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Generative Adversarial Network 
(GAN)
• Anime face generation as example

Generator imagevector
high 
dimensional 
vector

Discri-
minator

scoreimage

Larger score means real, 
smaller score means fake.



• Initialize generator and discriminator

• In each training iteration:
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Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects 
and low scores to generated objects.

Fix



• Initialize generator and discriminator

• In each training iteration:

DG

Algorithm

Step 2: Fix discriminator D, and update generator G

Discri-
minator

NN
Generator

vector

0.13

hidden layer

update fix

large network

Generator learns to “fool” the discriminator

Backpropagation



• Initialize generator and discriminator

• In each training iteration:
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https://crypko.ai/#/



GAN is hard to train ……

• There is a saying ……

(I found this joke from 陳柏文’s facebook.)
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Target of 
NN output

Text-to-Image

• Traditional supervised approach

NN Image

Text: “train”

a dog is running

a bird is flying

A blurry image!

c1: a dog is running

as close as 
possible



Conditional GAN

D 
(original)

scalar𝑥

G
𝑧Normal distribution

x = G(c,z)
c: train

x is real image or not

Image

Real images:

Generated images:

1

0

Generator will learn to 
generate realistic images ….

But completely ignore the 
input conditions.

[Scott Reed, et al, ICML, 2016]



Conditional GAN

D 
(better)

scalar
𝑐

𝑥

True text-image pairs:

G
𝑧Normal distribution

x = G(c,z)
c: train

Image

x is realistic or not + 
c and x are matched or not

(train ,              )

(train ,              )(cat ,              )

[Scott Reed, et al, ICML, 2016]
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Conditional GAN 
- Sound-to-image

Gc: sound Image

"a dog barking sound"

Training Data 
Collection

video



Conditional GAN 
- Sound-to-image
• Audio-to-image

https://wjohn1483.github.io/
audio_to_scene/index.html

The images are generated by Chia-
Hung Wan and Shun-Po Chuang.

Louder



Conditional GAN - Image-to-label

Multi-label Image Classifier = Conditional Generator  

Input condition

Generated output



Conditional GAN - Image-to-label
F1 MS-COCO NUS-WIDE

VGG-16 56.0 33.9

+ GAN 60.4 41.2

Inception 62.4 53.5

+GAN 63.8 55.8

Resnet-101 62.8 53.1

+GAN 64.0 55.4

Resnet-152 63.3 52.1

+GAN 63.9 54.1

Att-RNN 62.1 54.7

RLSD 62.0 46.9

The classifiers can have 
different architectures.

The classifiers are 
trained as conditional 
GAN.

[Tsai, et al., submitted to 
ICASSP 2019]



Conditional GAN - Image-to-label
F1 MS-COCO NUS-WIDE

VGG-16 56.0 33.9

+ GAN 60.4 41.2

Inception 62.4 53.5

+GAN 63.8 55.8

Resnet-101 62.8 53.1

+GAN 64.0 55.4

Resnet-152 63.3 52.1

+GAN 63.9 54.1

Att-RNN 62.1 54.7

RLSD 62.0 46.9

The classifiers can have 
different architectures.

The classifiers are 
trained as conditional 
GAN.

Conditional GAN 
outperforms other 
models designed for 
multi-label.



Talking Head 

https://arxiv.org/abs/1905.08233
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Cycle GAN

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image 
belongs to 
domain Y or not
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Cycle GAN

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image 
belongs to 
domain Y or not

Become similar 
to domain Y

Not what we want!

ignore input



Cycle GAN

𝐺𝑋→𝑌

𝐷𝑌

Domain Y

scalar

Input image 
belongs to 
domain Y or not

𝐺Y→X

as close as possible

Lack of information 
for reconstruction 

[Jun-Yan Zhu, et al., ICCV, 2017]

Cycle consistency



Cycle GAN

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to 
domain Y or not

scalar: belongs to 
domain X or not



Cycle GAN

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋negative sentence? positive sentence?

It is bad. It is good. It is bad.

I love you. I hate you. I love you.
positive

positive

positivenegative

negative negative



Discrete Issue

𝐺𝑋→𝑌

𝐷𝑌 positive sentence?

It is bad. It is good.
positivenegative

large network

hidden layer

update

fix

Backpropagation

with discrete output

Seq2seq model



Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen 
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML, 
2017]

“Reinforcement Learning”

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv, 
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William 
Fedus, et al., ICLR, 2018]



✘ Negative sentence to positive sentence:
✘ it's a crappy day  ->  it's a great day

i wish you could be here  ->  you could be here

it's not a good idea  ->  it's good idea

i miss you  ->  i love you

i don't love you  ->  i love you

i can't do that  ->  i can do that

i feel so sad  ->  i happy

it's a bad day  ->  it's a good day

it's a dummy day  ->  it's a great day

sorry for doing such a horrible thing  ->  thanks for doing a 

great thing

my doggy is sick  ->  my doggy is my doggy

my little doggy is sick -> my little doggy is my little doggy

文句改寫 感謝王耀賢同學提供實驗結果



✘ Negative sentence to positive sentence:

感謝張瓊之同學提供實驗結果

胃疼 , 沒睡醒 , 各種不舒服 -> 生日快樂 , 睡醒 , 超級舒服

我都想去上班了, 真夠賤的! -> 我都想去睡了, 真帥的 !

暈死了, 吃燒烤、竟然遇到個變態狂 -> 哈哈好 ~ , 吃燒烤 ~ 竟
然遇到帥狂

我肚子痛的厲害 -> 我生日快樂厲害

感冒了, 難受的說不出話來了 ! -> 感冒了, 開心的說不出話
來 ! 

文句改寫



Speech Recognition 
Supervised Learning

This utterance is
“good morning”.

Human 
Teacher

I can do speech 
recognition 

after teaching

• Supervised learning needs lots of annotated speech.
• However, most of the languages are low resourced.



Speech Recognition 
Supervised Learning

This utterance is
“good morning”.

Human 
Teacher

I can do speech 
recognition 

after teaching

Unsupervised Learning

Listening to human talking Reading text on the Internet

I can automatically learn 
speech recognition



Acoustic Token Discovery

Acoustic tokens: chunks of acoustically similar audio segments 
with token IDs [Zhang & Glass, ASRU 09]

[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

Acoustic tokens can be discovered from audio collection 
without text annotation.



Acoustic Token Discovery

Token 1

Token 1

Token 1Token 2

Token 3

Token 3

Token 3

Acoustic tokens: chunks of acoustically similar audio segments 
with token IDs [Zhang & Glass, ASRU 09]

[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

Acoustic tokens can be discovered from audio collection 
without text annotation.

Token 2

Token 4



Acoustic Token Discovery

Phonetic-level acoustic tokens are obtained by 
segmental sequence-to-sequence autoencoder.

[Wang, et al., ICASSP, 2018]



Unsupervised Speech Recognition

AY  L AH V  Y UW

G UH D  B AY

HH AW  AA R  Y UW

T AY W AA N

AY M  F AY N
Cycle
GAN

“AY”=

Phone-level Acoustic 
Pattern Discovery

p1

p1 p3 p2

p1 p4 p3 p5 p5

p1 p5 p4 p3

p1 p2 p3 p4

Phoneme sequences 
from Text

[Liu, et al., INTERSPEECH, 

2018]

[Chen, et al., arXiv, 2018]



Model



Experimental Results



The progress of supervised learning 

A
cc

u
ra

cy

Unsupervised learning today (2019) is as good 
as supervised learning 30 years ago.

The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigão, F., 2011. 
Speech Technologies, Vol 1, pp. 285--302.
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To Learn 
More …
You can learn more from 
the YouTube Channel


