

Life Long Learning Hung-yi Lee 李宏毅

你用同一個腦學習 、機器學習的每一堂課

但是每一個作業你都 訓練不同的類神經網路

能不能每次作業都訓練同一個類神經網路呢?

https://www.forbes.com/sites/kpmg/2018/04/23/the-changing-nature-of-work-why-lifelong-learning-matters-more-thanever/#4e04e90e1e95

Life Long Learning (LLL)

Continuous Learning, Never Ending Learning, Incremental Learning

Life-long Learning

Knowledge Retention

but NOT Intransigence

Knowledge Transfer

Model Expansion

• but Parameter Efficiency

3 layers, 50 neurons each

Example – Image

明明可以把 Task 1 和 2 都學好,為什麼會變成這樣子呢!?

Example – Question Answering

• Given a document, answer the question based on the document.

- There are 20 QA tasks in bAbi corpus.
- Train a QA model through the 20 tasks

Example – Question Answering

Sequentially train the 20 tasks

Jointly training the 20 tasks

是不為也

非不能也

感謝何振豪同學提供實驗結果

Catastrophic Forgetting

Wait a minute

• Multi-task training can solve the problem!

 Multi-task training can be considered as the upper bound of LLL.

Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters. θ^{b} is the model learned from the previous tasks.

Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters. θ^{b} is the model learned from the previous tasks.

Each parameter θ_i^b has a "guard" b_i

One kind of regularization. θ_i should be close to θ^b in certain directions.

$$L'(\theta) = L(\theta) + \lambda \sum_{i} b_i (\theta_i - \theta_i^b)^2$$

If $b_i = 0$, there is no constraint on θ_i

If $b_i = \infty$, θ_i would always be equal to θ_i^b

(darker = smaller loss)

MNIST permutation, from the original EWC paper

- Elastic Weight Consolidation (EWC)
 - http://www.citeulike.org/group/15400/article/14311063
- Synaptic Intelligence (SI)
 - https://arxiv.org/abs/1703.04200
- Memory Aware Synapses (MAS)
 - Special part: Do not need labelled data
 - https://arxiv.org/abs/1711.09601

Synaptic: 突觸的 Synapsis: 突觸

Generating Data

 Conducting multi-task learning by generating pseudo-data using generative model

Adding New Classes

- Learning without forgetting (LwF)
 - <u>https://arxiv.org/abs/1606.09282</u>

- iCaRL: Incremental Classifier and Representation Learning
 - https://arxiv.org/abs/1611.07725

Life-long Learning

Knowledge Retention

• but NOT Intransigence

Knowledge Transfer

Model Expansion

• but Parameter Efficiency

Wait a minute

Train a model for each task

Knowledge cannot transfer across different tasks
Eventually we cannot store all the models ...

Life-Long v.s. Transfer

Evaluation

R_{i,j}: after training task i, performance on task j

If i > j,

After training task i, does task j be forgot

If i < j,

Can we transfer the skill of task i to task j

		Test on				
		Task 1	Task 2	••••	Task T	
Rand Init.		<i>R</i> _{0,1}	<i>R</i> _{0,2}		<i>R</i> _{0,<i>T</i>}	
After Training	Task 1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		<i>R</i> _{1,<i>T</i>}	
	Task 2	F ,1	<i>R</i> _{2.2}		<i>R</i> _{2,<i>T</i>}	
	:					
	Task T-1	<i>R</i> ₇ _{-1,1}	R_T 1,2		$R_{T-1,T}$	
A	Task T	$R_{T.1}$	$R_{T.2}$		$R_{T,T}$	

Accuracy =
$$\frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =
$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

(It is usually negative.)

Evaluation

R_{i,j}: after training task i, performance on task j

If i > j,

After training task i, does task j be forgot

If i < j,

Can we transfer the skill of task i to task j

		Test on				
		Task 1	Task 2	••••	Task T	
Rand Init.		$R_{0,1}$	<i>R</i> _{0,2}		$R_{0,T}$	
After Training	Task 1	<i>R</i> _{1,1}	<i>R</i> _{1,2}		RT	
	Task 2	<i>R</i> _{2,1}	<i>R</i> _{2,2}		R _T	
	:					
	Task T-1	$R_{T-1,1}$	$R_{T-1,2}$		$R_{T-1,T}$	
	Task T	$R_{T,1}$	$R_{T,2}$		$R_{T,T}$	

Accuracy =
$$\frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =
$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

Forward Transfer =
$$\frac{1}{T-1}\sum_{i=2}^{T} R_{i-1,i} - R_{0,i}$$

GEM: https://arxiv.org/abs/1706.08840 A-GEM: https://arxiv.org/abs/1812.00420

Gradient Episodic Memory (GEM)

Constraint the gradient to improve the previous tasks

- egative gradient of current task
 - negative gradient of previous task
 - : update direction

Need the data from the previous tasks

MNIST rotations 0.8 0.6 0.40.2

Life-long Learning

Knowledge Retention

• but NOT Intransigence

Knowledge Transfer

Model Expansion

• but Parameter Efficiency

https://arxiv.org/abs/1606.04671

Progressive Neural Networks

Expert Gate https://arxiv.org/abs/1611.06194

https://arxiv.org/abs/1511.05641

Net2Net

Expand the network only when the training accuracy of the current task is not good enough. <u>https://arxiv.org/abs/1811.07017</u>

Concluding Remarks

Knowledge Retention

• but NOT Intransigence

Knowledge Transfer

Model Expansion

• but Parameter Efficiency

Curriculum Learning : what is the proper learning order?

