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Life Long Learning (LLL)

Continuous Learning, Never Ending Learning, Incremental Learning

| can solve | can solve | can solve
task 1. tasks 1&2. tasks 1&2&:3.
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Life-long Learning

Knowledge Retention

e but NOT Intransigence

Knowledge Transfer

Model Expansion

e but Parameter Efficiency
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* Given a document, answer the question based on the

Example — Question Answering

document.
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(a) QRN unit

https://arxiv.org/pdf/1502.05698.pdf
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Sandra got Sandra Daniel took Sandra
the apple droppedthe the apple went to
there. apple there. the hallway.

(b) 2-layer QRN

* There are 20 QA tasks in bAbi corpus.
* Train a QA model through the 20 tasks
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(c) Overview


https://arxiv.org/pdf/1502.05698.pdf

Task S: Three Argument Relations
Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill
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Task 10: Indefinite Knowledge

John is either in the classroom or the playground
Sandra 1s in the garden.

Is John in the classroom? A:maybe
Is John in the office? A:no
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Task 15: Basic Deduction
Sheep are afraid of wolves.
Cats are afraid of dogs.
Mice are afraid of cats.
Gertrude is a sheep.

What 1s Gertrude afraid of? A:wolves
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Example — Question Answering

Sequentially train the 20 tasks Jointly training the 20 tasks
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Catastrophic
Forgetting



Walit a minute

Learning

Task1
Learning 2 _t
Task2 “wa .

* Multi-task training can solve the problem!

Using all the data for training Computation issue

~

A
—_ N gl
S S
Training Data Training Data  Training Data
for Task 1 for Task 999 @ for Task 1000
N— et e

Always keep the data

* Multi-task training can be considered as the upper

bound of LLL.



Elastic Weight Consolidation (EWC)

Basic Idea: Some parameters in the model are important to
the previous tasks. Only change the unimportant parameters.

0% is the model learned from the previous tasks.

Each parameter Hib has a “guard” b;

How important
Loss for current task this parameter is

Loss to be Parameters to be Parameters learned
optimized learning from previous task



Elastic Weight Consolidation (EWC)

Basic Idea: Some parameters in the model are important to
the previous tasks. Only change the unimportant parameters.

0% is the model learned from the previous tasks.

Each parameter Hib has a “guard” b;

One kind of regularization. 8; should be close to 6% in
certain directions.

L'(0) = L(0) + 2|} bi(6; - 07)’

If b; = 0, there is no constraint on 6;

If b; = o, ; would always be equal to 8/



Elastic Weight Consolidation (EWC)

Task 1 Task 2

The error surfaces of tasks 1 & 2.
(darker = smaller loss)



Elastic Weight Consolidation (EWC)
Task 1 \_9.{’ /7

Small 2nd derivative
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Elastic Weight Consolidation (EWC)

Task 1 Task 2

by is small, while b, is large.
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Elastic Weight Consolidation (EWC)

train A train B train C

.0 - ; ' EWC

< ) ——— o~ — |
X 1 ‘I\_R 2
L : : SGD
= 0.8 - : :
o 1.0 - : !
X : =
o |

0.8 - : :\ Intransigence
o 1.0 l | /
X : !
W ' :
ﬁ 1 I

0.8 ' I

Training time

MNIST permutation, from the original EWC paper



Elastic Weight Consolidation (EWC)

 Elastic Weight Consolidation (EWC)
* http://www.citeulike.org/group/15400/article/14311063

e Synaptic Intelligence (SI)
* https://arxiv.org/abs/1703.04200

 Memory Aware Synapses (MAS)

* Special part: Do not need labelled data
* https://arxiv.org/abs/1711.09601

Synaptic: ZEfEHY
Synapsis: 2


http://www.citeulike.org/group/15400/article/14311063
https://arxiv.org/abs/1703.04200
https://arxiv.org/abs/1711.09601

https://arxiv.org/abs/1705.08690

Generating Data

https://arxiv.org/abs/1711.10563

* Conducting multi-task learning by generating pseudo-data
using generative model

o 8

Generate
% task 1 data
) \

% Generate
9% task 1&2 data

w
Trai ata Training Data
1 for Task 2
é‘ N‘\ — é\ N‘\ Multi-task
- - Learnin
LS i« .

Solve task 1 Solve task 2


https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/1711.10563

Adding New Classes

* Learning without forgetting (LwF)  Ineut _ Target:
* https://arxiv.org/abs/1606.09282
new task
image

* iCaRL: Incremental Classifier and Representation Learning
* https://arxiv.org/abs/1611.07725

model (a)’s
response for

old tasks

new task
ground truth

Class 1 Class 3

class-incremental learner

al



https://arxiv.org/abs/1606.09282
https://arxiv.org/abs/1611.07725

Life-long Learning

Knowledge Retention

e but NOT Intransigence

Knowledge Transfer

_

Model Expansion

e but Parameter Efficiency



Walit a minute

* Train a model for each task

Learning
Task 1

i &

Learning Learning
Task 2 Task 3

» Knowledge cannot transfer across different tasks

» Eventually we cannot store all the models ...



Life-Long v.s. Transfer

| can do task 2 because |

Transfer Learning: have learned task 1

@& fine-tune - (We don’t care whether
“‘ = ‘ machine can still do task 1.)
Learnlng Learnlng
Task 1 Task 2

, _ Eventhough | have learned
Lite-long Learning: {35k 2. | do not forget task 1.



Evaluation feson

Task 1 | Task 2| ... Task T
R; ;: after training Rand Init. Ro1 | Rop Ror
task i, performance o Task 1 Ri1l | Ry Rir
on task ] E Task 2 Ry 1
Ifi >, =
After training task i, ":'-) Jees -0l SRME Hyin
does task j be forgot Task T
Ifi <, 1

_ T
Accuracy = = =1 Ry
Can we transfer the

skill of task i to task j Backward Transfer = T_Z RTl — Ry,

(It is usually negative.)



Evaluation

R; ;: after training
task i, performance
on task j

Ifi >,

After training task i,
does task j be forgot

Ifi <,

Can we transfer the
skill of task i to task j

Test on

Task 1| Task 2| ... Task T

Rand Init. Ro1 | Ro> Ryt
§ Task 2 R2,1 Rz}z R T
O
=
S| TaskT-1 |Rp—11 |Rr—12
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Task T Rr1 | Rro Rrr
Accuracy = — I Ry

1 _
Backward Transfer = EZiTzll Ry —R;;

1
Forward Transfer = ﬁziTzz Ri_1; —Ry;



GEM: https://arxiv.org/abs/1706.08840
A-GEM: https://arxiv.org/abs/1812.00420

Gradient Episodic Memory (GEM)

e Constraint the gradient to improve the previous tasks

g
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R % possible

6 \ g
-« : negative gradient of g
current task

} negative gradient of
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previous task Need the data from the

#
—
—p : update direction previous tasks
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https://arxiv.org/abs/1606.04671

Progressive Neural Networks
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Expert Gate

https://arxiv.org/abs/1611.06194

Input




https://arxiv.org/abs/1511.05641

Net2Net

Add some
small noises

Expand the network only when the training accuracy of the
current task is not good enough. https://arxiv.org/abs/1811.07017



https://arxiv.org/abs/1511.05641
https://arxiv.org/abs/1811.07017

Concluding Remarks

Knowledge Retention

e but NOT Intransigence

Knowledge Transfer

Model Expansion

e but Parameter Efficiency



Curriculum Learning : what is the proper learning order?

Task 1 H —. Task 2
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taskonomy

= task + taxonomy
(5 )
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http://taskonomy.stanford.edu/#abstract

