Meta Learning (Part 1) Hung-yi Lee

Introduction

Task 1: speech recognition Task 2: image recognition :

Task 100: text classification

• Meta learning = Learn to learn

Meta Learning

Meta Learning

Machine Learning ≈ 根據資料找一個函數 f 的能力

≈根據資料找一個找一個函數 f 的函數 F 的能力

Machine Learning is Simple

Function $f \longrightarrow$ Learning algorithm F

就好像把大象放進冰箱

Meta Learning

Different decisions in the red boxes lead to different algorithms. What happens in the red boxes is decided by humans until now.

Meta Learning

• Defining the goodness of a function F

Omniglot

https://github.com/brendenlake/omniglot

- 1623 characters
- Each has 20 examples

コムシアルドロリアカタネるもロベンレッピノンシュえひのとた 3 Th 8 5 V ᢓᡜᡛᡦᡛᡱᡅಐ᠊᠋ぉ᠄᠈ᡆ᠆᠆᠆᠋᠋ᡣᡄ᠓ᡃ᠋ᡣ᠙᠔᠙᠙᠙᠋᠋᠋᠋ᠴ᠇ᡕᠻᠺ᠕ᠢᢃ᠋ᠲ║ᢃᠲ ╡╉ҘҨ҄ҋѡӹѡぉ҄ѯ҆҆҆ҽѿҥҵҧҧѠ҄҄ѡҧӷӀ҄҄҄҄҄҄҄҄ӹҝҧҲ 日日日日のや、ロノチョ町の日であるしているのでのまで、ロンジのスンンシ BOJEBOJ8 a montre preservisor a contre servisor a contre preservisor a contre servisor a contre servis LUYNYG&YSTWONNAM AT AT BB: * * BHPHCAY 5 4 主 K, VDJPXYYNOZEDJ = 2 QM Q T TOVPLCUUUU ア m m m 、 NHX P 1 米 ベタ 米 広 チ m m m m m m m s e E K 4 B N 241 や U E 凸 」 T

Omniglot Demo of Reptile: https://openai.com/blog/reptile/ – Few-shot Classification

 N-ways K-shot classification: In each training and test tasks, there are N classes, each has K examples.

- Split your characters into training and testing characters
 - Sample N training characters, sample K examples from each sampled characters → one training task
 - Sample N testing characters, sample K examples from each sampled characters → one testing task

Techniques Today

• MAML

- Chelsea Finn, Pieter Abbeel, and Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", ICML, 2017
- Reptile
 - Alex Nichol, Joshua Achiam, John Schulman, On First-Order Meta-Learning Algorithms, arXiv, 2018

MAML

MAML

Loss Function:

 $\hat{\theta}^n$: model learned from task n

 $\hat{\theta}^n$ depends on ϕ

 $l^n(\hat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

Ν

 $L(\phi) = \sum l^n (\hat{\theta}^n)$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Model Pre-trainingLoss Function:Widely used in
transfer learning $L(\phi) = \sum_{n=1}^{N} l^n(\phi)$

Ν

task 上表現如何

我們在意用 ϕ 訓練出來的 $\hat{\theta}^n$ 表現如何

MAML

Loss Function:

 $\widehat{ heta}^n$: model learned from task n

 $\widehat{ heta}^n$ depends on $oldsymbol{\phi}$

潛力

 $l^n(\hat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

Ν

 $L(\phi) = \sum l^n (\hat{\theta}^n)$

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Find ϕ achieving good performance after training

Model Pre-trainingLoss Function:Widely used in
transfer learning $L(\phi) = \sum_{n=1}^{N} l^n(\phi)$

Find ϕ achieving good performance 闭在表現如何

- Fast ... Fast ... Fast ...
- Good to truly train a model with one step. ③
- MAML When using the algorithm, still update many times.
 - Few-shot learning has limited data.

Toy Example

Source of images https://towardsdatascience.com/paper-repro-deepmetalearning-using-maml-and-reptile-fd1df1cc81b0

Each task:

- Given a target sine function y = a sin(x + b)
- Sample K points from the target function
- Use the samples to estimate the target function

Sample *a* and *b* to form a task

Model Pre-training

Toy Example

Source of images 0.5 https://towardsdatascience.com/pape 0.0 r-repro-deep-metalearning-usingmaml-and-reptile-fd1df1cc81b0

Omniglot & Mini-ImageNet

	5-way Accuracy				20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot		5-shot		1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%		94.9%		_	-
MAML, no conv (ours)	$89.7 \pm 1.1\%$		$97.5\pm0.6\%$		—	_
Siamese nets (Koch, 2015)	97.3%		98.4%		88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%		98.9%		93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%		99.5%		93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%		99.6%		95.0%	98.6%
MAML (ours)	$98.7\pm0.4\%$		$99.9\pm0.1\%$		$95.8 \pm \mathbf{0.3\%}$	$98.9\pm0.2\%$
	5-way Acc			ccura	cy	
MiniImagenet (Ravi & Larochelle, 2017)		1-shot			5-shot	
fine-tuning baseline		$28.86 \pm 0.54\%$ 4		49.7	$79 \pm 0.79\%$	
nearest neighbor baseline		$41.08 \pm 0.70\%$		51.0	$04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)		$43.56 \pm 0.84\%$		$55.31 \pm 0.73\%$		
meta-learner LSTM (Ravi & Larochelle, 2017)		$43.44 \pm 0.77\%$		60.6	$50 \pm 0.71\%$	
MAML, first order approx. (ours)		$48.07 \pm 1.75\%$		63.1	$5\pm0.91\%$	
MAML (ours)		$48.70\pm$	1.84%	63.1	$1\pm0.92\%$	

https://arxiv.org/abs/1703.03400

Warning of Math

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \eta \nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi})$$
$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^{n} (\hat{\boldsymbol{\theta}}^{n})$$
$$\hat{\boldsymbol{\theta}} = \boldsymbol{\phi} - \varepsilon \nabla_{\boldsymbol{\phi}} l(\boldsymbol{\phi})$$

$$\nabla_{\phi} L(\phi) = \nabla_{\phi} \sum_{n=1}^{N} l^{n}(\widehat{\theta}^{n}) = \sum_{n=1}^{N} \underline{\nabla_{\phi} l^{n}(\widehat{\theta}^{n})}$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_j \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i}$$

$$\nabla_{\boldsymbol{\phi}} l(\hat{\boldsymbol{\theta}}) = \begin{bmatrix} \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{1}} \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{2}} \\ \vdots \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{i}} \\ \vdots \end{bmatrix} \qquad \phi_{i} \qquad$$

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \eta \nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi})$$
$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^{n} (\hat{\boldsymbol{\theta}}^{n})$$
$$\hat{\boldsymbol{\theta}} = \boldsymbol{\phi} - \varepsilon \nabla_{\boldsymbol{\phi}} l(\boldsymbol{\phi})$$

$$\nabla_{\phi} L(\phi) = \nabla_{\phi} \sum_{n=1}^{N} l^{n} (\hat{\theta}^{n}) = \sum_{n=1}^{N} \underline{\nabla_{\phi} l^{n} (\hat{\theta}^{n})}$$

$$\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_j \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_j} \frac{\partial \hat{\theta}_j}{\partial \phi_i} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i}$$

$$\hat{\theta}_j = \phi_j - \varepsilon \frac{\partial l(\phi)}{\partial \phi_j}$$

 $\frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = -\varepsilon \frac{\partial l(\phi)}{\partial \phi_{i} \partial \phi_{i}} \approx 0$

 $\frac{\partial \hat{\theta}_{j}}{\partial \phi_{i}} = 1 - \varepsilon \frac{\partial l(\phi)}{\partial \phi_{i} \partial \phi_{j}} \approx 1$

$$\nabla_{\phi} l(\hat{\theta}) = \begin{bmatrix} \frac{\partial l(\hat{\theta})}{\partial \phi_{1}} \\ \frac{\partial l(\hat{\theta})}{\partial \phi_{2}} \\ \vdots \\ \frac{\partial l(\hat{\theta})}{\partial \phi_{i}} \end{bmatrix}$$

$$i \neq j$$
:
 $i = j$:

 $\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} - \eta \nabla_{\boldsymbol{\phi}} L(\boldsymbol{\phi})$ $L(\boldsymbol{\phi}) = \sum^{N} l^{n} \left(\hat{\boldsymbol{\theta}}^{n} \right)$ $\hat{\theta} = \phi - \varepsilon \nabla_{\phi} l(\phi)$

 $\nabla_{\phi} L(\phi) = \nabla_{\phi} \sum_{n=1}^{\infty} l^n (\hat{\theta}^n) = \sum_{n=1}^{\infty} \nabla_{\phi} l^n (\hat{\theta}^n)$ $\frac{\partial l(\hat{\theta})}{\partial \phi_i} = \sum_{i} \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i} \frac{\partial \hat{\theta}_j}{\partial \phi_i} \approx \frac{\partial l(\hat{\theta})}{\partial \hat{\theta}_i}$

products, which is supported by standard deep learning libraries such as TensorFlow (Abadi et al., 2016). In our experiments, we also include a comparison to dropping this backward pass and using a first-order approximation, which we discuss in Section 5.2.

θ

$$\nabla_{\boldsymbol{\phi}} l(\hat{\boldsymbol{\theta}}) = \begin{bmatrix} \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{1}} \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{2}} \\ \vdots \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \boldsymbol{\phi}_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \hat{\boldsymbol{\theta}}_{2}} \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \hat{\boldsymbol{\theta}}_{i}} \\ \frac{\partial l(\hat{\boldsymbol{\theta}})}{\partial \hat{\boldsymbol{\theta}}_{i}} \end{bmatrix} = \nabla_{\widehat{\boldsymbol{\theta}}} l(\hat{\boldsymbol{\theta}}) = \nabla_{\widehat{\boldsymbol{\theta}}} l(\hat{\boldsymbol{\theta}}$$

End of Warning

MAML – Real Implementation

Translation

18 training tasks: 18 differentlanguages translating to English2 validation tasks: 2 differentlanguages translating to English

Techniques Today

• MAML

- Chelsea Finn, Pieter Abbeel, and Sergey Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks", ICML, 2017
- Reptile
 - Alex Nichol, Joshua Achiam, John Schulman, On First-Order Meta-Learning Algorithms, arXiv, 2018

https://openai.com/blog/reptile/

You might be thinking "isn't this the same as training on the expected loss $\mathbb{E}_{\tau}[L_{\tau}]$?" and then checking if the date is April 1st. Indeed, if the partial minimization consists of a single gradient step, then this algorithm corresponds to minimizing the expected loss:

(this sentence is removed in the updated version)

More ... Video: https://www.youtube.com/watch?v=c10nxBcSH14

Turtles all the way down?

- We learn the initialization parameter ϕ by gradient descent
- What is the initialization parameter ϕ^0 for initialization parameter ϕ ?

Learn

- Learn to learn
 - Learn to learn to learn

Crazy Idea? 下回分解☺

How about learning algorithm beyond gradient descent?

