Transformer

Seq2seq model with “Self-attention”
Sequence

Previous layer

Next layer

Hard to parallel!

Using CNN to replace RNN
Sequence

Previous layer
- a^1
- a^2
- a^3
- a^4

Next layer
- b^1
- b^2
- b^3
- b^4

Hard to parallel

Filters in higher layer can consider longer sequence

Using CNN to replace RNN (CNN can parallel)
Self-Attention

$\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4$ can be parallelly computed.

b^i is obtained based on the whole input sequence.

$\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$ can be parallelly computed.

You can try to replace any thing that has been done by RNN with self-attention.
Self-attention

https://arxiv.org/abs/1706.03762

Attention is all you need.

q: query (to match others)

\[q^i = W^q a^i \]

k: key (to be matched)

\[k^i = W^k a^i \]

ν: information to be extracted

\[\nu^i = W^\nu a^i \]

\[a^i = W x^i \]
Self-attention

拿每個 query q 去對每個 key k 做 attention

Scaled Dot-Product Attention: \[\alpha_{1,i} = \frac{q^1 \cdot k^i}{\sqrt{d}} \]

d is the dim of q and k

dot product
Self-attention

\[\hat{\alpha}_{1,i} = \exp(\alpha_{1,i}) / \sum_j \exp(\alpha_{1,j}) \]

\[\alpha_{1,1}, \alpha_{1,2}, \alpha_{1,3}, \alpha_{1,4} \]

\[q^1, k^1, v^1 \]
\[q^2, k^2, v^2 \]
\[q^3, k^3, v^3 \]
\[q^4, k^4, v^4 \]

\[a^1, a^2, a^3, a^4 \]
\[x^1, x^2, x^3, x^4 \]
Self-attention

Considering the whole sequence

\[b^1 = \sum_i \hat{\alpha}_{1,i} v^i \]
Self-attention

拿每個 query q 去對每個 key k 做 attention

$$b^2 = \sum_i \alpha_{2,i} v^i$$
Self-attention

\(b^1, b^2, b^3, b^4 \) can be parallelly computed.
Self-attention

$$q^i = W^q a^i$$

$$k^i = W^k a^i$$

$$v^i = W^v a^i$$

$$Q = W^q a^1 a^2 a^3 a^4$$

$$K = W^k a^1 a^2 a^3 a^4$$

$$V = W^v a^1 a^2 a^3 a^4$$

$$x^i$$
Self-attention

\[b^1 \]

\(\hat{\alpha}_{1,1} \)
\(q^1 \) \(k^1 \) \(v^1 \)
\(\hat{\alpha}_{1,2} \)
\(q^2 \) \(k^2 \) \(v^2 \)
\(\hat{\alpha}_{1,3} \)
\(q^3 \) \(k^3 \) \(v^3 \)
\(\hat{\alpha}_{1,4} \)
\(q^4 \) \(k^4 \) \(v^4 \)

\[\alpha_{1,1} = k^1 q^1 \]
\[\alpha_{1,2} = k^2 q^1 \]
\[\alpha_{1,3} = k^3 q^1 \]
\[\alpha_{1,4} = k^4 q^1 \]

(ignore \(\sqrt{d} \) for simplicity)
Self-attention

\[b^2 = \sum_i \hat{\alpha}_{2,i} v^i \]
Self-attention

\[b^2 = \sum_i \hat{\alpha}_{2,i} v^i \]

\[b^1 b^2 b^3 b^4 = v^1 v^2 v^3 v^4 \]

\[O = V \hat{A} \]
反正就是一堆矩陣乘法，用 GPU 可以加速
Multi-head Self-attention

\[q^{i,1} = W^{q,1}q^i \]
\[q^{i,2} = W^{q,2}q^i \]

(2 heads as example)
Multi-head Self-attention (2 heads as example)

\[q^{i,1} = W^{q,1} q^i \]
\[q^{i,2} = W^{q,2} q^i \]

\[q^i = W^{q} x^i \]
Positional Encoding

- No position information in self-attention.
- Original paper: each position has a unique positional vector e_i (not learned from data)
- In other words: each x_i appends a one-hot vector p_i

\[
p^i = \begin{bmatrix} 0 & 1 & 0 & \cdots \end{bmatrix}
\]

\[
p^i = W^L p^i + W^P + e^i + a^i
\]
\[W^I \mathbf{x}^i + W^P \mathbf{p}^i = x^i \]
Seq2seq with Attention

Encoder

Self-Attention Layer

Decoder

Self-Attention Layer

Review: https://www.youtube.com/watch?v=ZjfjPzXw6og&feature=youtu.be
Using Chinese to English translation as example
Transformer

\[\begin{align*}
 b' & \rightarrow \text{Layer Norm} \\
 b' & + b \\
 b & \rightarrow \\
 a \\
\end{align*} \]

Layer Norm:
https://arxiv.org/abs/1607.06450

Batch Norm:
https://www.youtube.com/watch?v=BZh1ltr5Rkg

Batch Size
\[\begin{align*}
 \mu &= 0, \quad \sigma = 1 \\
 \text{Batch} \\
\end{align*} \]

Layer Norm:
\[\begin{align*}
 \mu &= 0, \quad \sigma = 1 \\
 \text{Layer} \\
\end{align*} \]

Attend on the input sequence

Masked: attend on the generated sequence

Positional Encoding

Input Embedding

Output Embedding

Add & Norm

Multi-Head Attention

Softmax

Linear

Feed Forward

Output Probabilities
Attention Visualization

https://arxiv.org/abs/1706.03762
Attention Visualization

The encoder self-attention distribution for the word “it” from the 5th to the 6th layer of a Transformer trained on English to French translation (one of eight attention heads).

Multi-head Attention
Example Application

- If you can use seq2seq, you can use transformer.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Input</th>
<th>Output</th>
<th># examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigaword (Graff & Cieri, 2003)</td>
<td>10^1</td>
<td>10^1</td>
<td>10^6</td>
</tr>
<tr>
<td>CNN/DailyMail (Nallapati et al., 2016)</td>
<td>10^2–10^3</td>
<td>10^1</td>
<td>10^5</td>
</tr>
<tr>
<td>WikiSum (ours)</td>
<td>10^2–10^6</td>
<td>10^1–10^3</td>
<td>10^6</td>
</tr>
</tbody>
</table>

https://arxiv.org/abs/1801.10198
Universal Transformer

Parameters are tied across positions and time steps

Self-Attention GAN

convolution feature maps (x)

f(x)

g(x)

h(x)

transpose

softmax

attention map

self-attention feature maps (o)

https://arxiv.org/abs/1805.08318