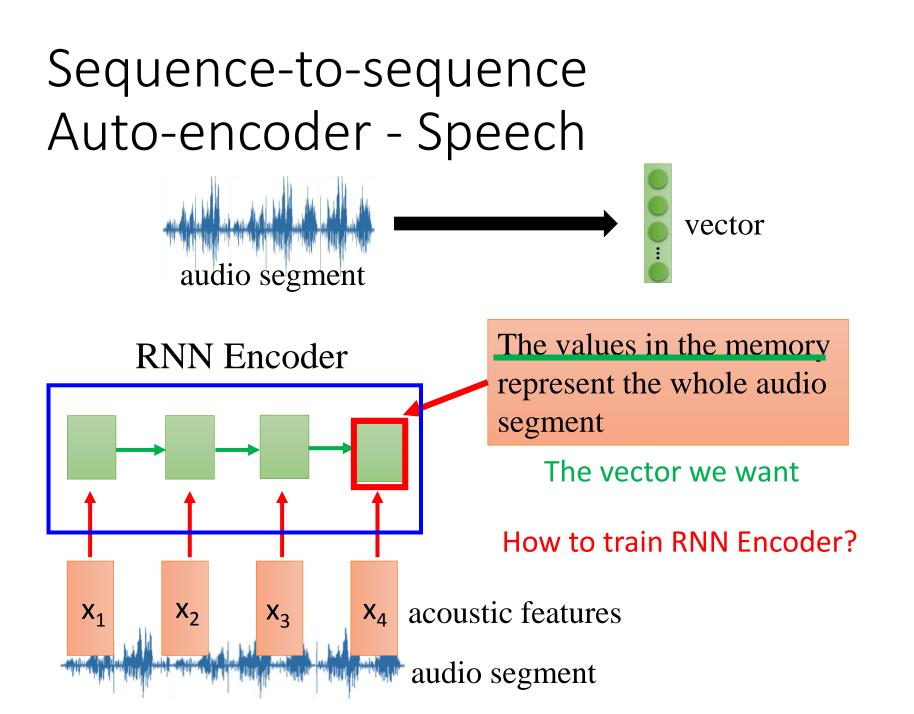
Sequence-to-sequence Auto-encoder - Speech

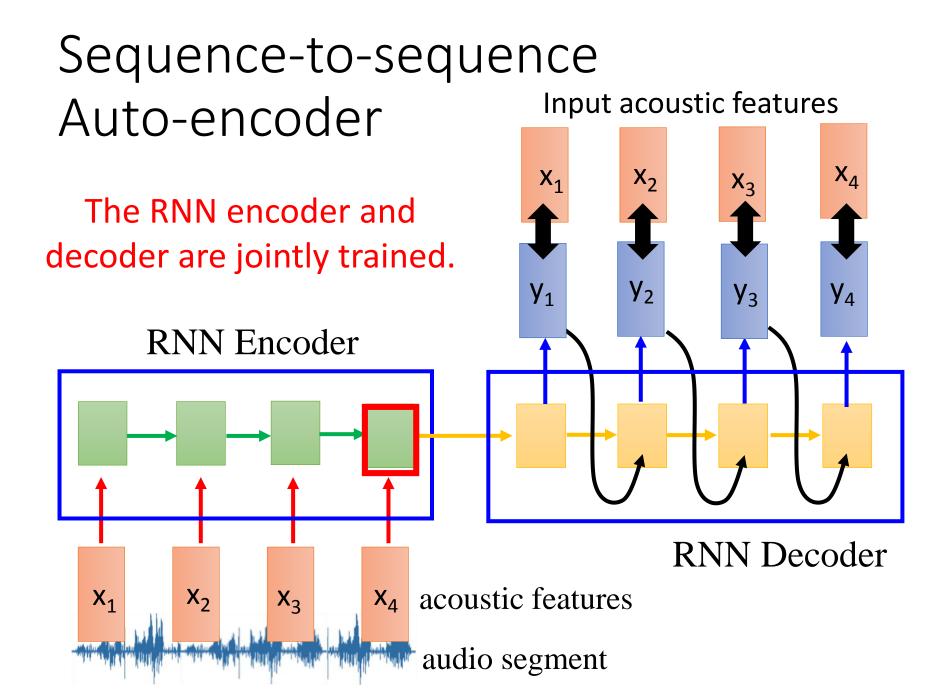
 Dimension reduction for a sequence with variable length audio segments (word-level) Fixed-length vector dog never dog lever Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen, Hung-Yi Lee, Lin-Shan Lee, Audio Word2Vec: dogs **Unsupervised Learning of Audio Segment** never Representations using Sequence-to-sequence Autoencoder, Interspeech 2016 ever ever

Sequence-to-sequence Auto-encoder - Speech

Audio archive divided into variablelength audio segments

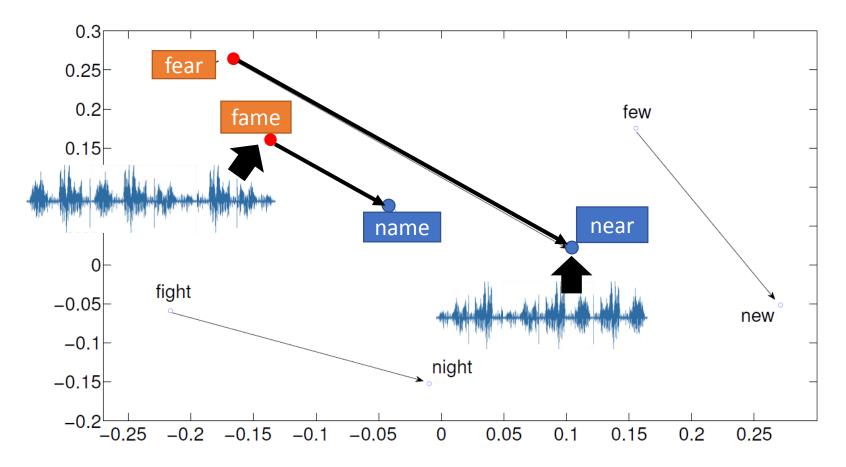




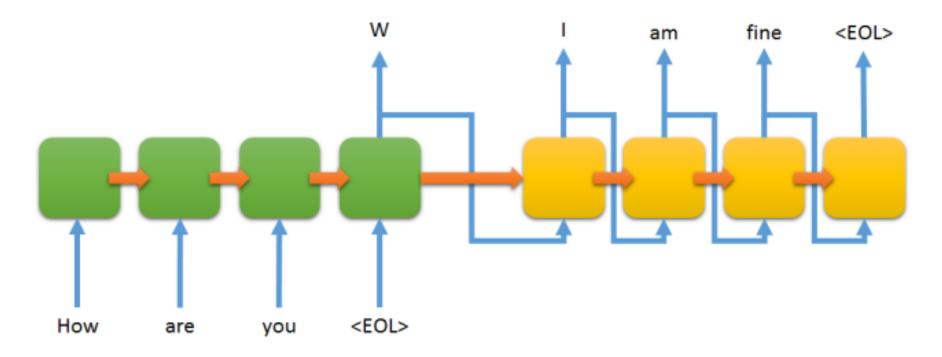


Sequence-to-sequence Auto-encoder - Speech

Visualizing embedding vectors of the words



Demo: Chat-bot



LSTM Encoder

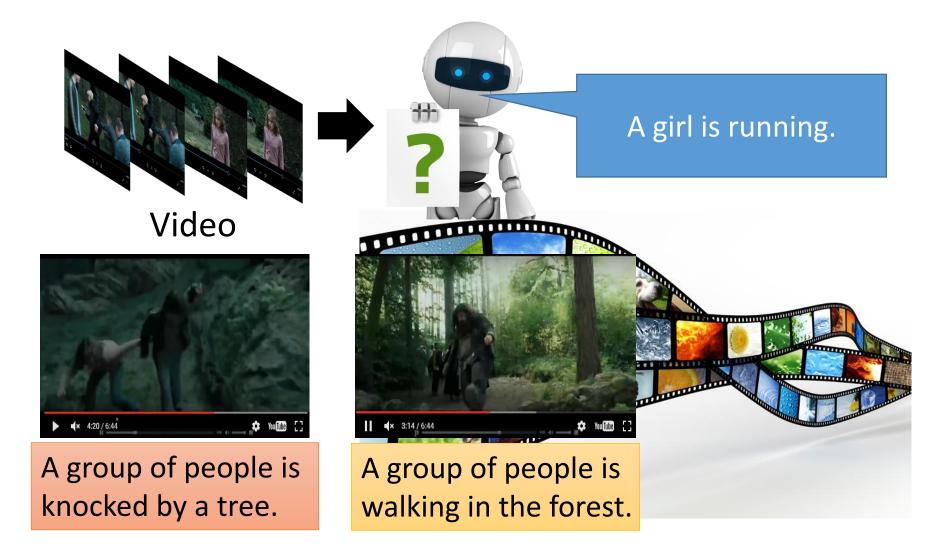
LSTM Decoder

電視影集 (~40,000 sentences)、美國總統大選辯論

Demo: Chat-bot

- Develop Team
 - Interface design: Prof. Lin-Lin Chen & Arron Lu
 - Web programming: Shi-Yun Huang
 - Data collection: Chao-Chuang Shih
 - System implementation: Kevin Wu, Derek Chuang, & Zhi-Wei Lee (李致緯), Roy Lu (盧柏儒)
 - System design: Richard Tsai & Hung-Yi Lee

Demo: Video Caption Generation

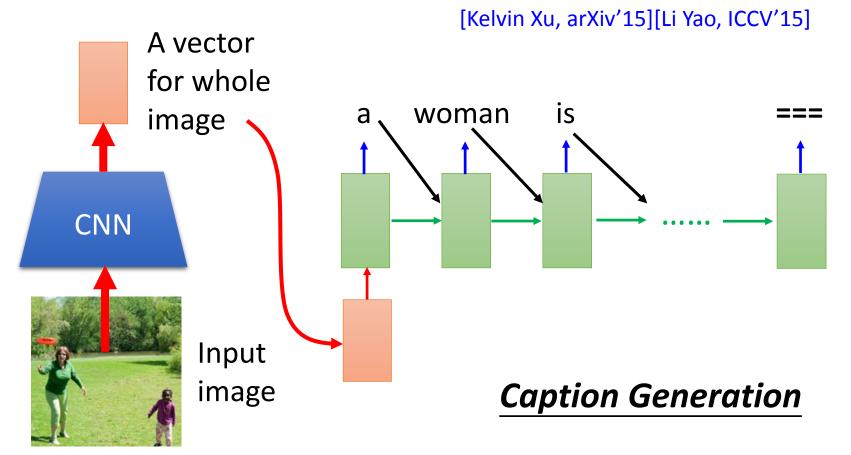


Demo: Video Caption Generation

- Can machine describe what it see from video?
- Demo: 台大語音處理實驗室 曾柏翔、吳柏瑜、 盧宏宗
- Video: 莊舜博、楊棋宇、黃邦齊、萬家宏

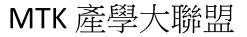
Demo: Image Caption Generation

• Input an image, but output a sequence of words

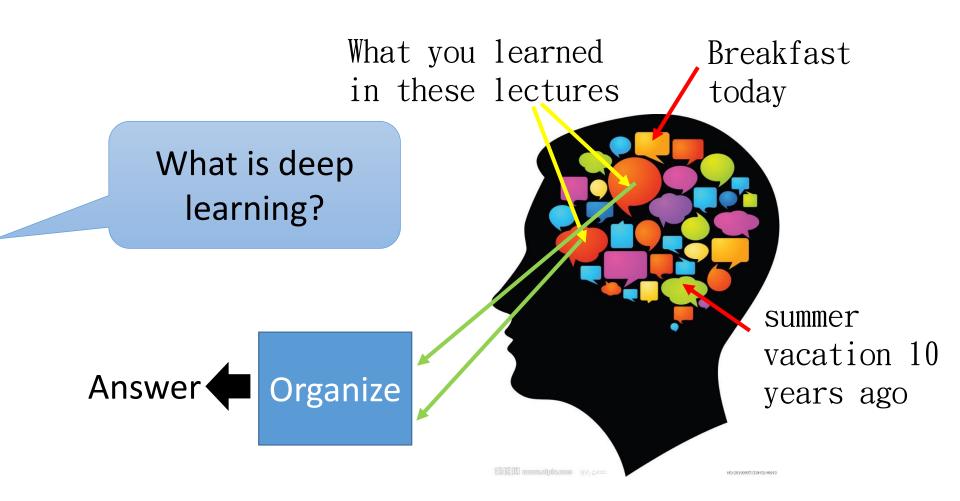


Demo: Image Caption Generation

- Can machine describe what it see from image?
- Demo:台大電機系 大四 蘇子睿、林奕辰、徐翊 祥、陳奕安

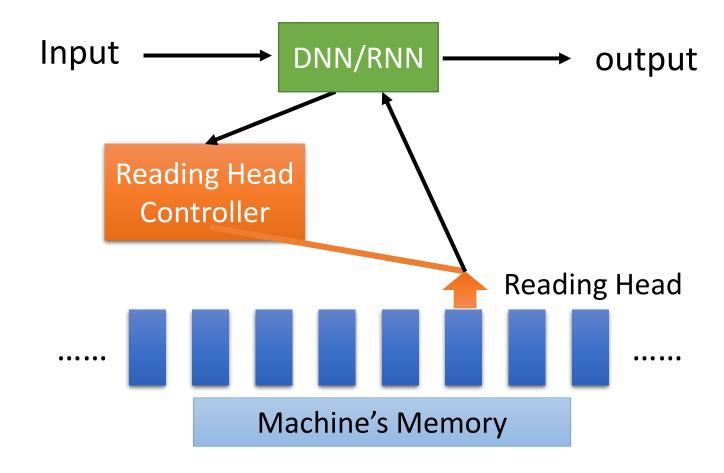


Attention-based Model



http://henrylo1605.blogspot.tw/2015/05/blog-post_56.html

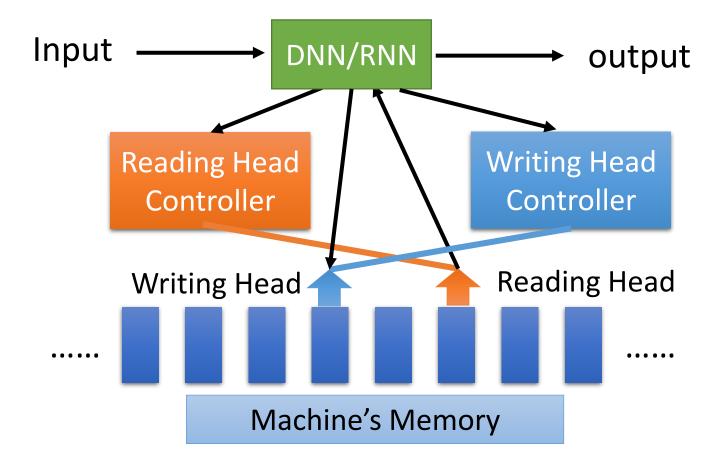
Attention-based Model



Ref:

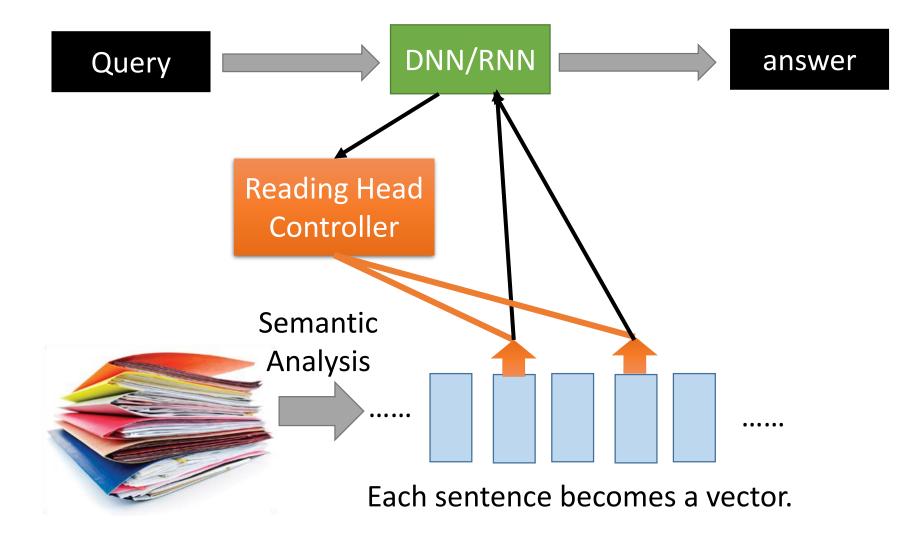
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain%20(v3).e cm.mp4/index.html

Attention-based Model v2



Neural Turing Machine

Reading Comprehension



Reading Comprehension

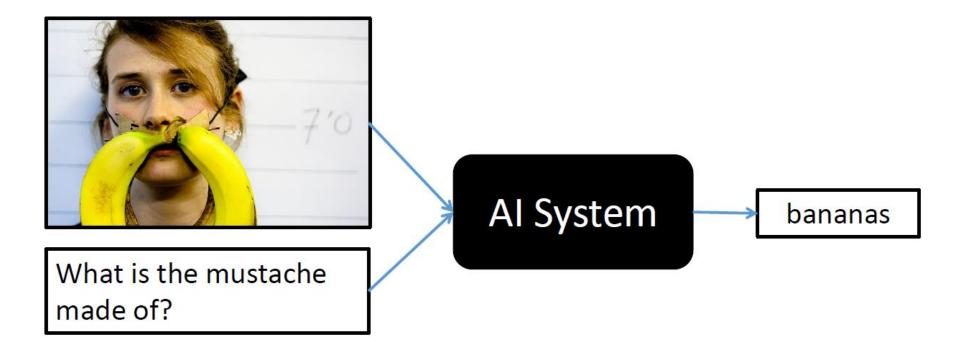
• End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.	-	0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.	-	0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	er: yellow Prediction: yellow			

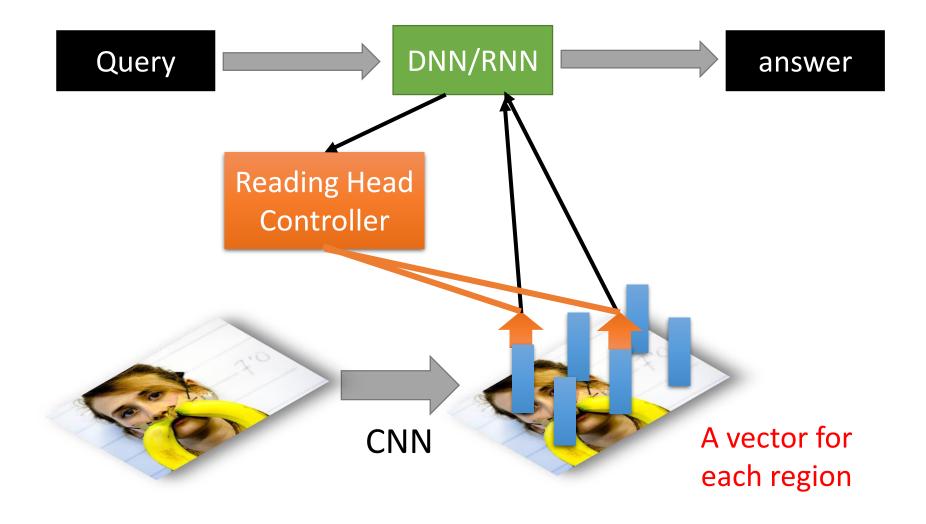
Keras has example: https://github.com/fchollet/keras/blob/master/examples/ba bi_memnn.py

Visual Question Answering



source: http://visualqa.org/

Visual Question Answering



Speech Question Answering

- TOEFL Listening Comprehension Test by Machine
- Example:

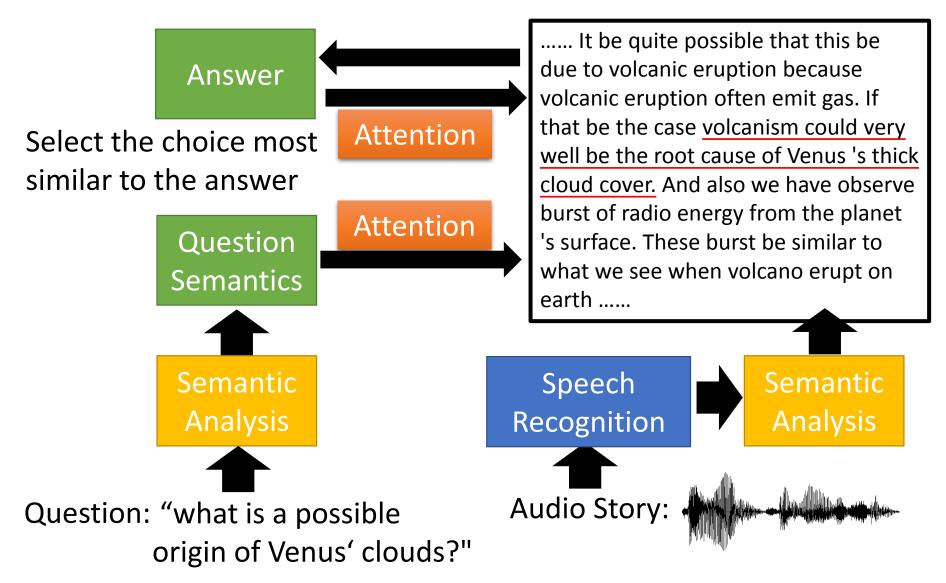
Audio Story: (The original story is 5 min long.) Question: "What is a possible origin of Venus' clouds?" Choices:

(A) gases released as a result of volcanic activity

- (B) chemical reactions caused by high surface temperatures
- (C) bursts of radio energy from the plane's surface
- (D) strong winds that blow dust into the atmosphere

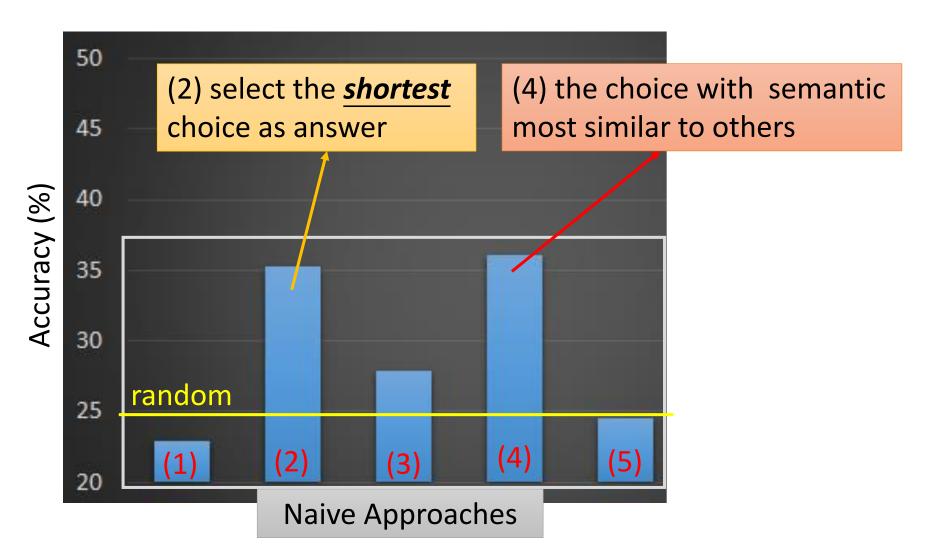
Model Architecture

Everything is learned from training examples

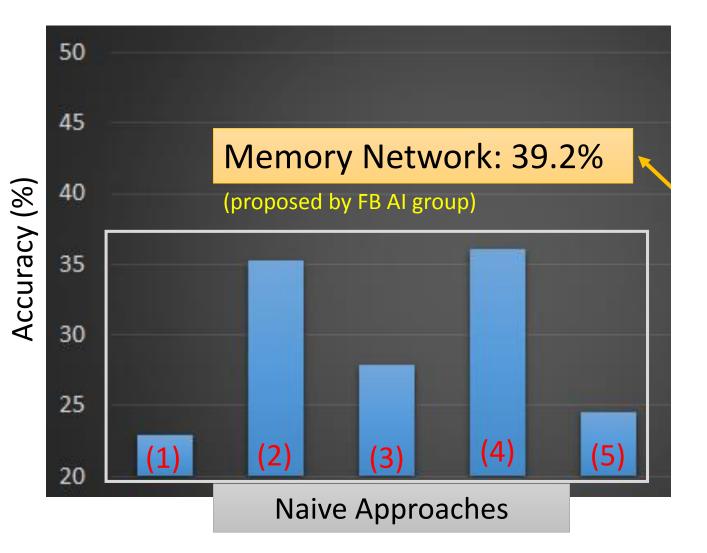


Simple Baselines

Experimental setup:717 for training,124 for validation, 122 for testing

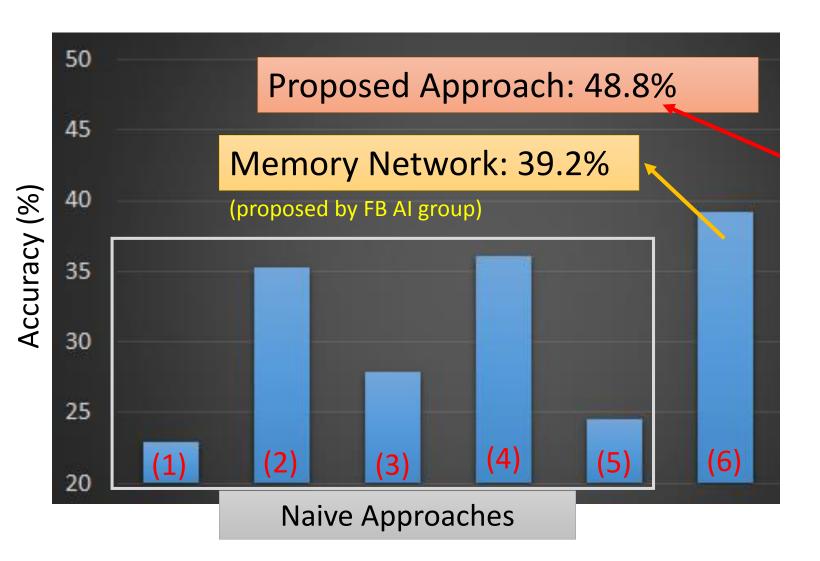


Memory Network



Proposed Approach

[Tseng & Lee, Interspeech 16] [Fang & Hsu & Lee, SLT 16]



To Learn More

- The Unreasonable Effectiveness of Recurrent Neural Networks
 - http://karpathy.github.io/2015/05/21/rnneffectiveness/
- Understanding LSTM Networks
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep & Structured

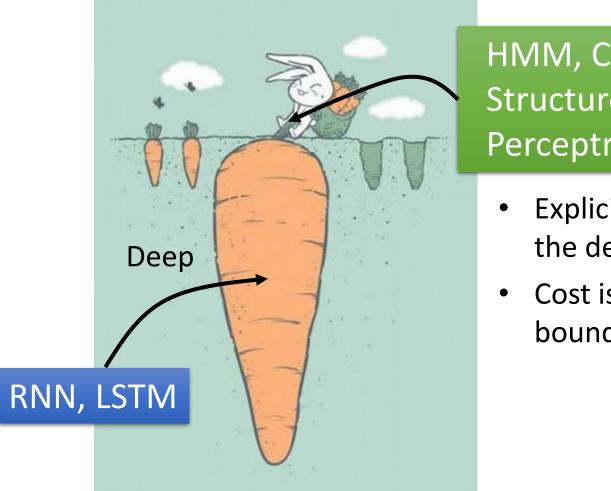
RNN v.s. Structured Learning

- RNN, LSTM
 - Unidirectional RNN does not consider the whole sequence
 - Cost and error not always related
 - Deep

- HMM, CRF, Structured Perceptron/SVM
 - Using Viterbi, so consider the whole sequence
 - How about **Bidirectional RNN?**
 - Can explicitly consider the label dependency 💹

 Cost is the upper bound of error

Integrated Together

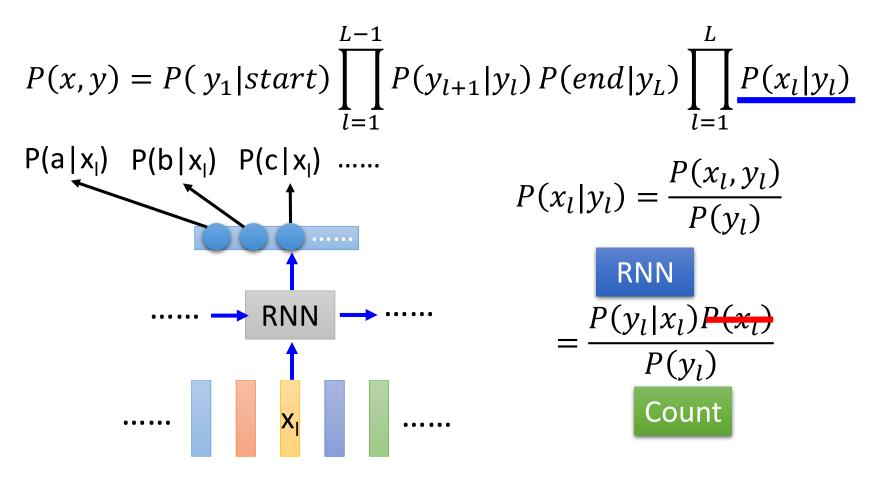


HMM, CRF, Structured Perceptron/SVM

- **Explicitly model** the dependency
- Cost is the upper bound of error

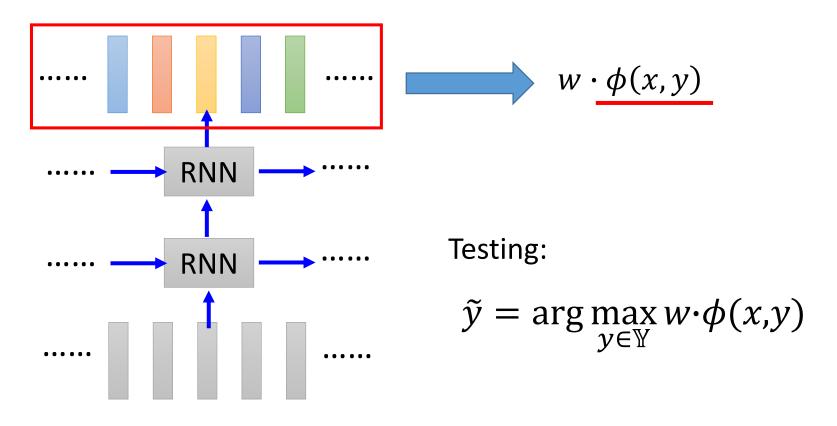
Integrated together

Speech Recognition: CNN/LSTM/DNN + HMM

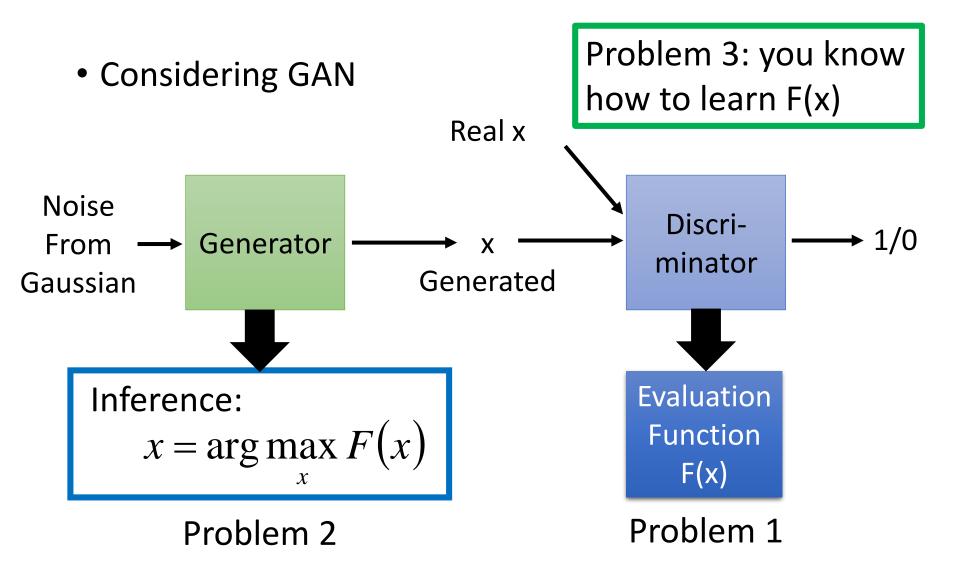


Integrated together

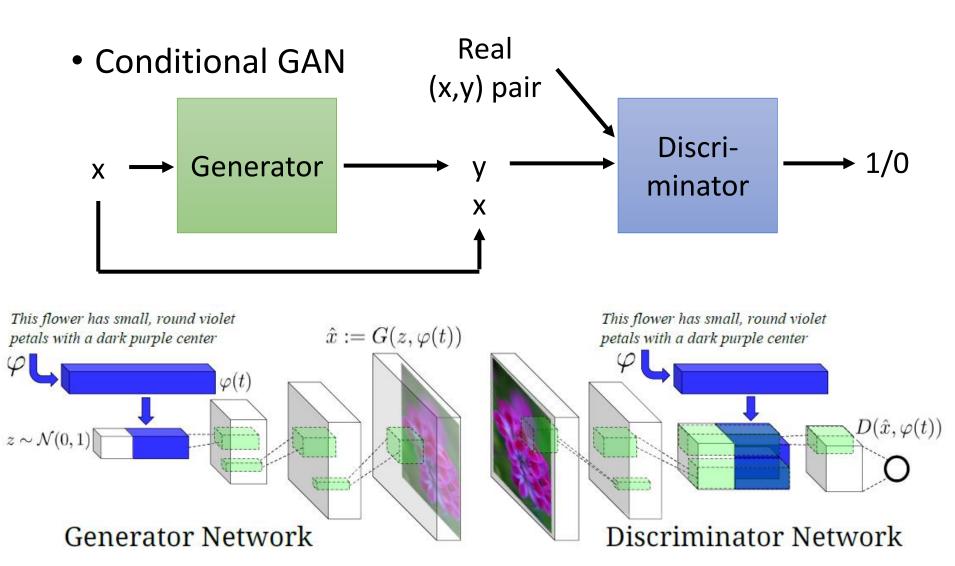
 Semantic Tagging: Bi-directional LSTM + CRF/Structured SVM



Is structured learning practical?



Is structured learning practical?



Sounds crazy? Deep and Structured will be the future. People do think in this way ...

- Connect Energy-based model with GAN:
 - A Connection Between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models
 - Deep Directed Generative Models with Energy-Based Probability Estimation
 - ENERGY-BASED GENERATIVE ADVERSARIAL NETWORKS
- Deep learning model for inference
 - Deep Unfolding: Model-Based Inspiration of Novel Deep Architectures
 - Conditional Random Fields as Recurrent Neural Networks

Machine learning and having it deep and structured (MLDS)

- •和 ML 的不同
 - 在這學期 ML 中有提過的內容 (DNN, CNN ...),在 MLDS 中不再重複,只做必要的復習
- 教科書: "Deep Learning" (<u>http://www.deeplearningbook.org/</u>)
 - Part II 是講 deep learning 、Part III 就是講 structured learning
- Part II: Modern Practical Deep Networks
 - 6 Deep Feedforward Networks
 - 7 Regularization for Deep Learning
 - <u>8 Optimization for Training Deep Models</u>
 - 9 Convolutional Networks
 - 10 Sequence Modeling: Recurrent and Recu
 - <u>11 Practical Methodology</u>
 - <u>12 Applications</u>

- <u>Part III: Deep Learning Research</u>
 - 13 Linear Factor Models
 - <u>14 Autoencoders</u>
 - 15 Representation Learning
 - <u>16 Structured Probabilistic Models for Deep Learning</u>
 - <u>17 Monte Carlo Methods</u>
 - 18 Confronting the Partition Function
 - <u>19 Approximate Inference</u>
 - 20 Deep Generative Models

Machine learning and having it deep and structured (MLDS)

- •所有作業都2~4人一組,可以先組好隊後一起來修
- MLDS 的作業和之前不同
 - RNN (把之前 MLDS 的三個作業合為一個)、Attentionbased model、 Deep Reinforcement Learning、 Deep Generative Model、 Sequence-to-sequence learning
- MLDS 初選不開放加簽,以組為單位加簽,作業0的內容 是做一個 DNN (可用現成套件)