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More than minimizing reconstruction errpr
More interpretable embedding



What Is good embedding?

AANn embedding should represent the object.
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Typical auteencoder Is a special case
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Adocument is a
sequence of sentences

Seqguential Data

previous
Sklp thought t | got back home <eos>
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| could see the cat on the steps \O
https://papers.nips.cc/paper/595@kipthought-vectors.pdf - n;(t S
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https://arxiv.org/pdf/1803.02893.pdf



Seqguential Data

AContrastive Predictive Coding (CPC)
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https://arxiv.org/pdf/1807.03748.pdf
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Feature Disentangle

Source: https://www.dreamstime.com/illustration/disentangle.html

AAN object contains multiple aspect information
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Feature Disentangle
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Feature Disentangle
- Voice Conversion
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Feature Disentangle
- Voice Conversion

& ©

3 t How are
| . you?
M’W%W — Encoder—
¢
How are you? ¢ How are
N ~ you?
® — Decoder

. e

% t Hello
— Encoder— © %

Hello %

How are you?



Feature Disentangle
- Voice Conversion

AThe same sentence has different impact when it is
said by different people.

Do you want to
study a PhD?

%& Student
V& Student

Do you want to

¢ study a PhD?
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Feature Disentangle
- Adversarial Training

Learn to fool the Speaker po
— g or &

. p- p—
speaker classifier Classifier
A : -
: (Discriminator)

: ¢ How ar
(I .
A Y you?
M m — Encoder—i= — Decoder — i MH

How are you? How are you?
aa

Speaker classifier and encoder are learned iteratively



Feature Disentangle
- Designed Network Architecture
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Feature Disentangle
- Designed Network Architecture
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Feature Disentangle Adversarial Training

Target Speakef- |

Source Speaker Source to Target
(Never seen during training!)
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Thanks Juchieh Chou for providing the results.
https://jjery2243542.github.io/voice_conversion_demo/



Discrete Representation

non differentiable

AEasier to interpret or clustering  nps://arxiv.org/pdf/16
11.01144.pdf
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Discrete Representation

https://arxiv.org/abs/1711.00937
AVector Quantized Variational Augncoder (VQVAE)
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Compute similarity
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Encoder»

Codebook
(a set of vectors)

Learn from data

The most similar one
IS the input of decoder.

For speech, the codebook represents phonetic information
https://arxiv.org/pdf/1901.08810.pdf



Sequence as Embedding

https://arxiv.org/abs/1810.02851 On|y need a lot

of documents to

. train the model
This Is &eq2seg2seq autencoder

Using a sequence of words as latent representation.
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document sequence document
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Seqg2seq Seqg2seq



