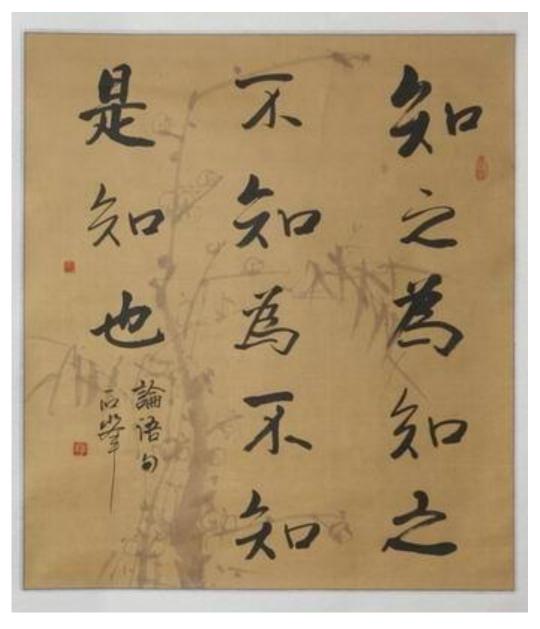
Anomaly Detection

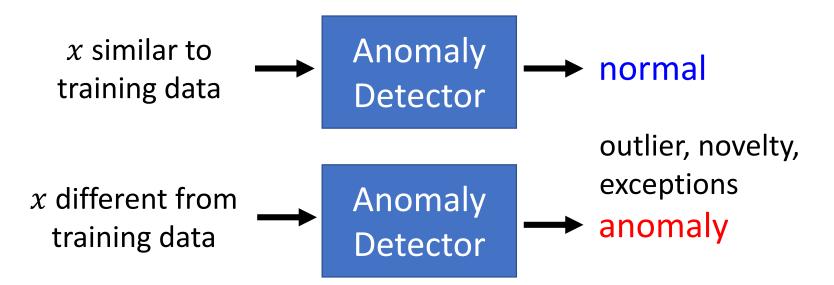
Hung-yi Lee



Source of image: https://zhidao.baidu.com/question/757382451569322644.html

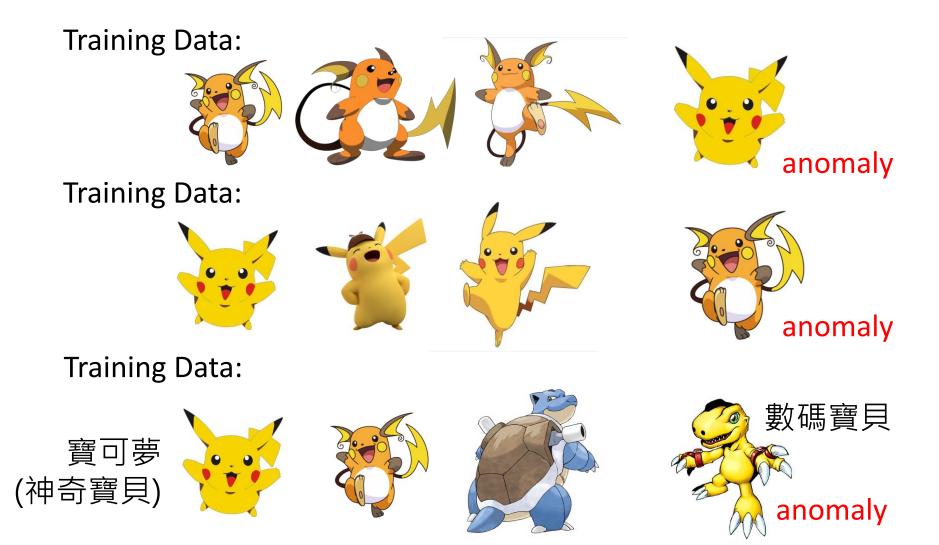
Problem Formulation

- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input *x* is <u>similar</u> to training data or not.



Different approaches use different ways to determine the similarity.

What is Anomaly?



Applications

- Fraud Detection
 - Training data: 正常刷卡行為, x: 盜刷?
 - Ref: https://www.kaggle.com/ntnu-testimon/paysim1/home
 - Ref: https://www.kaggle.com/mlg-ulb/creditcardfraud/home
- Network Intrusion Detection
 - Training data: 正常連線, x: 攻擊行為?
 - Ref: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- Cancer Detection
 - Training data: 正常細胞, x: 癌細胞
 - Ref: https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/home

Binary Classification?

- Given normal data $\{x^1, x^2, \cdots, x^N\}$ \longrightarrow Class 1
- Given anomaly $\{\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^N\}$ \longrightarrow Class 2
- Then training a binary classifier

Binary Classification?

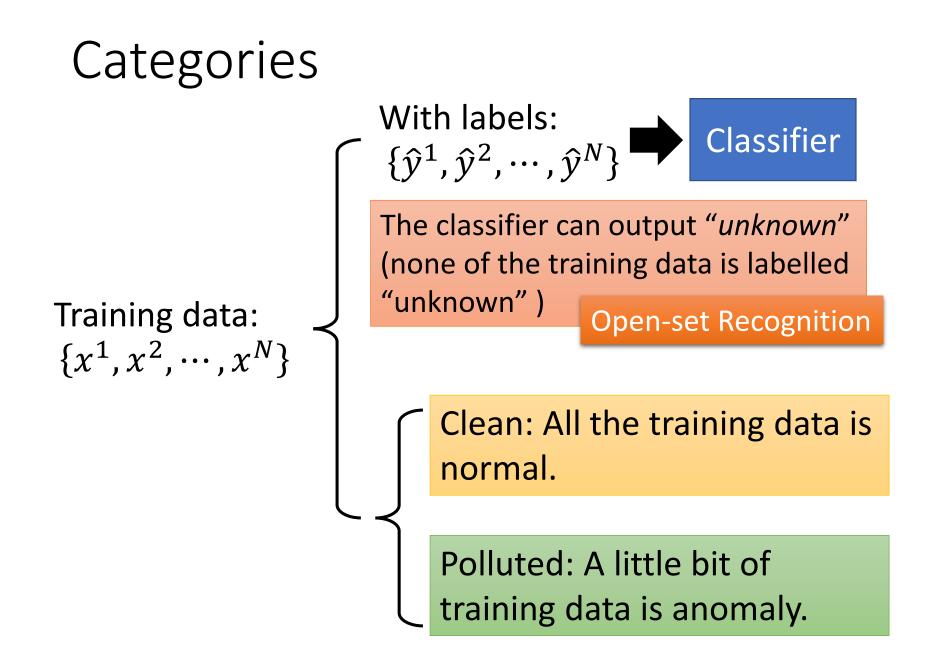
Binary Classification?

- Given normal data $\{x^1, x^2, \cdots, x^N\}$ \longrightarrow Class 1
- Given anomaly $\{\tilde{x}^1, \tilde{x}^2, \cdots, \tilde{x}^N\}$ \longrightarrow Class 2
- Then training a binary classifier

x (Pokémon)

 \tilde{x} (NOT Pokémon)

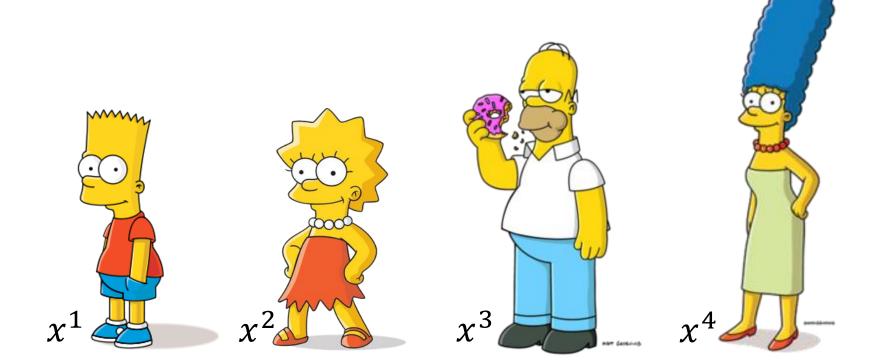
Even worse, in some cases, it is difficult to find anomaly example



Case 1: With Classifier

Example Application

• From The Simpsons or not



Source of model: https://www.kaggle.com/alexattia/the-simpsons-characters-dataset/

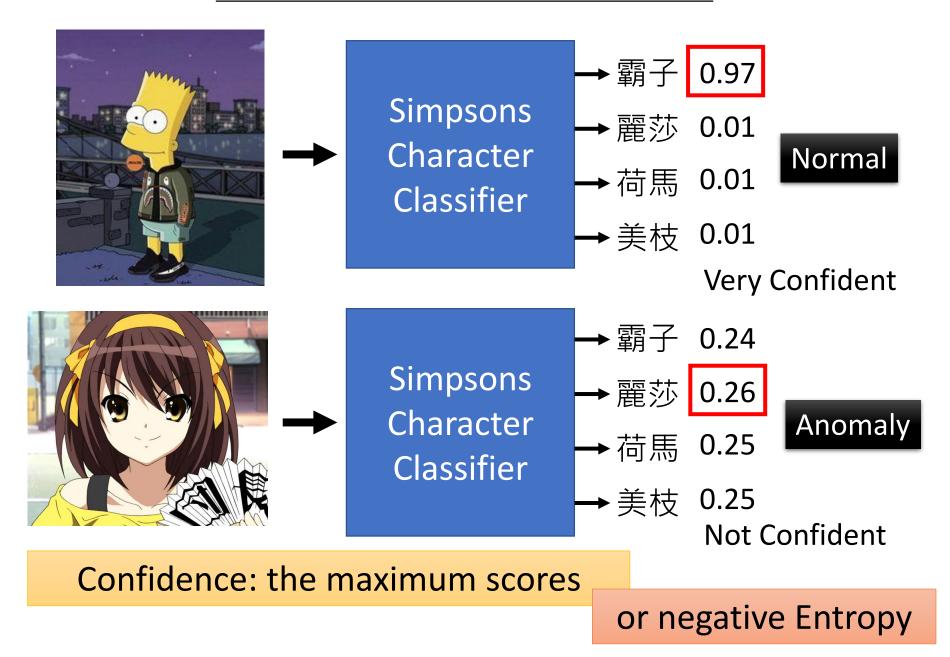
				_
THESI	character	Precision	Support	
	Abraham Grampa Simpson	0.96	47	
	Apu Nahasapeemapetilon	0.98	49	_
	Bart Simpson	0.94	51	
	Charles Montgomery Burns	0.92	48	
	Chief Wiggum	1.00	50	
	Comic Book Guy	0.98	48	
	Edna Krabappel	0.98	47	
	Homer Simpson	0.94	49	
	Kent Brockman	1.00	48	1 13
	Krusty The Clown	0.98	51	8 8
	Lisa Simpson	0.92	51	San B
	Marge Simpson	0.98	51	
V V V V V V	Milhouse Van Houten	0.94	51	
	Moe Szyslak	0.98	49	Boood
(\cdot, \cdot)	Ned Flanders	0.89	53	
	Nelson Muntz	0.98	45	
	Principal Skinner	0.91	55	
	Sideshow Bob	0.98	47	y 1
	Total	0.96	890	
1				4. // //
x1 🥭 📂	x^2 x^3			
	へ2 両両 ナナ へ3		â	4 _ 兰枯
ŷ¹ =霸子	<i>y</i> ⁺ = 鹿沙 <i>y</i> ⁻	= 荷馬	y	一大仪
-				

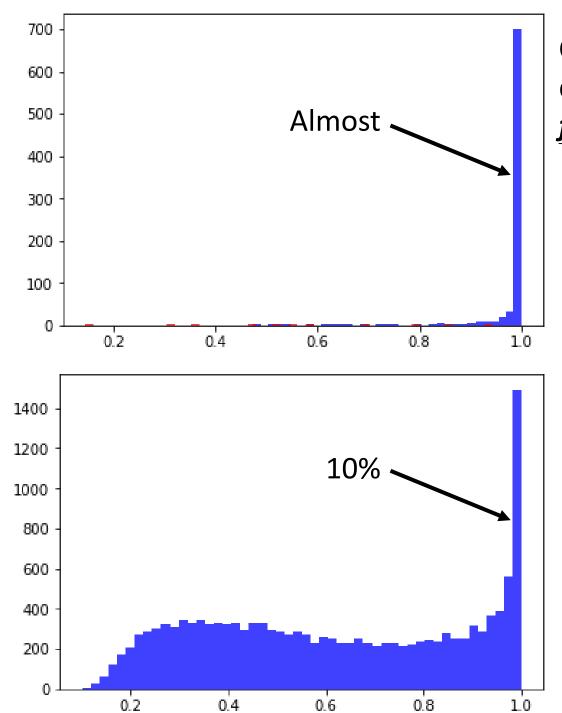
How to use the Classifier

Anomaly Detection:

$$f(x) = \begin{cases} normal, & c(x) > \lambda \\ anomaly, & c(x) \le \lambda \end{cases}$$

How to estimate Confidence



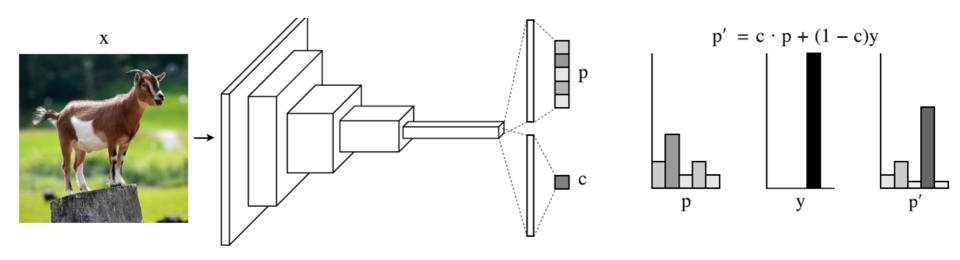


Confidence score distribution for <u>characters</u> from Simpsons

Confidence score distribution for *anime characters*

Outlook: Network for Confidence Estimation

 Learning a network that can directly output confidence



Terrance DeVries, Graham W. Taylor, Learning Confidence for Out-of-Distribution Detection in Neural Networks, arXiv, 2018

(not today)

Example Framework

Training Set: Images x of characters from Simpsons.

Each image x is labelled by its characters \hat{y} .

Train a classifier, and we can obtain confidence score c(x) from the classifier.

$$f(x) = \begin{cases} normal, & c(x) > \lambda \\ anomaly, & c(x) \le \lambda \end{cases}$$

Dev Set: Images x

Label each image x is from Simpsons or not.

We can compute the *performance* of f(x)Using dev set to determine λ and other hyperparameters.

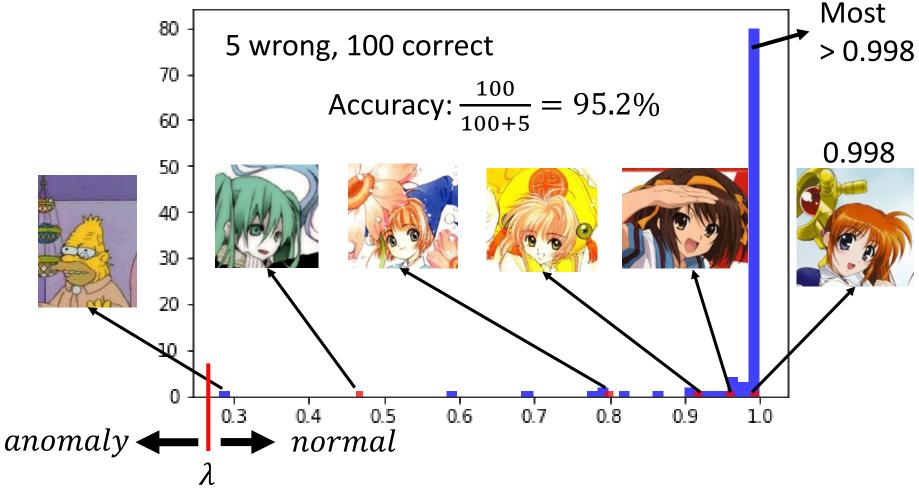
Testing Set: Images x from Simpsons or not

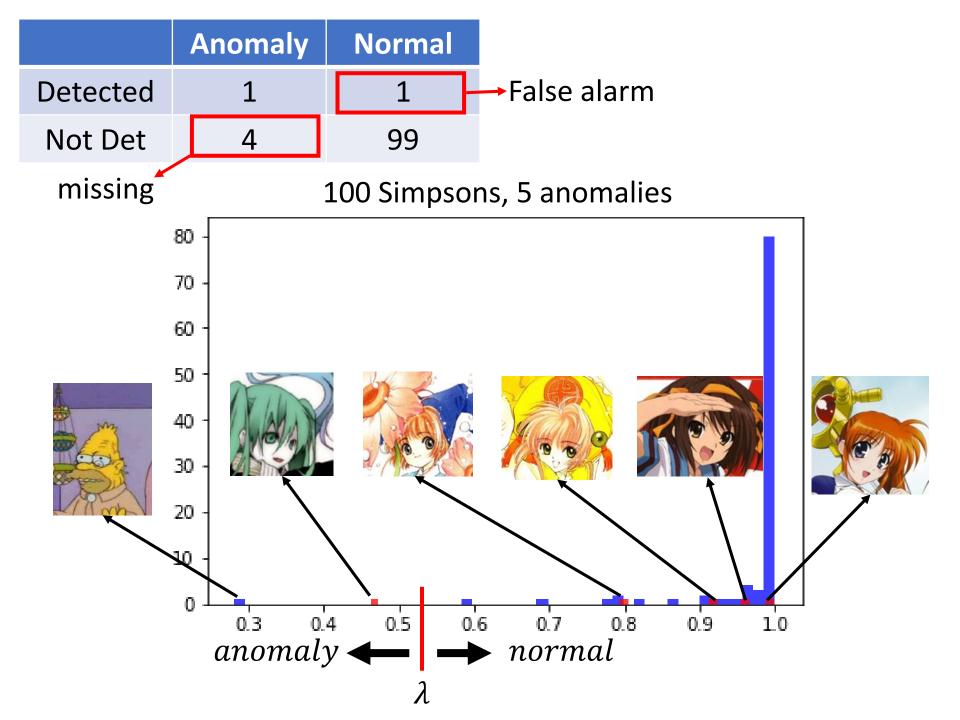
Accuracy is not a good measurement!

Evaluation

A system can have high accuracy, but do nothing.

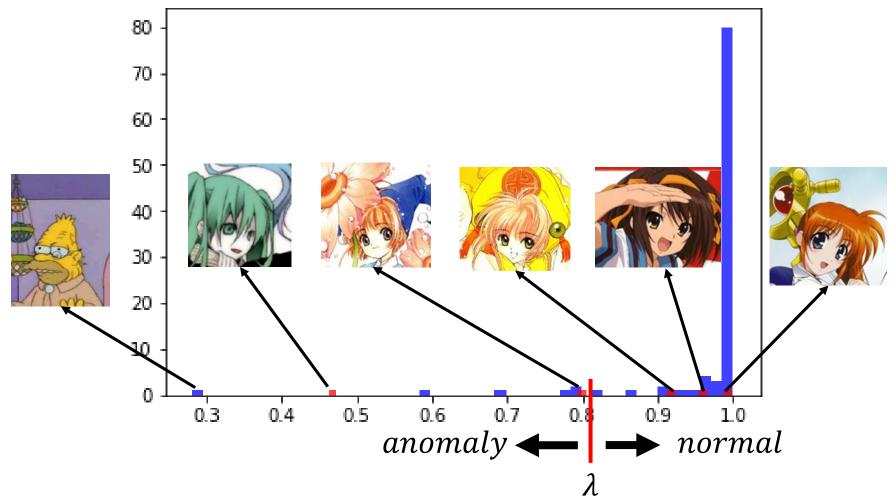
100 Simpsons, 5 anomalies





	Anomaly	Normal		Anomaly	Normal
Detected	1	1	Detected	2	6
Not Det	4	99	Not Det	3	94

100 Simpsons, 5 anomalies



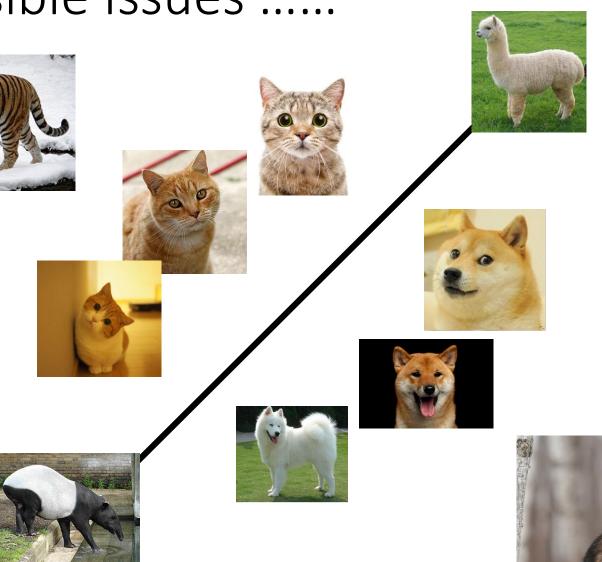
	Anomaly	Normal		Anomaly	Normal	
Detected	1	1	Detected	2	6	
Not Det	4	99	Not Det	3	94	
Cost = 104 🛞 Cost = 401			Cost = 603 Cost = 306			

Cost	Anomaly	Normal	Cost	Anomaly	Normal
Detected	0	100	Detected	0	1
Not Det	1	0	Not Det	100	0
Cost Table A			Cost Table B		

Some evaluation metrics consider the ranking

For example, Area under ROC curve

Possible Issues



Possible Issues

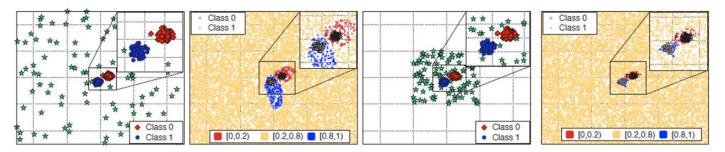
麗莎 1.00

柯阿三 0.63

麗莎 0.88

To Learn More

• Learn a classifier giving low confidence score to anomaly



Kimin Lee, Honglak Lee, Kibok Lee, Jinwoo Shin, Training Confidencecalibrated Classifiers for Detecting Out-of-Distribution Samples, ICLR 2018

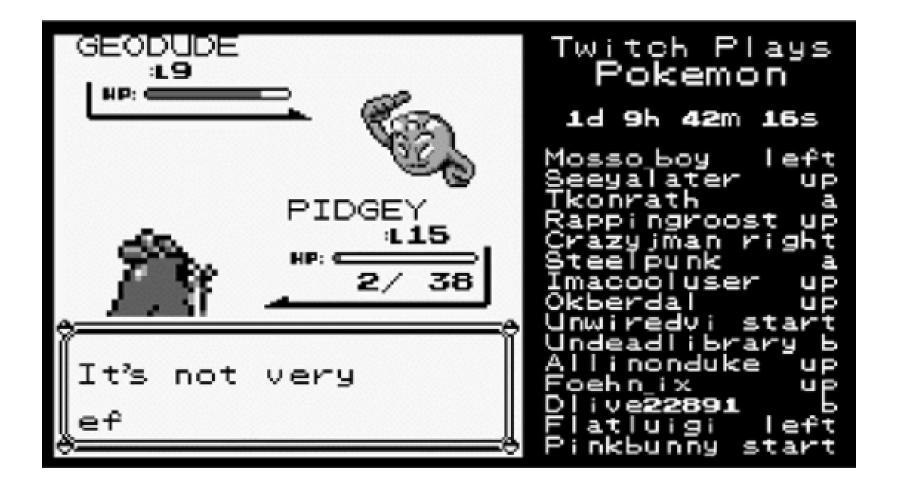
• How can you obtain anomaly?

Generating by Generative Models?

Mark Kliger, Shachar Fleishman, Novelty Detection with GAN, arXiv, 2018

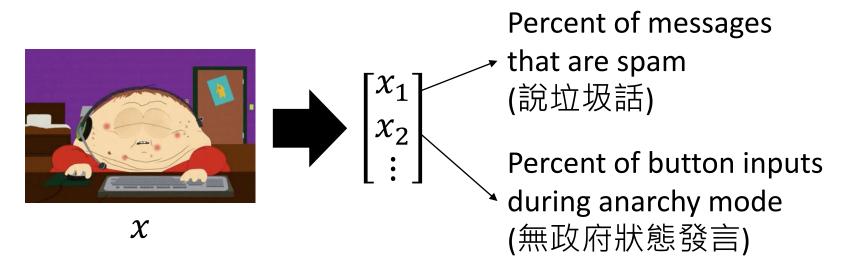
Case 2: Without Labels

Twitch Plays Pokémon



Problem Formulation

- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input *x* is *similar* to training data or not.

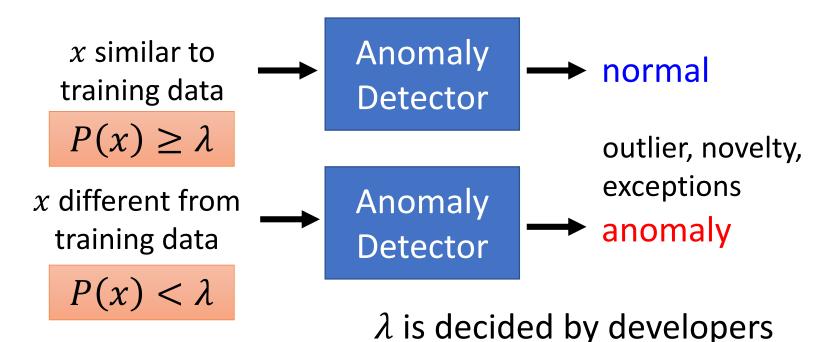


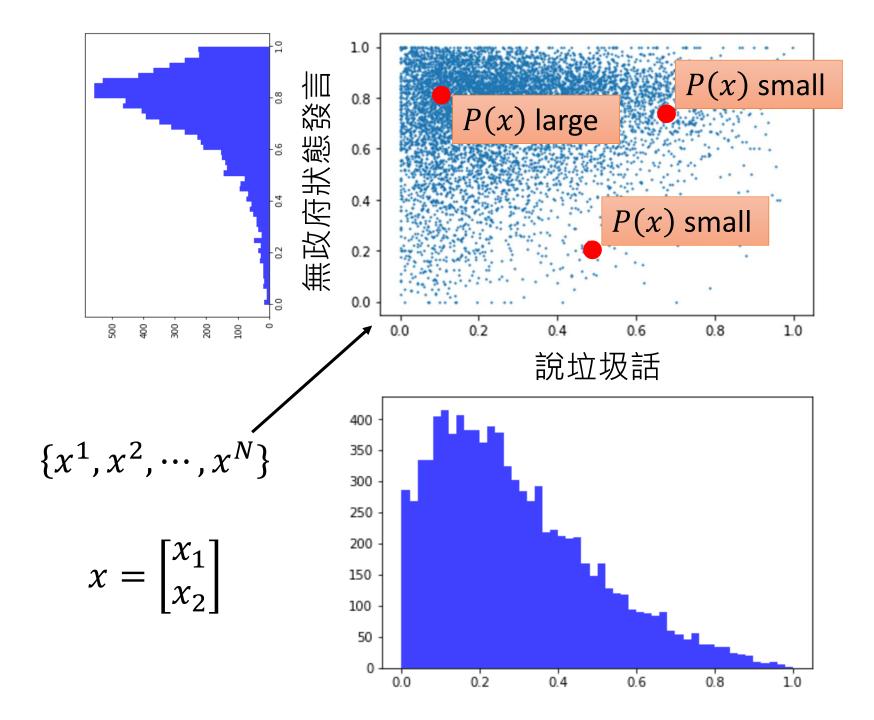
https://github.com/ahaque/twitch-troll-detection (Albert Haque)

Problem Formulation

Generated from P(x)

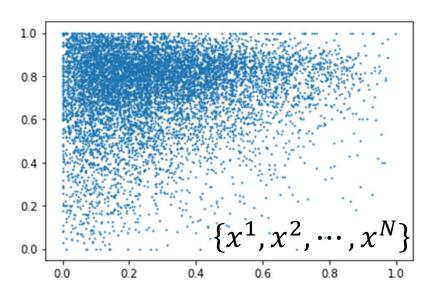
- Given a set of training data $\{x^1, x^2, \dots, x^N\}$
- We want to find a function detecting input x is *similar* to training data or not.





Maximum Likelihood

- Assuming the data points is sampled from a probability density function $f_{\theta}(x)$
 - θ determines the shape of $f_{\theta}(x)$
 - θ is unknown, to be found from data



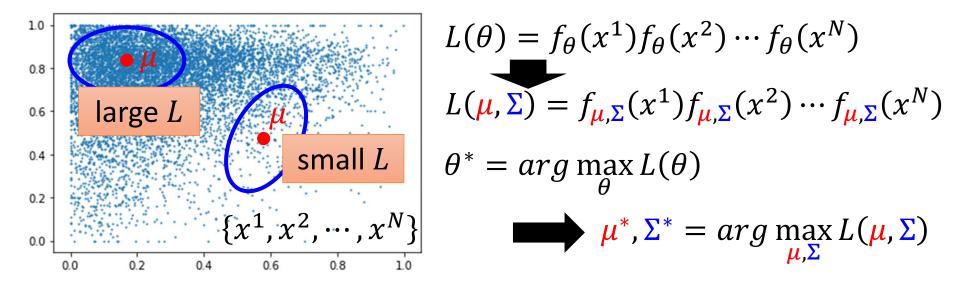
$$L(\theta) = f_{\theta}(x^{1})f_{\theta}(x^{2})\cdots f_{\theta}(x^{N})$$

Likelihood

$$\theta^* = \arg \max_{\theta} L(\theta)$$

Gaussian DistributionD is the dimension of x $f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$ Input: vector x, output: probability density of sampling x

 θ which determines the shape of the function are mean μ and covariance matrix Σ

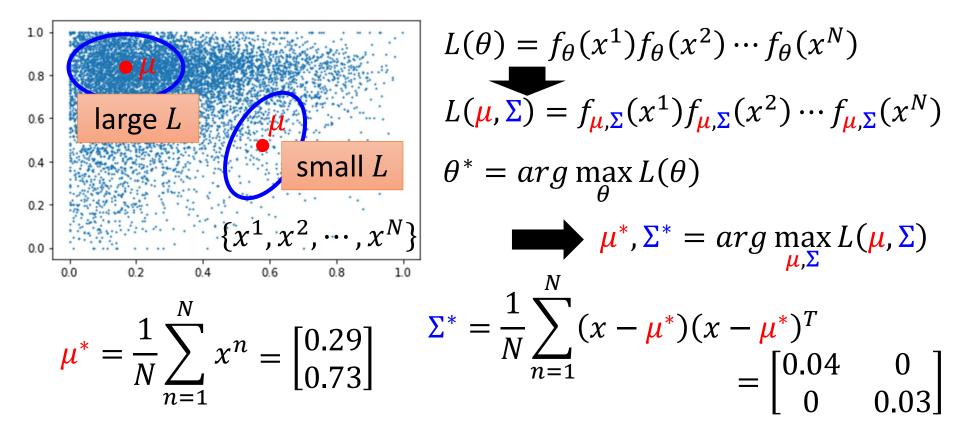


How about $f_{\theta}(x)$ is from a network, and θ is network parameters? (out of the scope)

Gaussian Distribution

$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Input: vector x, output: probability of sampling x θ which determines the shape of the function are **mean** μ and **covariance matrix** Σ



$$f_{\mu^{*},\Sigma^{*}}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^{*}|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu^{*})^{T}\Sigma^{*-1}(x-\mu^{*})\right\}$$

$$\mu^{*} = \begin{bmatrix} 0.29\\ 0.73 \end{bmatrix} \Sigma^{*} = \begin{bmatrix} 0.04 & 0\\ 0 & 0.03 \end{bmatrix}$$

$$f(x) = \begin{cases} normal, & f_{\mu^{*},\Sigma^{*}}(x) > \lambda \\ anomaly, & f_{\mu^{*},\Sigma^{*}}(x) \le \lambda \end{cases} \quad \lambda \text{ is a contour line}$$
The colors represents the value of $f_{\mu^{*},\Sigma^{*}}(x) \stackrel{\text{def}}{\cong} 0.4 \\ \text{def} 0.2 \\ \text{def} 0.4 \\ \text{def} 0.2 \\$

$$f(x) = \begin{cases} normal, f_{\mu^*, \Sigma^*}(x) > \lambda \\ anomaly, f_{\mu^*, \Sigma^*}(x) \le \lambda \end{cases}$$

More Features

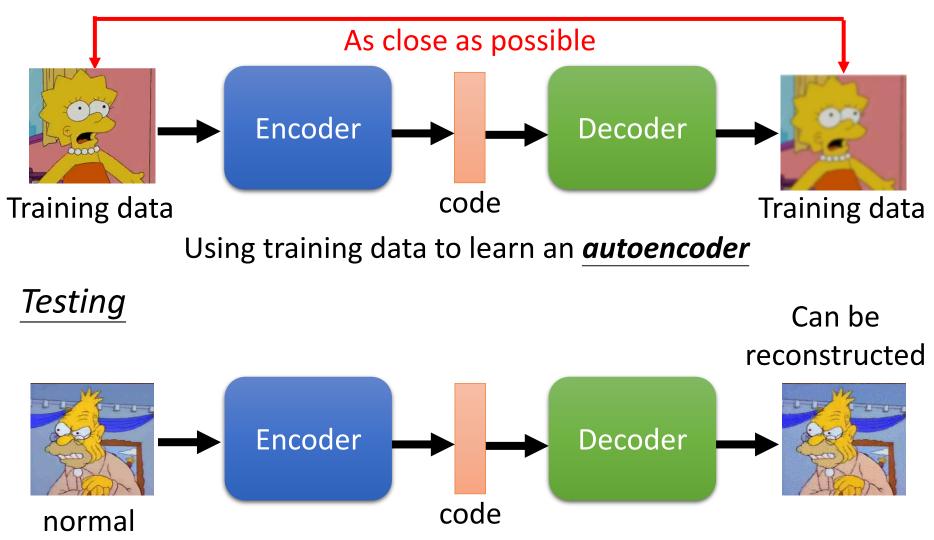
x₁: Percent of messages that are spam (說垃圾話) x₂: Percent of button inputs during anarchy mode (無政府狀態發言) x₃: Percent of button inputs that are START (按 START 鍵) x₄: Percent of button inputs that are in the top 1 group (跟大家一樣)

 x_5 : Percent of button inputs that are in the bottom 1 group (唱反調)

$$\begin{bmatrix} 0.1\\ 0.9\\ 0.1\\ 1.0\\ 0.0 \end{bmatrix} & \log f_{\mu^*, \Sigma^*}(x) & -16 \\ \begin{bmatrix} 0.1\\ 0.9\\ 0.1\\ 0.0\\ 0.3 \end{bmatrix} & \log f_{\mu^*, \Sigma^*}(x) & -22 \\ \begin{bmatrix} 0.1\\ 0.9\\ 0.3 \end{bmatrix} & \log f_{\mu^*, \Sigma^*}(x) & -22 \\ \log f_{\mu^*, \Sigma^*}(x) & -22 \end{bmatrix}$$

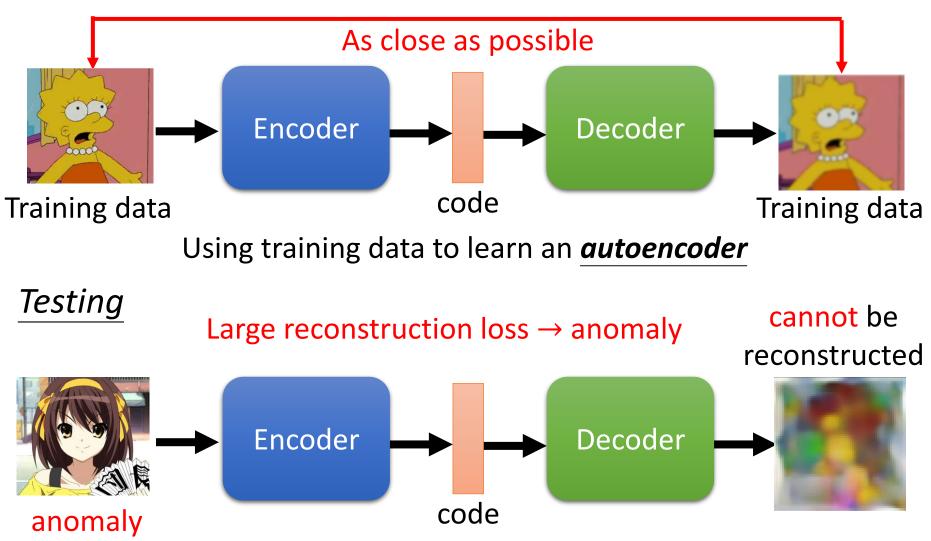
Outlook: Auto-encoder

<u>Training</u>



Outlook: Auto-encoder

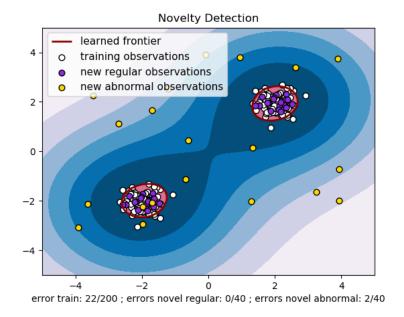
<u>Training</u>



More ...

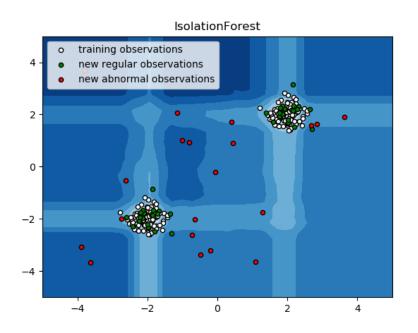
Source of images: https://scikitlearn.org/stable/modules/outlier_detectio n.html#outlier-detection

One-class SVM



Ref: https://papers.nips.cc/paper/1723support-vector-method-for-noveltydetection.pdf

Isolated Forest



Ref:

https://cs.nju.edu.cn/zhouzh/zhouzh.fil es/publication/icdm08b.pdf

https://www.youtube.com/watch?v=I_VsevrFHLc

