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ABSTRACT

End-to-end TTS model can directly take an utterance as ref-
erence, and generate speech from the text with prosody and
speaker characteristics similar to the reference utterance. Ide-
ally, the transcription of reference utterance does not need to
match the text to be synthesized, so unsupervised style trans-
fer can be achieved. However, in the previous model, because
only the matched text and speech are used in training, given
unmatched text and speech during testing would make the
model synthesize blurry speech. In this paper, we propose to
mitigate the problem by using the unmatched text and speech
during training, and using the ASR accuracy of an end-to-end
ASR model to guide the training procedure. The experimental
results show that with the guidance of end-to-end ASR, both
the ASR accuracy (objective evaluation) and the listener pref-
erence (subjective evaluation) of the speech generated by TTS
model are improved. Moreover, we propose attention consis-
tency loss as regularization, which is shown to accelerate the
training.

Index Terms— Text-to-Speech, Automatic Speech Recog-
nition

1. INTRODUCTION

End-to-end text-to-speech (TTS) has made great progress in
recent years. The original end-to-end TTS models only train
and generate voice for single speaker [1, 2, 3, 4]. Then several
modifications were proposed to generate speech conditioned
on different speakers [1, 2, 5, 6, 7]. However, these mod-
els often require training data with speaker labels, and can-
not generate the voice of the speakers not in the training set.
The end-to-end TTS can be more flexible if the model can
directly take an utterance as reference, and generate speech
from the text with prosody and speaker characteristics simi-
lar to the reference utterance. In this way, unsupervised voice
style transfer can be achieved [4]. Once a speaker’s utterance
is provided as the reference utterance, TTS model can gener-
ate the voice of the speaker even though his or her voice is not
in the training data. The above scenario is shown in the upper
part of Fig. 1.

Fig. 1: The framework of the proposed approach.

Reference-encoder-based TTS models [8, 9] are proposed
to achieve the goal. These models are trained from a set of ut-
terances and their corresponding text transcriptions as in the
upper-right corner of Fig. 1. As shown in the middle of Fig. 1,
in training, the model takes a pair of utterance and text from
training data as input. The input utterance is considered as the
reference utterance. The model directly uses an encoder net-
work to encode the prosody and speaker information of the
reference utterance, and obtains reference embedding. The
model learns to reconstruct the input utterance based on the
reference embedding and the input text. During the testing
phase, given a reference utterance and text (the text is not the
transcription of the reference utterance), hopefully model can
synthesize the speech of the given text using the characteris-
tics of the reference utterance.

During the training phase, the reference utterance and the
input text are paired, that is, the text is the transcription of the
reference utterance. However, the input utterance and text are
no longer paired when testing. Because the unpaired inputs
are never seen during training, the generated voice will be
blurry. Moreover, without carefully designing the network ar-



chitecture of the reference encoder, the reference encoder may
store some text information rather than prosody and speaker
information in the reference embedding to reconstruct the in-
put utterance. Therefore, the generated voice will even be in-
fluenced by the content of reference utterance. Carefully con-
trolling the capacity of the reference encoder and selecting the
parameters can mitigate the above issue to some extent [8, 9].

In this paper, we propose a more effective way to address
the issue as shown in the lower part of Fig. 1. During train-
ing, we can sample unpaired utterance and text as the input
of the TTS model, but there is no learning target. Therefore,
we use an additional Automatic Speech Recognition (ASR)
loss as learning target. We first train an end-to-end attention-
based seq2seq ASR model. In TTS training, when the refer-
ence utterance and the text are unpaired, we feed the gener-
ated speech into the ASR model, and the TTS model learns
to make the speech recognized as the input text. This addi-
tional loss can prevent the reference encoder from encoding
any text information because if it does so, the ASR accuracy
will be low with unpaired input. Both TTS and ASR models
are end-to-end models, so the TTS model can be trained via
back-propagation. Besides, we propose a novel regulariza-
tion – attention consistency loss. Both the ASR and the TTS
are attention-based seq2seq models. When the TTS model at-
tends on a certain input character and generates an acoustic
feature frame, the ASR model should attend on this frame
when predicting the same character.[10, 11] Therefore, we
constrain the attention weights of the ASR and TTS models
to approximately fulfill the above assumption. This approach
accelerates the convergence during training.

2. RELATED WORK

Most multi-speaker TTS models [1, 2, 6] require speaker
labels to learn a speaker embedding matrix. Recently, some
work try to improve multi-speaker TTS with speaker verifi-
cation [12, 13]. A speaker verification model [14, 15] can
be pretrained to extract the speaker characteristics from the
reference utterance [16]. However, training a speaker verifi-
cation model needs additional speaker labels. Cluster-based
method [17, 18] uses some features, such as i-vector [19, 20],
to cluster the training data, and trains a TTS model for each
partition, but the clustering procedure and TTS are consid-
ered separately. Several works attempt to model the prosody
or speaker information and speech synthesis simultaneously.
The reference encoder is introduced which has been proved
that it can be used to transfer prosody from a reference
utterance, but speaker labels are still required [8]. GST-
tacotron [9] further extends the previous work and adds a style
token layer to disentangle the style into several embeddings.
However, we found that these reference-encoder-based mod-
els usually generate blurry speech missing some characters
in the text. To successfully train the models, one needs very
carefully parameter tuning, dataset selection and trick usage.

To mitigate the problem above, we extend GST-tacotron by
adding an ASR. By making the generated speech recognized
well by the ASR, we can make the generated speech clear and
complete.

Before this work, several works have been proposed to
improve the parametric speech synthesis via the additional
discriminator. Anti-spoofing Verification (ASV) [21] is used
as a discriminator to provide an additional constraint during
training to make the vocoder parameters more realistic [22].
Generative adversarial network (GAN) [23] is used to gener-
ate glottal waveform, which can solve the problem that the
model can only produce average waveforms when using only
squared error loss [24, 25]. However, as far as we know, no
previous works try to add discriminator on end-to-end TTS
model.

3. END-TO-END TTS MODEL

We use GST-tacotron [8] as our reference-encoder-based TTS
model. Given a character sequence x and the mel spectrogram
of the reference utterance yref , GST-tacotron predicts the mel
spectrogram y and linear spectrogram z. The training data for
GST-tacotron is represented as {xi, yi, zi}Ni=1, where xi is the
manual transcription of the i-th utterance in the training set,
while yi and zi are the mel spectrogram and linear spectro-
gram of the i-th utterance respectively. To train GST-tacotron,
the model takes xi and yi as input and learns to reconstruct
yi and zi. yi is used as the input reference utterance yref and
output target at the same time during training. Figure 2 shows
the network architecture of GST-tacotron.

3.1. Reference encoder

The reference encoder, which is illustrated in Figure 2 (a)
[26], takes the reference mel spectrogram yref as input, and
compresses it into a fixed-length vector, called reference em-
bedding. The reference mel spectrogram is first passed into a
convolutional stack and an RNN, interleaved with batch nor-
malization, to get a fixed-length vector. Then the fixed-length
vector is passed through a style token layer [9] to get the fi-
nal reference embedding. The style token layer is made up
of a bank of style token embeddings and an attention module.
The fixed-length vector is used as the key vector to compute
the attention weight for each style token embedding via the
attention module. The output is the weighted sum of the style
token embeddings.

3.2. GST-Tacotron

The architecture and hyperparameters of the model in Fig-
ure 2 (b-1) is the same as previous work [4]. The text encoder
first encodes the character sequences into sequential represen-
tations. Then these representations are concatenated with the
reference embedding. An attention-based decoder is used to



Fig. 2: (a) The architecture of the reference encoder. (b) The whole framework composed of two models: TTS model in (b-1)
and ASR model in (b-2).

generate the mel spectrogram ŷ. Post processing net, which is
a CBHG module [4], generates the linear spectrogram ẑ from
ŷ. The training loss is defined as:

ltts = Lmse(y, ŷ) + Lmse(z, ẑ) (1)

where ŷ and ẑ are generated spectrograms, and y and z are
learning targets. Lmse is the mean squared error function.
Finally, we use the Griffin-Lim [27] algorithm to synthesize
waveform from the predicted linear spectrogram ẑ.

4. PROPOSED APPROACHES

The framework is composed of two components, illustrated
in Figure 2 (b): (1) A reference-encoder-based end-to-end
TTS model, and (2) an end-to-end ASR model, which pre-
dicts character sequence from mel spectrogram. The TTS
model we used here is GST-tacotron [8], which is already in-
troduced in Section 3, while ASR model can be any end-to-
end seq2seq model[28, 29, 30, 31, 32, 33, 34]. In this paper,
we adopt Listen, Attend and Spell (LAS)[31], an attention-
based seq2seq model. We first pretrain TTS and ASR model
separately, then fine tune the TTS model with the guidance of
ASR model. Following sections will first go over the algo-
rithm, then we will go to details about the proposed attention
consistency loss and sampling process.

4.1. Algorithm

The algorithm is given in Algorithm 1. In the training of
the original GST-tacotron, the input text x and reference mel
spectrogram yref are always paired because there is no train-
ing target for the unpaired cases. Here we propose to use a
pretrained ASR model to provide training target for unpaired
cases. For any character sequence x and reference mel spec-
trogram yref that are not paired, we want the synthesized

Algorithm 1 ASR guided tacotron.

Require: Training data {(xi, yi, zi)}Ni=1, where xi denotes
character sequence, yi denotes mel spectrogram, and zi

denotes linear spectrogram.
1: pretrain ASR model Masr with {(xi, yi, zi)}Ni=1

2: pretrain TTS model Mtts with {(xi, yi)}Ni=1

3: for t = 0,...,num iter do
4: xi, yi, zi ← Sample a tuple from training data
5: ŷ, ẑ ←Mtts(x

i, yi) // generate speech in paired case
6: ltts = Lmse(y

i, ŷ) + Lmse(z
i, ẑ)

7: Update Mtts to minimize ltts
8: xj ← Randomly sample another character sequence
9: ŷ′ ←Mtts(x

j , yi) // generate speech in unpaired case
10: lasr = Lasr(Masr(ŷ

′), xj)
11: Update Mtts to minimize lasr
12: end for

speech to be recognized well by the ASR model. We define
the ASR loss to be:

ŷ = Mtts(x, yref ), (2)

lasr = Lasr(Masr(ŷ), x), (3)

where Mtts and Masr denote the TTS and ASR model re-
spectively; ŷ denotes the mel spectrogram of the generated
speech; Lasr is the cross entropy loss function. The parame-
ters of the TTS model are updated to minimize lasr.

4.2. Attention Consistency

For an attention-based seq2seq model, in time step t, the de-
coder will generate an attention weight vector wt. The di-
mension of the attention weight vector wt is equivalent to the
number of input tokens. For example, for a TTS model, the
dimension of wt is the number of input characters in the input



text. We can define the attention matrix W as the concatena-
tion of the attention weight vectors of all time steps:

W = [w1, w2, ..., wT ] (4)

where T denotes the decoder sequence length. Here both the
TTS model and the ASR model are attention-based seq2seq
models. Let Wtts and Wasr represent the attention matrices
of the TTS model and ASR model respectively.

We propose to add an additional loss, called attention con-
sistency loss lreg, to accelerate the training. lreg encourages
the multiplication of Wtts and Wasr close to an identity ma-
trix,

lreg =
∑

(I −WttsWasr)
2 (5)

where I denotes the identity matrix. The meaning of this loss
is that if the ASR model attends on a specific spectrogram
frame to recognize a character, the TTS model is encouraged
to attend on the character to generate the specific spectrogram
frame.

With lreg , the new ASR loss will become:

l′asr = lasr + lreg. (6)

This regularization is shown to accelerate the convergence in
the experiment.

4.3. Training tricks – Randomness Procedure

When minimizing the ASR loss, there are two choices: sam-
pling a character sequence xj or sampling a new mel spectro-
gram yj . In Algorithm 1, we choose the former one. Remind
that we want to prevent the reference encoder to encode infor-
mation other than prosody or speaker information. Therefore,
in each training iteration, we keep the reference mel spec-
trogram unchanged, and pair the spectrogram with different
character sequences. Then ASR loss will keep the reference
encoder to encode only prosody information, otherwise, the
generated utterance will not be correctly recognized by ASR
model. In the experiments, randomly sampling a new charac-
ter sequence xj obtains much better performance than sam-
pling a new reference mel spectrogram yj1.

5. EXPERIMENTAL SETUP

We used VCTK dataset [35] for speech synthesis, which
consisted of around 44000 acoustic utterances with tran-
scriptions and 109 different speaker labels. To save the
training time, only the utterances shorter than 3.1 seconds
were used, which left around 40000 utterances. We split the
training/testing data as 107/2 speakers. While in the training
process, the speaker labels were not used. In the training of
ASR model, we used the training data of VCTK and part
of the LibriSpeech corpus [36], which was a multi-speaker

1We do not show the results in this paper due to space limitation.

dataset. Also, only the utterances shorter than 3.1 seconds
in LibriSpeech were used, resulting in totally around 55000
utterances.

For the TTS and reference embedding, we used the same
architecture as in GST-tacotron [4, 8] if not specified. The re-
duction factor was set to 5. We used the lowercase alphabets
as input, and the predicted targets were log-scale mel spec-
trogram and log-scale linear spectrogram. We first pretrained
the ASR for 100 epochs and TTS model for 300 epochs, and
then trained the TTS model with the guidance of ASR for 100
epochs. The batch size was set to 32. The learning rate was
set to 1e-3 when pretraining ASR and TTS. When training the
whole framework, the learning rate was set to 1e-3 and 1e-4
on the TTS loss and ASR loss. Learning rate decay of 0.9 per
4000 steps was used in every case. For fair comparison, we
further trained the pretrained TTS model for 100 more epochs
as the baseline TTS model without ASR. Therefore, the TTS
models with and without ASR have the same training epochs.

6. EXPERIMENTAL RESULT

6.1. Objective Evaluation

For testing, we synthesized 200 sentences with 10 reference
utterances, so there were 2000 synthesized utterances in total.
The sentences were from LibriSpeech which were not seen in
training stage. The reference utterances comprised 5 male and
5 female utterances. The reference utterances were all from
different speakers, while 8 from training speakers of VCTK
and 2 from testing speakers. Although some of the reference
utterances had been seen by the models during training, the
sentences to be synthesized had never been seen before the
testing.

6.1.1. Attention Consistency Loss

We first compare the training convergence speed of the pro-
posed approach with and without attention consistency loss.
Figure 3 shows the accuracy of the end-to-end ASR model
used to train the TTS model. The accuracy is evaluated on the
speech synthesized from training sentences and reference ut-
terances. During the training, the accuracy became higher and
higher, which means that the TTS models learned to synthe-
size more clear speech that can be correctly recognized by the
end-to-end ASR model. With attention consistency loss, the
ASR accuracy of the synthesized speech not only converges
faster but also becomes higher compares to the one without
it. The results demonstrate the effectiveness of attention con-
sistency loss. In the following experiments, we will adopt
attention consistency loss if not specified.

6.1.2. ASR Model Attention

Besides ASR accuracy, we also analyze the attention heat map
of the end-to-end ASR model during different training stages



Fig. 3: The accuracy of the end-to-end ASR model on the
synthesized speech to the number of training epochs.

of the TTS model. A representative example is shown in Fig-
ure 4. It is clear that with the training step increasing, the
attention is more and more closer to a diagonal line. Because
speech and its transcription have a monotonic mapping rela-
tionship [37, 38], the diagonal line in the attention map of-
ten signs that the ASR model can successfully recognize the
speech.

(a) Epoch 0 (b) Epoch 40 (c) Epoch 80

Fig. 4: An example of the attention heat map of the ASR
model with different numbers of epochs.

6.1.3. Global variance analysis

Diversified distribution over all frequencies is a highly de-
sired property of synthesized speech signals. This property
can be verified by calculating the Global Variance (GV) [39]
over the spectrogram. Higher global variance indicates sharp-
ness of the synthesized speech. Figure 5 (a) and (b) show the
global variance of the proposed approach (with ASR) and the
baseline (without ASR) on linear spectrogram and mel spec-
trogram respectively.

The results demonstrate that our model has higher global
variance almost on all frequency indices compared to the

(a) linear spectrogram (b) mel spectrogram

Fig. 5: The global variance of the generated speech.

Methods CER
Google Sphinx

w/ style token layer (a)baseline 0.59 0.65
(b)ours 0.36 0.39

w/o style token layer (c)baseline 0.74 0.82
(d)ours 0.61 0.69

Table 1: Comparison of the character error rate (CER) of the
speech synthesized by different TTS models.

baseline on both linear spectrogram and mel spectrogram.

6.1.4. ASR error analysis

To verify that our model can effectively solve the problem
of the blurriness of the generated speech, we use off-the-shelf
ASR systems, Google and Sphinx [40] systems2, to recognize
the generated speech of different TTS models. The results are
shown in Table 1.

In rows (a) and (b), the network architecture of the TTS
models is the same as the original GST-tacotron model [9].
We can observe that the character error rate (CER) of our
model are lower than that of the baseline of both ASR sys-
tems (rows (b) v.s. (a)). In rows (c) and (d), we take away
the style token layer from the GST-tacotron, which greatly in-
creases the capacity of the reference encoder. We compare the
proposed approach and the baseline based on different TTS
models because we want to verify that the proposed approach
is independent to the network architecture of the TTS mod-
els. The increasing capacity of the reference encoder will
let the model more possible to encode text information in-
side the reference embedding, which will cause the generated
speech even more blurry, and thus lead to higher CER (rows
(c) v.s. (a)). In this case, adding an additional ASR loss can
still mitigate the blurriness problem, and achieve higher accu-
racy (rows (d) v.s. (c)).

Figure 6 illustrates several spectrogram examples and the
ASR recognition results of the generated speech by baseline
and our framework. We can see that, the baseline TTS model

2These ASR systems are only used to evaluate the performance of the
TTS systems. They do not involve in the training process.



is more likely to generate blurry spectrogram, and thus the
Google ASR system loses some words or generates repeated
words, while our model can mitigate this problem.

(A) Input Text: I have said enough
Baseline

ASR result:
(blank)

Our model

ASR result:
I have said enough

(B) Input Text: Never seen after Lent

Baseline

ASR Result:
Ssssss

Our model

ASR Result:
Every scene after the end

Fig. 6: The spectrograms and the results of the Google ASR
system of the generated voice. (A) The generated speech
by the baseline model is too blurry to be recognized by the
google ASR system. (B) The generated speech by the base-
line model has some repeated patterns, which is recognized
as many repeated s.

6.1.5. Speaker Verification Analysis

To verify whether the TTS models can synthesize the speech
of the target speakers, we trained another speaker verification
network that took the generated utterances as input to predict
the speaker identity. The speaker verification network was
trained from all the utterances of ten speakers of the reference
utterances in VCTK. The architecture of the speaker verifica-
tion network was the same architecture as the reference en-
coder except that the style token layer is replaced with a lin-
ear layer. The output dimension of the linear layer was the
number of the speakers. The softmax activation was applied
on the output of the linear layer. The verification accuracy
was 0.747 and 0.739 of our proposed model and the baseline
respectively. This shows that while making the synthesized
speech more clear, the proposed approach does not make the
synthesized speech less similar to the reference utterances.

6.2. Subjective evaluation

We also performed a subjective human evaluation for the gen-
erated voices3. Four reference utterances, two male and two
female utterances, and six sentences were combined mutually
to generate twenty-four utterances by both our model and the
baseline model. Given one synthesized utterance from our
model and one from the baseline model, 15 annotators were
asked which one they preferred in terms of two measures: the
similarity in speaker prosody to the reference utterance and
the clarity of the speech. The utterance pairs were given in
random order.

The result is shown in Figure 7. Because the origin GST-
tacotron can already model the prosody of the reference ut-
terance well, the result of the similarity is comparable in al-
most all utterances. That is, for the ability of modeling the
speaker characteristics in the reference utterances, the pro-
posed model and the baseline model are basically the same.
However, our model performs far better than the baseline in
terms of the clarity of the speech. Among the speech gen-
erated by our model, around 60% is preferred, and around
22% is comparable. In most of the comparable cases, GST-
tacotron had been able to generate clear speech, so the im-
provement of our model is not significant.

Fig. 7: Results of subjective preference test in terms of the
similarity to target speaker (left) and the clarity of the speech
(right).

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new framework to improve un-
supervised style transfer TTS model, GST-tacotron. With
the guidance of an end-to-end ASR model, the clarity of the
synthesized speech is improved in terms of objective and
subjective evaluations. Besides, attention consistency loss is
proposed to accelerate the convergence. In our future work,
we will use neural-network-based vocoder [41] to further
enhance the voice quality. Moreover, we will consider the
end-to-end ASR as the discriminator in GAN and update the
ASR model while training end-to-end TTS.

3Sound demos can be found at https://happyball.github.io/
SLT_demo_page.

https://happyball.github.io/SLT_demo_page
https://happyball.github.io/SLT_demo_page
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