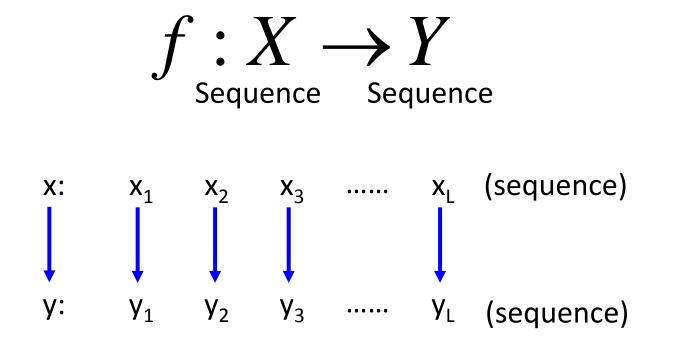
Sequence Labeling Problem

Sequence Labeling



Application

- Name entity recognition
 - Identifying names of people, places, organizations, etc. from a sentence
 - Harry Potter is a student of Hogwarts and lived on Privet Drive.
 - people, organizations, places, not a name entity

Can be difficult ...

Ref:

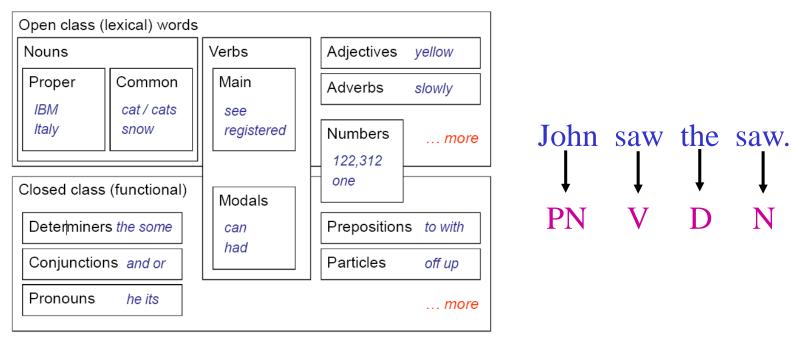
https://www.ptt.cc/bbs/JinYong/M. 1258625573.A.DC4.html

Ref: https://www.ptt.cc/bbs/JinYong/M. 1195128035.A.31A.html

Example Task

POS tagging

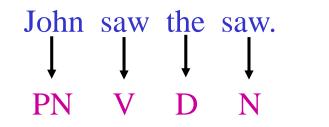
• Annotate each word in a sentence with a part-of-speech.



Useful for subsequent syntactic parsing and word sense disambiguation, etc.

Example Task

POS tagging



The problem cannot be solved without considering the sequences.

- "saw" is more likely to be a verb V rather than a noun N
- However, the second "saw" is a noun N because a noun N is more likely to follow a determiner.

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

HMM

• How you generate a sentence?

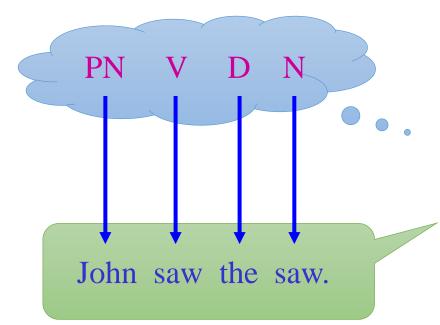
Step 1

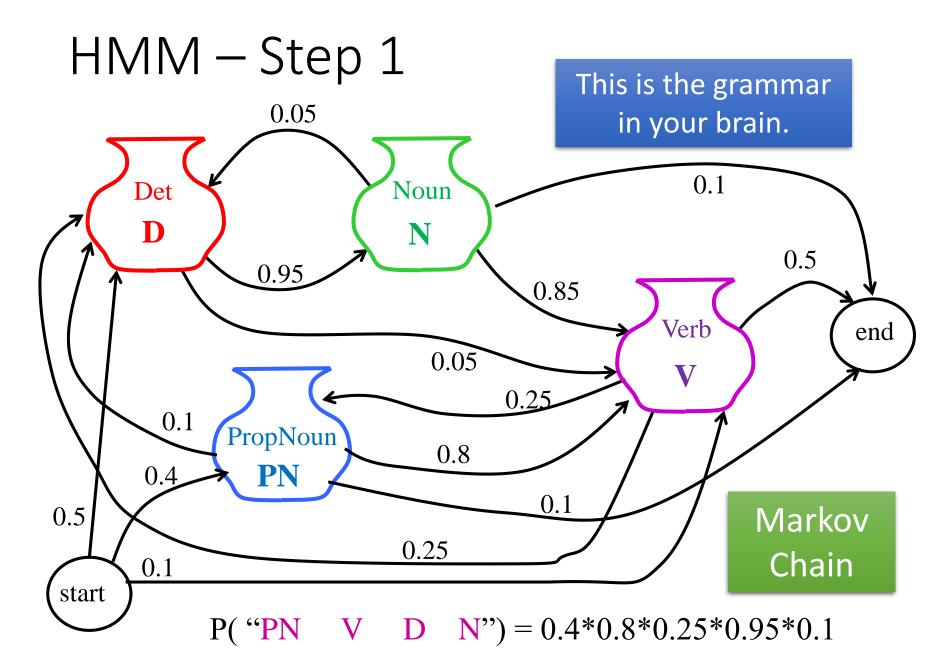
- Generate a POS sequence
- Based on the grammar

Step 2

- Generate a sentence based on the POS sequence
- Based on a dictionary

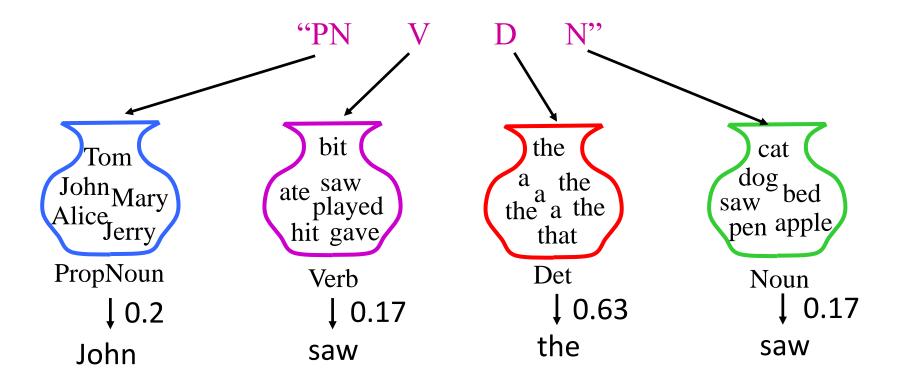
Just the assumption of HMM





[Slide credit: Raymond J. Mooney]

HMM – Step 2



P("John saw the saw" | "PN V D N") = 0.2*0.17*0.63*0.17

HMM How about P(x,y)=P(x)P(y|x)?

x: John saw the saw.

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

y: start $\rightarrow PN \rightarrow V \rightarrow D \rightarrow N \rightarrow end$

P(x,y)=P(y)P(x|y)

 $P(y) = P(PN|start) \qquad P(x|y) = P(John|PN) \\ \times P(V|PN) \qquad \times P(saw|V) \\ \times P(D|V) \qquad \times P(the|D) \\ \times P(N|D) \qquad \times P(saw|N)$

HMM

x: John saw the saw.
$$x = x_1, x_2 \cdots x_L$$

y: PN V D N $y = y_1, y_2 \cdots y_L$

P(x,y)=P(y)P(x|y)

$$\frac{\text{Step 1}}{P(y) = P(y_1 | \text{start}) \times \prod_{l=1}^{L-1} P(y_{l+1} | y_l) \times P(\text{end} | y_l)}{\text{Transition probability}}$$

$$\frac{\text{Step 2}}{P(x|y) = \prod_{l=1}^{L} P(x_l | y_l) \quad \text{Emission probability}}$$

HMM – Estimating the probabilities

- How can I know P(V|PN), P(saw|V)?
- Obtaining from training data

Training Data:

 $\begin{array}{l} (x^1, \hat{y}^1) & 1 \mbox{ Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/, will/MD join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ director/NN Nov./NNP 29/CD ./. \\ (x^2, \hat{y}^2) & 2 \mbox{ Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./. \\ (x^3, \hat{y}^3) & 3 \mbox{ Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./. \\ \end{array}$

HMM
- Estimating the probabilities

$$P(x,y) = P(y_{1}|start) \prod_{l=1}^{L-1} P(y_{l+1}|y_{l}) P(end|y_{L}) \prod_{l=1}^{L} P(x_{l}|y_{l})$$

$$\frac{P(y_{l+1} = s'|y_{l} = s)}{(s \text{ and } s' \text{ are tags})} = \frac{count(s \to s')}{count(s)}$$

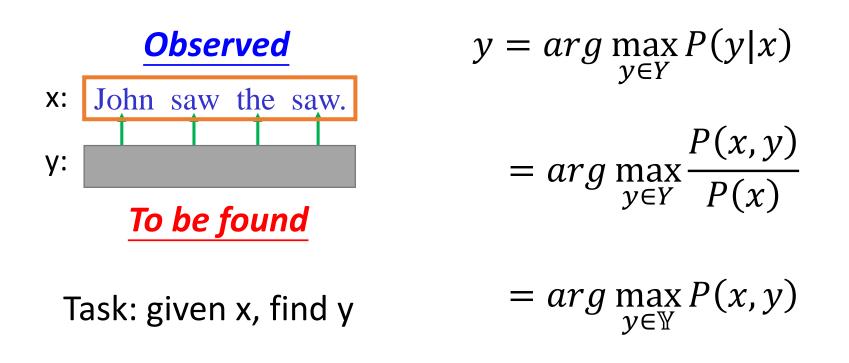
$$\frac{P(x_{l} = t|y_{l} = s)}{(s \text{ is tag, and } t \text{ is word})} = \frac{count(s \to t)}{count(s)}$$
So simple \textcircled{S}

Different from what you learned in DSP?

Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Hidden% 20(v7).ecm.mp4/index.html

HMM – How to do POS Tagging?

• We can compute P(x,y)

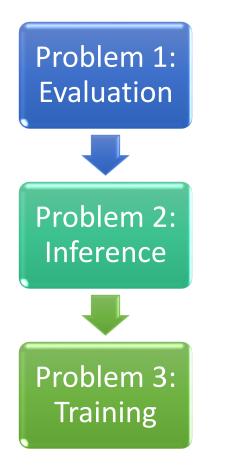


HMM – Viterbi Algorithm

 $\tilde{y} = \arg \max_{y \in \mathbb{Y}} P(x, y)$

- Enumerate all possible y
 - Assume there are |S| tags, and the length of sequence y is L
 - There are $|S|^L$ possible y
- Viterbi algorithm
 - Solve the above problem with complexity O(L|S|²)

HMM - Summary



F(x,y)=P(x,y)=P(y)P(x | y)

$$\tilde{y} = \arg \max_{y \in \mathbb{Y}} P(x, y)$$

P(y) and P(x | y) can be simply obtained from training data

• Inference:

$$\tilde{y} = \arg \max_{y \in \mathbb{Y}} P(x, y)$$

• To obtain correct results ...

 $(x, \hat{y}): P(x, \hat{y}) > \underline{P(x, y)} \quad \text{Can HMM guarantee that?}$ not necessarily small $\begin{array}{rcl} x_{l} = a & x_{l} = c \\ 1/2 & 1/2 \\ P(V|N) = 9/10 & P(D|N) = 1/10 & \dots \end{array}$

 $y_{|-1} = N$

x_i=a

P(a|V)=1/2 P(a|D)=1

• Inference:

$$\tilde{y} = \arg \max_{y \in \mathbb{Y}} P(x, y)$$

• To obtain correct results ...

 $(x, \hat{y}): P(x, \hat{y}) > P(x, y)$ Can HMM guarantee that? not necessarily small

Transition probability:

P(V|N)=9/10 P(D|N)=1/10

Emission probability:

P(a|V)=1/2 P(a|D)=1

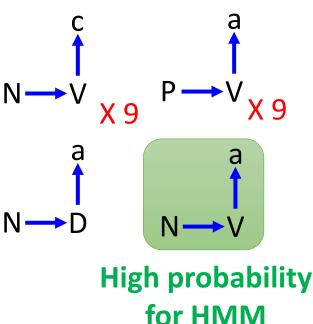
 $x_{l}=a$ $P(x_{l} | y_{l})$ $y_{l-1}=N \longrightarrow y_{l}=? \bigvee$ $P(y_{l} | y_{l-1})$

- Inference: $\begin{aligned} y_{l-1} = N & \longrightarrow & y_l = ? & \\ P(y_l | y_{l-1}) & P(y_l | y_{l-1}) & \\ \tilde{y} = \arg \max_{y \in \mathbb{Y}} P(x, y) & \end{aligned}$
- To obtain correct results ...

 $(x, \hat{y}): P(x, \hat{y}) > P(x, y)$ Can HMM guarantee that? not necessarily small P→V_{X9} Transition probability: x 9 P(V|N)=9/10 P(D|N)=1/10 **Emission probability:** P(a|V)=1/2 P(a|D)=1 **High probability** for HMM

x_I=a

- The (x,y) never seen in the training data can have large probability P(x,y).
- Benefit:
 - When there is only little training data
 - More complex model can deal with this problem
 - However, CRF can deal with this problem based on the same model



Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

$P(x,y) \propto exp(w \cdot \phi(x,y))$

→ $\phi(x, y)$ is a feature vector. What does it look like? → w is a weight vector to be learned from training data → $exp(w \cdot \phi(x, y))$ is always positive, can be larger than 1

$$P(y|x) = \frac{P(x,y)}{\sum_{y'} P(x,y')} \quad P(x,y) = \frac{exp(w \cdot \phi(x,y))}{R}$$
$$= \frac{exp(w \cdot \phi(x,y))}{\sum_{y' \in \mathbb{Y}} exp(w \cdot \phi(x,y'))} = \frac{exp(w \cdot \phi(x,y))}{Z(x)}$$

P(x,y) for CRF

 $P(x, y) \propto exp(w \cdot \phi(x, y))$ very different from HMM?

In HMM: $P(x,y) = P(y_1|start) \prod_{l=1}^{-1} P(y_{l+1}|y_l) P(end|y_l) \prod_{l=1}^{L} P(x_l|y_l)$ logP(x, y) $= logP(y_{1}|start) + \sum_{l=1}^{L-1} logP(y_{l+1}|y_{l}) + logP(end|y_{L})$ $+\sum_{logP(x_l|y_l)}$

$$P(x,y) \text{ for CRF}$$

$$logP(x,y) = logP(y_1|start) + \sum_{l=1}^{L-1} logP(y_{l+1}|y_l) + logP(end|y_L)$$

$$+ \sum_{l=1}^{L} logP(x_l|y_l)$$
Log probability of word t given tag s
$$\sum_{l=1}^{L} logP(x_l|y_l) = \sum_{s,t} logP(t|s) \times N_{s,t}(x,y)$$
Enumerate all possible tags s and all possible word t

P(x,y) for CRF

$$\sum_{l=1}^{logP(x_l|y_l)} = \frac{logP(the|D)}{logP(the|D)} + \frac{logP(dog|N)}{logP(ate|V)} + \frac{logP(the|D)}{logP(homework|N)} + \frac{logP(the|D)}{logP(homework|N)}$$

 $= logP(the|D) \times 2 + logP(dog|N) \times 1 + logP(ate|V) \times 1 + logP(homework|N) \times 1$

$$= \sum_{s,t} logP(t|s) \times N_{s,t}(x,y)$$

$$P(x,y) \text{ for CRF}$$

$$logP(x,y) = logP(y_{1}|start) + \sum_{l=1}^{L-1} logP(y_{l+1}|y_{l}) + logP(end|y_{L})$$

$$+ \sum_{l=1}^{L} logP(x_{l}|y_{l})$$

$$logP(y_{1}|start) = \sum_{s} logP(s|start) \times N_{start,s}(x,y)$$

$$\sum_{l=1}^{L-1} logP(y_{l+1}|y_{l}) = \sum_{s,s'} logP(s'|s) \times N_{s,s'}(x,y)$$

$$logP(end|y_{L}) = \sum_{s} logP(end|s) \times N_{s,end}(x,y)$$

$$P(x,y) \text{ for CRF}$$

$$logP(x,y) = \sum_{s,t} logP(t|s) \times N_{s,t}(x,y) = \begin{bmatrix} \vdots & \vdots & 0 \\ logP(t|s) & \vdots & 0 \\ \vdots & 0 \\ s,t & 0 \\ s,t$$

$$P(x,y) \text{ for CRF}$$

$$P(x,y) \stackrel{\boldsymbol{\bigotimes}}{\leftarrow} exp(w \cdot \phi(x,y)) \stackrel{\boldsymbol{\bigotimes}}{\rightarrow} any \text{ constraints during training}$$

$$= \begin{bmatrix} N_{s,t}(x,y) \\ \vdots \\ N_{start,s}(x,y) \\ \vdots \\ N_{start,s}(x,y) \\ \vdots \\ N_{s,s'}(x,y) \\ \vdots \\ N_{s,end}(x,y) \end{bmatrix} \qquad w = \begin{bmatrix} w_{s,t} \\ \vdots \\ w_{start,s} \\ \vdots \\ w_{s,s'} \\ \vdots \\ w_{s,end} \\ \vdots \end{bmatrix} \quad bogP(x_i = t | y_i = s) \\ P(x_i = t | y_i = s) = e^{w_{s,t}} \\ e^{w$$

Feature Vector

- What does $\phi(x, y)$ look like?
 - x: The dogatethe homework. \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow y: DNVD
- $\phi(x, y)$ has two parts
 - Part 1: relations between tags and words
 - Part 2: relations between tags If there are |S| possible tags, |L| possible words
 Part 1 has |S| X |L| dimensions

Part 1	Value
D, the	2
D, dog	0
D, ate	0
D, homework	0
N, the	0
N, dog	1
N, ate	0
N, homework	1
V, the	0
V, dog	0
V, ate	1
V, homework	0

Feature Vector

• What does $\phi(x, y)$ look like?

- $\phi(x, y)$ has two parts
 - Part 1: relations between tags and words

Part 2: relations between tags

 $N_{s,s'}(x, y)$: Number of tags s and s' consecutively in (x, y)

	Part 2	Value
$N_{D,D}(x,y)$	\rightarrow D, D	0
$N_{D,N}(x,y)$	\rightarrow D, N	2
	D, V	0
1	N, D	0
ework.	N <i>,</i> N	0
ţ	N, V	1
N		
	V, D	1
ags	V, N	0
	V, V	0
ags		
	Start, D	1
s and s'	Start, N	0
(x, y)		
	End, D	0
	End, N	1

Feature Vector

• What does $\phi(x, y)$ look like?

x: The dogatethe homework. \downarrow \downarrow \downarrow \downarrow y: DNVDN

- $\phi(x, y)$ has two parts
 - Part 1: relations between tags and words

Part 2: relations between tags

If there are |S| possible tags, |S| X |S| + 2 |S| dimensions

Define any
$$\phi(x, y)$$
 you like!

Part 2	Value
D, D	0
D, N	2
D, V	0
•••••	
N, D	0
N, N	0
N, V	1
V, D	1
V, N	0
V, V	0
Start, D	1
Start, N	0
•••••	
End, D	0
End, N	1

CRF – Training Criterion

 $P(y|x) = \frac{P(x,y)}{\sum_{y'} P(x,y')}$

uon l'observe

- Given training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \cdots, (x^N, \hat{y}^N)\}$
- Find the weight vector w^{*} maximizing objective function O(w):

$$w^* = \arg \max_{w} O(w) \quad O(w) = \sum_{n=1}^{N} log P(\hat{y}^n | x^n)$$

$$logP(\hat{y}^{n}|x^{n}) = logP(x^{n}, \hat{y}^{n}) - log\sum_{y'} P(x^{n}, y')$$

Maximize what
we observe
Minimize what we
den't observe

CRF – Gradient Ascent

Gradient descent

Find a set of parameters θ minimizing cost function $C(\theta)$

$$\theta \to \theta - \eta \nabla C(\theta)$$

Opposite direction of the gradient

Gradient Ascent

Find a set of parameters θ maximizing objective function $O(\theta)$

$$\theta \to \theta + \eta \nabla O(\theta)$$

The same direction of the gradient

CRF - Training

$$O(w) = \sum_{n=1}^{N} log P(\hat{y}^n | x^n) = \sum_{n=1}^{N} O^n(w)$$

Compute

$$\nabla O^{n}(w) = \begin{bmatrix} \vdots \\ \partial O^{n}(w) / \partial w_{s,t} \\ \vdots \\ \partial O^{n}(w) / \partial w_{s,s'} \end{bmatrix}$$
Let me show $\frac{\partial O^{n}(w)}{\partial w_{s,t}}$

$$\frac{\partial O^{n}(w)}{\partial w_{s,s'}}$$
 very similar

CRF - Training

$$P(y'|x^{n}) = \frac{exp(w \cdot \phi(x^{n}, y'))}{Z(x^{n})}$$

$$w_{s,t} \to w_{s,t} + \eta \frac{\partial O(w)}{\partial w_{s,t}}$$
After some math

$$\frac{\partial O^{n}(w)}{\partial w_{s,t}} = \underline{N_{s,t}(x^{n}, \hat{y}^{n})} - \sum_{y'} P(y'|x^{n}) N_{s,t}(x^{n}, y')$$

12

If word t is labeled by tag s in training examples (x^n, \hat{y}^n) , then increase $w_{s,t}$

If word t is labeled by tag s in (x^n, y') which not in training examples, then decrease $w_{s,t}$

$$P(y'|x^n) = \frac{exp(w \cdot \phi(x^n, y'))}{Z(x^n)}$$

CRF - Training

$$\nabla O(w) = \phi(x^n, \hat{y}^n) - \sum_{y'} P(y'|x^n) \phi(x^n, y')$$

Stochastic Gradient Ascent

Random pick a data (x^n, \hat{y}^n)

$$w \to w + \eta \left(\phi(x^n, \hat{y}^n) - \sum_{y'} P(y'|x^n) \phi(x^n, y') \right)$$

CRF – Inference

Inference

$$y = \arg \max_{y \in Y} P(y|x) = \arg \max_{y \in Y} P(x,y)$$

 $= \arg \max_{y \in Y} w \cdot \phi(x, y)$ Done by Viterbi as well

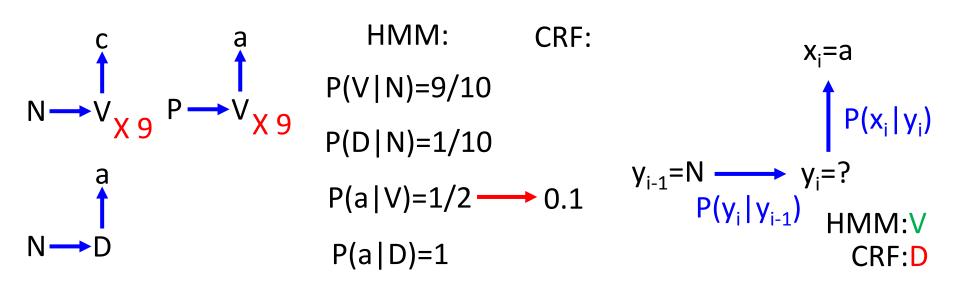
 $P(x, y) \propto exp(w \cdot \phi(x, y))$

CRF v.s. HMM

• CRF: increase $P(x, \hat{y})$, decrease P(x, y')

• To obtain correct results ... $(x, \hat{y}): P(x, \hat{y}) > P(x, y)$ HMM does not do that

CRF more likely to achieve that than HMM

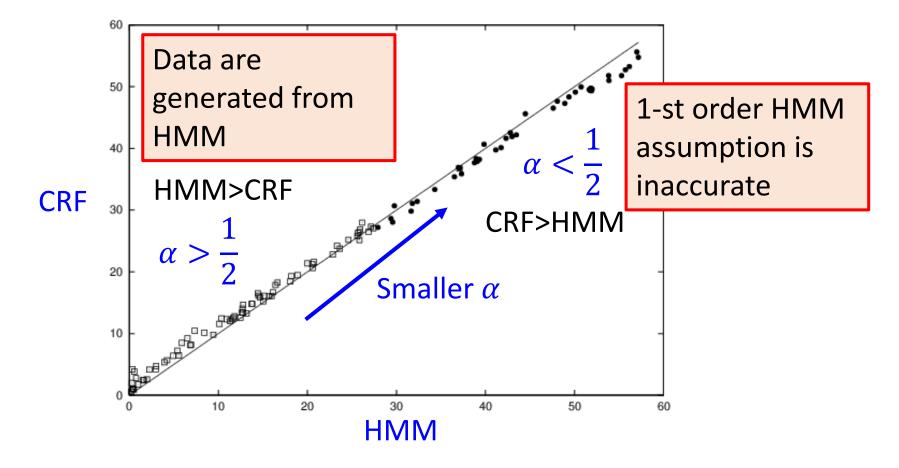


Synthetic Data

- $x_i \in \{a-z\}, y_i \in \{A-E\}$
- Generating data from a mixed-order HMM
 - Transition probability:
 - $\alpha P(y_i|y_{i-1}) + (1 \alpha)P(y_i|y_{i-1}, y_{i-2})$
 - Emission probability:
 - $\bullet \, \alpha P(x_i|y_i\,) + (1-\alpha)P(x_i|y_i,x_{i-1})$
- Comparing HMM and CRF
 - All the approaches only consider 1-st order information
 - Only considering the relation of y_{i-1} and y_i
 - In general, all the approaches have worse performance with smaller α

Ref: John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", ICML, 2001

Synthetic Data: CRF v.s. HMM



CRF - Summary

Problem 1:
Evaluation

$$F(x, y) = P(y|x) = \frac{exp(w \cdot \phi(x, y))}{\sum_{y' \in \mathbb{Y}} exp(w \cdot \phi(x, y'))}$$
Problem 2:
Inference

$$\tilde{y} = \arg\max_{y \in \mathbb{Y}} P(y|x) = \arg\max_{y \in \mathbb{Y}} w \cdot \phi(x, y)$$

$$w^* = \arg\max_{w} \prod_{n=1}^{N} P(\hat{y}^n | x^n)$$

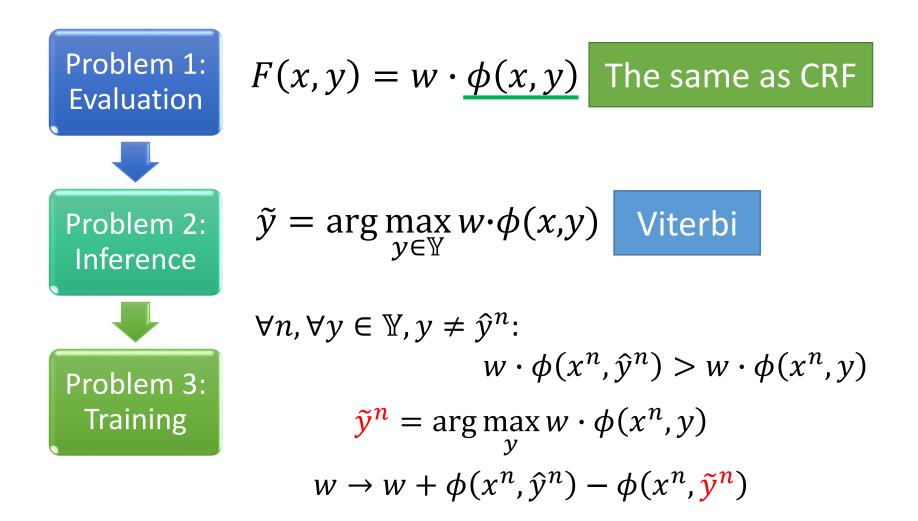
$$w^* = \arg\max_{w} (\phi(x^n, \hat{y}^n) - \sum_{y'} P(y' | x^n) \phi(x^n, y'))$$

Hidden Markov Model (HMM)

Conditional Random Field (CRF)

Structured Perceptron/SVM

Structured Perceptron



Structured Perceptron v.s. CRF

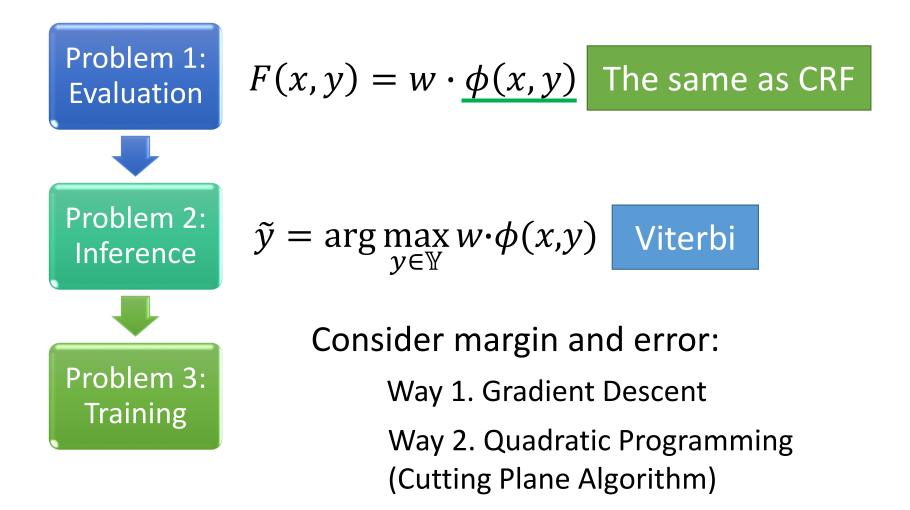
• Structured Perceptron

$$\tilde{y}^{n} = \arg \max_{y} w \cdot \phi(x^{n}, y)$$
$$w \to w + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})$$
Hard

• CRF

$$w \to w + \eta \left(\frac{\phi(x^n, \hat{y}^n)}{y'} - \frac{\sum_{y'} P(y'|x^n) \phi(x^n, y')}{y'} \right)$$
Soft

Structured SVM



Structured SVM – Error Function

- Error function: $\Delta(\hat{y}^n, y)$
 - $\Delta(\hat{y}^n, y)$: Difference between y and \hat{y}^n
 - Cost function of structured SVM is the upper bound of $\Delta(\hat{y}^n,y)$
 - Theoretically, $\Delta(y, \hat{y}^n)$ can be any function you like
 - However, you need to solve Problem 2.1

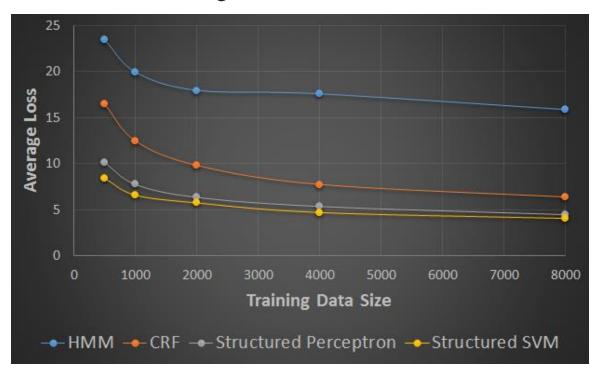
•
$$\bar{y}^n = \arg\max_{y} [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)]$$

Example	ŷ:	A	Т	Т	С	G	G	G	G	A	Т
$\Delta(\hat{y}, y) = 3/10$	y:	A	Т	Т	А	G	G	A	G	А	A

In this case, problem 2.1 can be solved by Viterbi Algorithm

Performance of Different Approaches

POS Tagging Ref: Nguyen, Nam, and Yunsong Guo. "Comparisons of sequence labeling algorithms and extensions." *ICML*, 2007.



Name Entity Recognition

Method	HMM	CRF	Perceptron	SVM
Error	9.36	5.17	5.94	5.08

Ref: Tsochantaridis, Ioannis, et al. "Large margin methods for structured and interdependent output variables." *Journal of Machine Learning Research*. 2005.

Concluding Remarks

	Problem 1	Problem 2	Problem 3
HMM	F(x,y) = P(x,y)	Viterbi	Just count
CRF	F(x,y) = P(y x)	Viterbi	Maximize $P(\hat{y} x)$
Structured Perceptron	$F(x,y) = w \cdot \phi(x,y)$ (not a probability)	Viterbi	$F(x,\hat{y}) > F(x,y')$
Structured SVM	$F(x, y) = w \cdot \phi(x, y)$ (not a probability)	Viterbi	$F(x, \hat{y}) > F(x, y')$ with margins
Semi- Markov	F(x,y) for x and y with different lengths	Modified Viterbi	Can be the same as CRF, structured perceptron or SVM

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015/Structured%20Lecture/Segmental %20CRF%20(v8).fsp/index.html (請用 IE 開啟)

The above approaches can combine with deep learning to have better performance.

Next lecture: Recurrent Neural Network (RNN)

Acknowledgement

- 感謝 曹爗文 同學於上課時發現投影片上的錯誤
- 感謝 Ryan Sun 來信指出投影片上的錯誤

Appendix

$$CRF - Training$$

$$O^{n}(w) = \log \frac{exp(w \cdot \phi(x^{n}, \hat{y}^{n}))}{Z(x^{n})} \quad Z(x^{n}) = \sum_{y'} exp(w \cdot \phi(x^{n}, y'))$$

$$= \frac{w \cdot \phi(x^{n}, \hat{y}^{n})}{-\log Z(x^{n})}$$

$$\frac{\partial O^{n}(w)}{\partial w_{s,t}} = \frac{N_{s,t}(x^{n}, \hat{y}^{n})}{\sqrt{1}}$$

$$W \cdot \phi(x^{n}, \hat{y}^{n})$$

$$W \cdot \phi(x^{n}, \hat{y}^{n})$$

$$W \cdot \phi(x^{n}, \hat{y}^{n})$$

$$= \sum_{s,t} w_{s,t} \cdot N_{s,t}(x^{n}, \hat{y}^{n})$$

$$= \sum_{s,t'} w_{s,s'} \cdot N_{s,s'}(x^{n}, \hat{y}^{n})$$

CRF - Training

$$O^{n}(w) = \log \frac{exp(w \cdot \phi(x^{n}, \hat{y}^{n}))}{Z(x^{n})} \quad Z(x^{n}) = \sum_{y'} exp(w \cdot \phi(x^{n}, y'))$$

$$= \frac{w \cdot \phi(x^{n}, \hat{y}^{n})}{Z(x^{n})} - \frac{\log Z(x^{n})}{\log Z(x^{n})}$$

$$\frac{\partial O^{n}(w)}{\partial w_{s,t}} = \frac{N_{s,t}(x^{n}, \hat{y}^{n})}{Z(x^{n})} - \frac{1}{Z(x^{n})} \frac{\partial Z(x^{n})}{\partial w_{s,t}}$$

$$= \sum_{y'} \frac{exp(w \cdot \phi(x^{n}, y'))}{Z(x^{n})} N_{s,t}(x^{n}, y') = \sum_{y'} P(y'|x^{n}) N_{s,t}(x^{n}, y')$$

$$\frac{\partial Z(x^{n})}{\partial w_{s,t}} = \sum_{y'} exp(w \cdot \phi(x^{n}, y')) N_{s,t}(x^{n}, y')$$

CRF v.s. HMM

- Define $\phi(x, y)$ you like
 - For example, besides the features just described, there are some useful extra features in POS tagging.
 - Number of times a capitalized word is labeled as Noun
 - Number of times a word end with ing is labeled as Noun
- Can you consider this kind of features by HMM? Too sparse... $P(x_i = A, x_i \text{ is capitalized}, x_i \text{ end with ing, ...} | y_i = N)$

Method 1:

 $P(x_i = A | y_i = N)P(x_i \text{ is capitalized} | y_i = N).....$ Inaccurate assumption

Method 2. Give the distribution some assumptions?