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Recurrent Neural Network
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No matter how long the input/output sequence is, 
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Ƙ ŀƴŘ ƘΩ ŀǊŜ ǾŜŎǘƻǊǎ ǿƛǘƘ 
the same dimension



Deep RNN
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Naïve RNN

ÅGiven function f: Ὤȟώ ὪὬȟὼ
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LSTM

c changes slowly

h changes faster

ct is ct-1 added by something

ht and ht-1 can be very different
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LSTM
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LSTM: A Search Space Odyssey 



LSTM: A Search Space Odyssey 

Standard LSTM works well
Simply LSTM: coupling input and forget gate, removing peephole
Forget gate is critical for performance
Output gate activation function is critical



An Empirical Exploration of Recurrent Network 

Architectures

Importance: forget > input > output

Large bias for forget gate is helpful

LSTM-f/ i/o: removing 
forget/input/output gates

LSTM-b: large bias 



An Empirical Exploration of Recurrent Network 

Architectures



Neural Architecture Search with 

Reinforcement Learning

LSTM From Reinforcement Learning



Sequence Generation



Generation

ÅSentences are composed of characters/words

ÅGenerating a character/word at each time by RNN
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x The token generated at the last time step.

(represented by 1-of-N encoding)

Distribution over the token

(sampling from the distribution to 
generate a token)
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Generation

ÅSentences are composed of characters/words

ÅGenerating a character/word at each time by RNN
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y1: P(w|<BOS>)
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Until <EOS> 
is generated 



Generation

ÅTraining
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Training data: ╡ Л

: minimizing cross-entropy



Generation

ÅImages are composed of pixels

ÅGenerating a pixel at each time by RNN

Consider as a sentence

blue red yellow grayΧΧ

Train a RNN based on the 
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Generation - PixelRNN

ÅImages are composed of pixels

3 x 3 images



Conditional 
Sequence Generation



Conditional Generation
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ÅGenerate sentences based on conditions:

Given 
condition:

Caption Generation

Chat-bot
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Conditional Generation

ÅRepresent the input condition as a vector, and consider the 
vector as the input of RNN generator

Image Caption 
Generation
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Conditional Generation

ÅRepresent the input condition as a vector, and consider the 
vector as the input of RNN generator

ÅE.g. Machine translation / Chat-bot

Information of the 
whole sentences

Jointly trainEncoder Decoder

Sequence-to-
sequence learning
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Conditional Generation

U: Hi

U: Hi

M: Hi

M: Hello
M: Hi

M: Hello

Serban, Iulian V., Alessandro Sordoni, YoshuaBengio, Aaron Courville, and Joelle Pineau, 2015 
"Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

https://www.youtube.com/watch?v=e2MpOmyQJw4

Need to consider longer 
context during chatting



Dynamic Conditional Generation
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Machine Translation

ÅAttention-based model
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üCosine similarity of 
z and h

üSmall NN whose input is 
z and h, output a scalar

ü‌ Ὤὡᾀ

Design by yourself

What is                     ? match

Jointly learned 
with other part 
of the network

match
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Machine Translation

ÅAttention-based model
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Machine Translation

ÅAttention-based model
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Machine Translation

ÅAttention-based model
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Machine Translation

ÅAttention-based model
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The same process repeat 
until generating

<EOS>
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Speech Recognition

William Chan,Navdeep Jaitly,Quoc 

V. Le,Oriol Vinyals, ñListen, Attend 

and Spellò, ICASSP, 2016



Image Caption Generation

filter filter filter
filter filter filter

match 0.7

CNN

filter filter filter
filter filter filter

ᾀ

A vector for 
each region



Image Caption Generation

filter filter filter
filter filter filter

CNN

filter filter filter
filter filter filter

A vector for 
each region
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