## Semi-supervised Learning

#### Introduction

- Supervised learning:  $\{(x^r, \hat{y}^r)\}_{r=1}^R$ 
  - E.g. $x^r$ : image,  $\hat{y}^r$ : class labels
- Semi-supervised learning:  $\{(x^r, \hat{y}^r)\}_{r=1}^R, \{x^u\}_{u=R}^{R+U}$ 
  - A set of unlabeled data, usually U >> R
  - Transductive learning: unlabeled data is the testing data
  - Inductive learning: unlabeled data is not the testing data
- Why semi-supervised learning?
  - Collecting data is easy, but collecting "labelled" data is expensive
  - We do semi-supervised learning in our lives

# Why semi-supervised learning helps?

Labelled data





Unlabeled data



(Image of cats and dogs without labeling)

# Why semi-supervised learning helps?



The distribution of the unlabeled data tell us *something*.

Usually with some assumptions

#### Outline

## Semi-supervised Learning for Generative Model

Low-density Separation Assumption

**Smoothness Assumption** 

**Better Representation** 

Semi-supervised Learning for Generative Model

#### Supervised Generative Model

- Given labelled training examples  $x^r \in C_1, C_2$ 
  - looking for most likely prior probability P(C<sub>i</sub>) and classdependent probability P(x|C<sub>i</sub>)
  - P(x|C<sub>i</sub>) is a Gaussian parameterized by  $\mu^i$  and  $\Sigma$



#### Semi-supervised Generative Model

- Given labelled training examples  $x^r \in C_1, C_2$ 
  - looking for most likely prior probability P(C<sub>i</sub>) and classdependent probability P(x|C<sub>i</sub>)
  - P(x|C<sub>i</sub>) is a Gaussian parameterized by  $\mu^i$  and  $\Sigma$



The unlabeled data  $x^u$  help re-estimate  $P(C_1)$ ,  $P(C_2)$ ,  $\mu^1$ ,  $\mu^2$ ,  $\Sigma$ 

#### Semi-supervised Generative Model

The algorithm converges eventually, but the initialization influences the results.

- Initialization: $\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$
- Step 1: compute the posterior probability of unlabeled data

 $P_{\theta}(C_1|x^u)$  Depending on model  $\theta$ 

Back to step 1

Step 2: update model

$$P(C_1) = \frac{N_1 + \sum_{x^u} P(C_1 | x^u)}{N}$$
  

$$N: \text{ total number of examples}$$
  

$$N_1: \text{ number of examples}$$
  

$$belonging \text{ to } C_1$$
  

$$\mu^1 = \frac{1}{N_1} \sum_{x^r \in C_1} x^r + \frac{1}{\sum_{x^u} P(C_1 | x^u)} \sum_{x^u} P(C_1 | x^u) x^u \dots$$

$$\theta = \{P(C_1), P(C_2), \mu^1, \mu^2, \Sigma\}$$

Maximum likelihood with labelled data Closed-form solution

$$logL(\theta) = \sum_{x^r} logP_{\theta}(x^r, \hat{y}^r) \qquad \begin{array}{l} P_{\theta}(x^r, \hat{y}^r) \\ = P_{\theta}(x^r | \hat{y}^r) P(\hat{y}^r) \end{array}$$

Maximum likelihood with labelled + unlabeled data

$$logL(\theta) = \sum_{x^{r}} logP_{\theta}(x^{r}, \hat{y}^{r}) + \sum_{x^{u}} logP_{\theta}(x^{u}) \qquad \begin{array}{l} \text{Solved} \\ \text{iteratively} \end{array}$$

$$P_{\theta}(x^{u}) = P_{\theta}(x^{u}|C_{1})P(C_{1}) + P_{\theta}(x^{u}|C_{2})P(C_{2})$$

$$(x^{u} \text{ can come from either } C_{1} \text{ and } C_{2})$$

### Semi-supervised Learning Low-density Separation



#### Self-training

- Given: labelled data set =  $\{(x^r, \hat{y}^r)\}_{r=1}^R$ , unlabeled data set =  $\{x^u\}_{u=l}^{R+U}$
- Repeat:
  - Train model  $f^*$  from labelled data set

Independent to the model

Regression?

- Apply  $f^*$  to the unlabeled data set
  - Obtain  $\{(x^u, y^u)\}_{u=l}^{R+U}$  Pseudo-label
- Remove <u>a set of data</u> from unlabeled data set, and add them into the labeled data set

How to choose the data set remains open

You can also provide a weight to each data.

#### Self-training

- Similar to semi-supervised learning for generative model
- Hard label v.s. Soft label

Considering using neural network

 $heta^*$  (network parameter) from labelled data



#### **Entropy-based Regularization**



#### **Outlook: Semi-supervised SVM**

**Enumerate all** possible labels for the unlabeled data Find a boundary that can provide the largest margin and least error

Thorsten Joachims, "Transductive Inference for Text Classification using Support Vector Machines", ICML, 1999 Semi-supervised Learning Smoothness Assumption

近朱者赤,近墨者黑 "You are known by the company you keep"

- Assumption: "similar" x has the same  $\hat{y}$
- More precisely:
  - x is not uniform.
  - If  $x^1$  and  $x^2$  are close in a high density region,  $\hat{y}^1$  and  $\hat{y}^2$  are the same.

connected by a high density path

Source of image: http://hips.seas.harvard.edu/files /pinwheel.png



 $x^1$  and  $x^2$  have the same label  $x^2$  and  $x^3$  have different labels



(The example is from the tutorial slides of Xiaojin Zhu.)





正侧面 Source of image: http://www.moehui.com/5833.html/5/

• Classify astronomy vs. travel articles

|             | $d_1$ | $d_3$ | $d_4$ | $d_2$ | ] |             | $d_1$ | $d_3$ | $d_4$ | $d_2$ |
|-------------|-------|-------|-------|-------|---|-------------|-------|-------|-------|-------|
| asteroid    | •     | •     |       |       | ] | asteroid    | ٠     |       |       |       |
| bright      | •     | •     |       |       |   | bright      | •     |       |       |       |
| comet       |       | •     |       |       |   | comet       |       |       |       |       |
| year        |       |       |       |       |   | year        |       |       |       |       |
| zodiac      |       |       |       |       |   | zodiac      |       | •     |       |       |
|             |       |       |       |       |   |             |       |       |       |       |
|             |       |       |       |       |   |             |       |       |       |       |
| airport     |       |       |       |       |   | airport     |       |       | •     |       |
| bike        |       |       |       |       |   | bike        |       |       | •     |       |
| camp        |       |       | •     |       |   | camp        |       |       |       |       |
| yellowstone |       |       | •     | •     |   | yellowstone |       |       |       | •     |
| zion        |       |       |       | •     |   | zion        |       |       |       | •     |

(The example is from the tutorial slides of Xiaojin Zhu.)

• Classify astronomy vs. travel articles

|             | $d_1$ | $d_5$ | $d_6$ | $d_7$ | $d_3$ | $d_4$ | $d_8$ | $d_9$ | $d_2$ |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| asteroid    | •     |       |       |       |       |       |       |       |       |
| bright      | •     | •     |       |       |       |       |       |       |       |
| comet       |       | •     | •     |       |       |       |       |       |       |
| year        |       |       | •     | •     |       |       |       |       |       |
| zodiac      |       |       |       | •     | •     |       |       |       |       |
|             |       |       |       |       |       |       |       |       |       |
|             |       |       |       |       |       |       |       |       |       |
| airport     |       |       |       |       |       | •     |       |       |       |
| bike        |       |       |       |       |       | •     | •     |       |       |
| camp        |       |       |       |       |       | -     | •     | •     |       |
| vellowstone |       |       |       |       |       |       |       | •     | •     |
| zion        |       |       |       |       |       |       |       |       | •     |

(The example is from the tutorial slides of Xiaojin Zhu.)

#### Cluster and then Label



Using all the data to learn a classifier as usual

 How to know x<sup>1</sup> and x<sup>2</sup> are close in a high density region (connected by a high density path)

Represented the data points as a *graph* 

Graph representation is nature sometimes.

E.g. Hyperlink of webpages, citation of papers

Sometimes you have to construct the graph yourself.



# Graph-based Approach The slice - Graph Construction

The image is from the tutorial slides of Amarnag Subramanya and Partha Pratim Talukdar

- Define the similarity  $s(x^i, x^j)$  between  $x^i$  and  $x^j$
- Add edge:
  - K Nearest Neighbor
  - e-Neighborhood





• Edge weight is proportional to  $s(x^i, x^j)$ 

**Gaussian Radial Basis Function:** 

$$s(x^{i}, x^{j}) = exp\left(-\gamma \left\|x^{i} - x^{j}\right\|^{2}\right)$$





The labelled data influence their neighbors.

Propagate through the graph



Define the smoothness of the labels on the graph

 $S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2$  Smaller means smoother For all data (no matter labelled or not)



Define the smoothness of the labels on the graph

$$S = \frac{1}{2} \sum_{i,j} w_{i,j} (y^i - y^j)^2 = y^T L y$$

y: (R+U)-dim vector

$$\boldsymbol{y} = \left[\cdots y^{i} \cdots y^{j} \cdots\right]^{T}$$



Λ

L: (R+U) x (R+U) matrix

**Graph Laplacian** 

L = D

$$W = \begin{bmatrix} 0 & 2 & 3 & 0 \\ 2 & 0 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 0 & 3 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

**つ** 

2

Define the smoothness of the labels on the graph



OUTPUT

smo

smooth

J. Weston, F. Ratle, and R. Collobert, "Deep learning via semi-supervised embedding," ICML, 2008

### Semi-supervised Learning Better Representation

### 去蕪存菁, 化繁為簡

#### Looking for Better Representation

- Find the latent factors behind the observation
- The latent factors (usually simpler) are better representations

observation

Better representation (Latent factor)



#### Reference



edited by Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien

Semi-Supervised Learning

http://olivier.chapelle.cc/ssl-book/

#### Acknowledgement

- 感謝 劉議隆 同學指出投影片上的錯字
- 感謝丁勃雄同學指出投影片上的錯字