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Abstract

Auto-encoders compress input data into a
latent-space representation and reconstruct the
original data from the representation. This la-
tent representation is not easily interpreted by
humans. In this paper, we propose training
an auto-encoder that encodes input text into
human-readable sentences, and unsupervised
abstractive summarization is thereby achieved.
The auto-encoder is composed of a generator
and a reconstructor. The generator encodes the
input text into a shorter word sequence, and
the reconstructor recovers the generator input
from the generator output. To make the gen-
erator output human-readable, a discriminator
restricts the output of the generator to resem-
ble human-written sentences. By taking the
generator output as the summary of the in-
put text, abstractive summarization is achieved
without document-summary pairs as training
data. Promising results are shown on both En-
glish and Chinese corpora.

1 Introduction

When it comes to learning data representations,
a popular approach involves the auto-encoder ar-
chitecture, which compresses the data into a la-
tent representation without supervision. In this
paper we focus on learning text representations.
Because text is a sequence of words, to encode a
sequence, a sequence-to-sequence (seq2seq) auto-
encoder (Li et al., 2015; Kiros et al., 2015) is usu-
ally used, in which a RNN is used to encode the
input sequence into a fixed-length representation,
after which another RNN is used to decode the
original input sequence given this representation.
Although the latent representation learned by
the seq2seq auto-encoder can be used in down-
stream applications, it is usually not human-
readable. In this work, we use comprehensi-
ble natural language as a latent representation of
the input source text in an auto-encoder architec-
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ture. This human-readable latent representation
is shorter than the source text; in order to recon-
struct the source text, it must reflect the core idea
of the source text. Intuitively, the latent represen-
tation can be considered a summary of the text, so
unsupervised abstractive summarization is thereby
achieved.

The idea that using human comprehensible lan-
guage as a latent representation has been ex-
plored on text summarization, but only in a semi-
supervised scenario. Previous work (Miao and
Blunsom, 2016) uses a prior distribution from a
pre-trained language model to constrain the gen-
erated sequence to natural language. However,
to teach the compressor network to generate text
summaries, the model is trained using labeled
data. In contrast, in this work we need no labeled
data to learn the representation.

As shown in Fig. 1, the proposed model is com-
posed of three components: a generator, a discrim-
inator, and a reconstructor. Together, the gener-
ator and reconstructor form a text auto-encoder.
The generator acts as an encoder in generating
the latent representation from the input text. In-
stead of using a vector as latent representation,
however, the generator generates a word sequence
much shorter than the input text. From the shorter
text, the reconstructor reconstructs the original in-
put of the generator. By minimizing the recon-
struction errors, the generator learns to generate
short text segments that contain the main infor-
mation in the original input. We use the seq2seq
model in modeling the generator and reconstruc-
tor because both have input and output sequences
with different lengths.

However, it is very possible that the gener-
ator’s output word sequence can only be pro-
cessed and recognized by the reconstructor but is
not readable by humans. Here, instead of reg-
ularizing the generator output with a pre-trained



language model (Miao and Blunsom, 2016), we
borrow from adversarial auto-encoders (Makhzani
et al., 2015) and cycle GAN (Zhu et al., 2017)
and introduce a third component — the discrimina-
tor — to regularize the generator’s output word se-
quence. The discriminator and the generator form
a generative adversarial network (GAN) (Good-
fellow et al., 2014). The discriminator discrim-
inates between the generator output and human-
written sentences, and the generator produces out-
put as similar as possible to human-written sen-
tences to confuse the discriminator. With the GAN
framework, the discriminator teaches the genera-
tor how to create human-like summary sentences
as a latent representation. However, due to the
non-differential property of discrete distributions,
generating discrete distributions by GAN is chal-
lenging. To tackle this problem, in this work, we
proposed a new kind of method on language gen-
eration by GAN.

By achieving unsupervised abstractive text
summarization, machine is able to unsupervisedly
extract the core idea of the documents. This ap-
proach has many potential applications. For exam-
ple, the output of the generator can be used for the
downstream tasks like document classification and
sentiment classification. In this study, we evaluate
the results on an abstractive text summarization
task. The output word sequence of the generator
is regarded as the summaries of the input text. The
model is learned from a set of documents with-
out summaries. As most documents are not paired
with summaries, for example the movie reviews or
lecture recordings, this technique makes it possi-
ble to learn summarizer to generate summaries for
these documents. The results show that the gener-
ator generates summaries with reasonable quality
on both English and Chinese corpora.
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Figure 1: Proposed model. Given long text, the
generator produces a shorter text as a summary.
The generator is learned by minimizing the recon-
struction loss together with the reconstructor and
making discriminator regard its output as human-
written text.

As close as possible (minimize reconstruction loss)

2 Related Work

Abstractive Text Summarization

Recent model architectures for abstractive text
summarization basically use the sequence-to-
sequence (Sutskever et al., 2014) framework in
combination with various novel mechanisms. One
popular mechanism is attention (Bahdanau et al.,
2015), which has been shown helpful for summa-
rization (Nallapati et al., 2016; Rush et al., 2015;
Chopra et al., 2016). It is also possible to directly
optimize evaluation metrics such as ROUGE (Lin,
2004) with reinforcement learning (Ranzato et al.,
2016; Paulus et al., 2017; Bahdanau et al., 2016).
The hybrid pointer-generator network (See et al.,
2017) selects words from the original text with a
pointer (Vinyals et al., 2015) or from the whole
vocabulary with a trained weight. In order to elim-
inate repetition, a coverage vector (Tu et al., 2016)
can be used to keep track of attended words, and
coverage loss (See et al., 2017) can be used to
encourage model focus on diverse words. While
most papers focus on supervised learning with
novel mechanisms, in this paper, we explore un-
supervised training models.

GAN for Language Generation
In this paper, we borrow the idea of GAN to make

the generator output human-readable. The major
challenge in applying GAN to sentence genera-
tion is the discrete nature of natural language. To
generate a word sequence, the generator usually
has non-differential parts such as argmax or other
sample functions which cause the original GAN to

fail.
In (Gulrajani et al., 2017), instead of feeding a

discrete word sequence, the authors directly feed
the generator output layer to the discriminator.
This method works because they use the earth
mover’s distance on GAN as proposed in (Ar-
jovsky et al., 2017), which is able to evaluate the
distance between a discrete and a continuous dis-
tribution. SeqGAN (Yu et al., 2017) tackles the
sequence generation problem with reinforcement
learning. Here, we refer to this approach as ad-
versarial REINFORCE. However, the discrimina-
tor only measures the quality of whole sequence,
and thus the rewards are extremely sparse and the
rewards assigned to all the generation steps are all
the same. MC search (Yu et al., 2017) is proposed
to evaluate the approximate reward at each time
step, but this method suffers from high time com-
plexity. Following this idea, (Li et al., 2017) pro-
poses partial evaluation approach to evaluate the



expected reward at each time step. In this pa-
per, we propose the self-critical adversarial RE-
INFORCE algorithm as another way to evaluate
the expected reward at each time step. The per-
formance between original WGAN and proposed
adversarial REINFORCE is compared in experi-
ment.

3 Proposed Method

The overview of the proposed model is shown in
Fig. 2. The model is composed of three com-
ponents: generator (G, discriminator D, and re-
constructor R. Both GG and R are seq2seq hy-
brid pointer-generator networks (See et al., 2017)
which can decide to copy words from encoder in-
put text via pointing or generate from vocabulary.
They both take a word sequence as input and out-
put a sequence of word distributions. Discrimina-
tor D, on the other hand, takes a sequence as input
and outputs a scalar. The model is learned from a

set of documents z and human-written sentences
yreal

To train the model, a training document
{z1,29,....2¢,...;x7}, Where x; rep-
resents a word, is fed to G, which outputs
a sequence of word distributions G(z) =
{y1,92, s Yn, ..., YN }, Where y,, is a distribution
over all words in the lexicon. Then we sample a
word y; from each distribution y,,, and a word se-
quence y° = {y7,v5,...,y% } is obtained accord-
ing to G(x). We feed the sampled word sequence
y® to reconstructor 12, which outputs another se-
quence of word distributions . The reconstructor
R reconstructs the original text  from y®. That
is, we seek an output of reconstructor Z that is as
close to the original text x as possible; hence the
loss for training the reconstructor, Ry, is defined
as

X =

K
Rloss :le(.%,i‘), (1)
k=1

where the reconstruction loss Is(z, &) is the cross-
entropy loss computed between the reconstructor
output sequence = and the source text x, or the
negative conditional log-likelihood of source text
x given word sequence y® sampled from G(x).
The reconstructor output sequence % is teacher-
forced by source text . The subscript s in l5(z, %)
indicates that Z is reconstructed from y®. K is the
number of training documents, and (1) is the sum-
mation of the cross-entropy loss over all the train-
ing documents x.

In the proposed model, the generator GG and re-
constructor R form an auto-encoder. However, the
reconstructor 12 does not directly take the genera-
tor output distribution G'(z) as input !. Instead, the
reconstructor takes a sampled discrete sequence y°
as input. Due to the non-differentiable property of
discrete sequences, we apply the REINFORCE al-
gorithm, which is described in Section 4.

In addition to reconstruction, we need the dis-
criminator D to discriminate between the real se-
quence 3" and the generated sequence y° to reg-
ularize the generated sequence satisfying the sum-
mary distribution. D learns to give y"°* higher
scores while giving y° lower scores. The loss for
training the discriminator D is denoted as Djgss;
this is further described in Section 5.

G learns to minimize the reconstruction error
Rjyss, while maximizing the loss of the discrimi-
nator D by generating a summary sequence y° that
cannot be differentiated by D from the real thing.
The loss for the generator Gy, 1S

Gloss = aRloss - Dfoss (2)

where D; oss 18 highly related to D55 — but not
necessary the same” — and « is a hyper-parameter.
After obtaining the optimal generator by minimiz-
ing (2), we use it to generate summaries.

Generator (G and discriminator D together form
a GAN. We use two different adversarial training
methods to train D and G; as shown in Fig. 2,
these two methods have their own discriminators
1 and 2. Discriminator 1 takes the generator out-
put layer G(x) as input, whereas discriminator 2
takes the sampled discrete word sequence y° as
input. The two methods are described respectively
in Sections 5.1 and 5.2.

4 Minimizing Reconstruction Error

Because discrete sequences are non-differentiable,
we use the REINFORCE algorithm. The gener-
ator is seen as an agent whose reward given the
source text x is —ls(x,#). Maximizing the re-
ward is equivalent to minimizing the reconstruc-
tion loss R, in (1). However, the reconstruction
loss varies widely from sample to sample, and thus
the rewards to the generator are not stable either.
Hence we add a baseline to reduce their difference.

'We found that if the reconstructor R directly takes G ()
as input, the generator G learns to put the information about
the input text in the distribution of G/(z), making it difficult
to sample meaningful sentences from G(z).

2Dj. ., has different formulations in different approaches.
This will be clear in Sections 5.1 and 5.2.
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Figure 2: Architecture of proposed model. The generator network and reconstructor network are a
seq2seq hybrid pointer-generator network, but for simplicity, we omit the pointer and the attention parts.

We apply self-critical sequence training (Rennie
et al., 2017); the modified reward r(x, &) from
reconstructor R with the baseline for the genera-
tor is

R(JL‘,@) = _ls(x7j) - (_la(xai) - b) (3)

where —l,(x,%) — b is the baseline. [,(x,Z)
is also the same cross-entropy reconstruction
loss as l4(x,Z), except that & is obtained from
y® instead of y®. y® is a word sequence
{vt,v8, ...,y ..., y% }, where y2 is selected using
the argmax function from the output distribution
of generator y,. As in the early training stage,
the sequence y° barely yields higher reward than
sequence y“, to encourage exploration we intro-
duce the second baseline score b, which gradu-
ally decreases to zero. Then, the generator is up-
dated using the REINFORCE algorithm with re-
ward rf(x, &) to minimize Rjoss.

5 GAN Training

With adversarial training, the generator learns to
produce sentences as similar to the human-written
sentences as possible. Here, we conduct experi-
ments on two kinds of methods of language gen-
eration with GAN. In Section 5.1 we directly
feed the generator output probability distributions
to the discriminator and use a Wasserstein GAN
(WGAN) with a gradient penalty. In Section 5.2,
we explore adversarial REINFORCE, which feeds
sampled discrete word sequences to the discrim-
inator and evaluates the quality of the sequence
from the discriminator for use as a reward signal
to the generator.

5.1 Method 1: Wasserstein GAN

In the lower left of Fig. 2, the discriminator model
of this method is shown as discriminatorl D;.
Dy is a deep CNN with residual blocks, which
takes a sequence of word distributions as input and
outputs a score. The discriminator loss D, is

1 & 1 &
= (k _ real(k
Dloss— KZDl(G(x ))) KZDl(y ( ))
k=1 k=1
1 & .
o5 D (A Di(y ™)) = 1)%,
k=1

where K denotes the number of training exam-
ples in a batch, and k denotes the k-th exam-
ple. The last term is the gradient penalty (Gul-
rajani et al.,, 2017). We interpolate the genera-
tor output layer G(z) and the real sample 3%,
and apply the gradient penalty to the interpolated
sequence y'. (31 determines the gradient penalty
scale. In Equation (2), for WGAN, the generator

L P
maximizes D, _:

K
) 1
Dloss = K;DI(G(x(k))) (4)

5.2 Method 2: Self-Critic Adversarial
REINFORCE

In this section, we describe in detail the pro-
posed adversarial REINFORCE method. The core
idea is we use the LSTM discriminator to evalu-
ate the current quality of the generated sequence
{y3,v3,...,y; } at each time step i. The generator
knows that compared to the last time step, as the
generated sentence either improves or worsens, it



can easily find the problematic generation step in
a long sequence, and thus fix the problem easily.

5.2.1 Discriminator 2

As shown in Fig. 2, the discriminator2 D5 is a
unidirectional LSTM network which takes a dis-
crete word sequence as input. At time step i,
given input word y; it predicts the current score s;
based on the sequence {y1, y2, ..., ¥; }. The score is
viewed as the quality of the current sequence. An
example of discriminator regularized by weight
clipping(Arjovsky et al., 2017) is shown in Fig. 3.
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Figure 3: When the second arrested appears, as the
sentence becomes ungrammatical, the discrimina-
tor determines that this example comes from the

generator. Hence, after this time-step, it outputs
low scores.

In order to compute the discriminator loss
Dyyss, we sum the scores {si, s2, ..., sy} of the
whole sequence y° to yield

Dy (y®) = % Z Sp.

n=1
where N denotes the generated sequence length.
Then, the loss of discriminator is

1 X
?ZD2(QS
+52K Z

Similar to prev1ous section, the last term is gra-
dient penalty term. With the loss mentioned
above, the discriminator attempts to quickly deter-
mine whether the current sequence is real or fake.
The earlier the timestep discriminator determines
whether the current sequence is real or fake, the
lower its loss.

real

l)hms::
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5.2.2 Self-Critical Generator
Since we feed a discrete sequence y° to the dis-

criminator, the gradient from the discriminator
cannot directly back-propagate to the generator.
Here, we use the policy gradient method. At
timestep ¢, we use the ¢ — 1 timestep score S;_1
from the discriminator as its self-critical baseline.
The reward riD evaluates whether the quality of se-

quence in timestep 7 is better or worse than that in
timestep ¢ — 1. The generator reward T‘Z-D from Dy

is
5
D @
Ty =
{Sz‘—

However, some sentences may be judged as bad
sentences at the previous timestep, but at later
timesteps judged as good sentences, and vice
versa. Hence we use the discounted expected re-
ward d with discount factor ~ to calculate the dis-
counted reward d; at time step ¢ as

j=i

The adversarial REINFORCE score related to dis-
criminator Dl oss 1N (2) 18

Dloss = _Ey;-‘NpG(yfny,---,yf_pw) [di]. (5

We use the likelihood ratio trick to approximate
the gradient to minimize (5).

ifi=1

Si—1 otherwise.

6 Experiment

Our model was evaluated on the English/Chinese
Gigaword datasets and CNN/Daily Mail dataset.
In Section 6.1,6.2 and 6.4, the experiments were
conducted on English Gigaword, while the experi-
ments were conducted on CNN/Daily Mail dataset
and Chinese Gigaword dataset respectively in Sec-
tions 6.3 and 6.6. We used ROUGE(Lin, 2004) as
our evaluation metric. During testing, when us-
ing the generator to generate summaries, we used
beam search with beam size=5, and we eliminated
repetition. We provide the details of the imple-
mentation and corpus re-processing respectively
in Appendix A and B.

Before jointly training the whole model, we
pre-trained the three major components — gener-
ator, discriminator, and reconstructor — separately.
First, we pre-trained the generator in an unsuper-
vised manner so that the generator would be able
to somewhat grasp the semantic meaning of the
source text. The details of the pre-training are
in Appendix C. We pre-trained the discriminator
and reconstructor respectively with the pre-trained
generator’s output to ensure that these two critic
networks provide good feedback to the generator.

6.1 English Gigaword

The English Gigaword is a sentence summariza-
tion dataset which contains the first sentence of
each article and its corresponding headlines. The
preprocessed corpus contains 3.8M training pairs
and 400K validation pairs. We trained our model



’ Task Labeled ‘ Methods ‘ R-1 ‘ R-2 ‘ R-L ‘
(A-1)Supervised training on generator | 33.19 | 14.21 | 30.50
. (A-2) (Rush et al., 2015)t 29.76 | 11.88 | 26.96
(A)Supervised | 3.8M (A-3) (Chopra et al., 2016)t 33.78 | 15.97 | 31.15
(A-4) (Zhou et al., 2017)t 36.15 | 17.54 | 33.63
(B) Trivial baseline | 0 (B-1) Lead-8 21.86 | 7.66 | 20.45
(C-1) Pre-trained generator 21.26 | 5.60 | 18.89
(C) Unsupervised 0 (C-2) WGAN 28.09 | 9.88 | 25.06
(C-3) Adversarial REINFORCE 28.11 | 9.97 | 2541
10K (D-1) WGAN 29.17 | 10.54 | 26.72
(D-2) Adversarial REINFORCE 30.01 | 11.57 | 27.61
(D-3)(Miao and Blunsom, 2016)t 30.14 | 12.05 | 27.99
(D) Semi-supervised 500K (D-4) WGAN 32.50 | 13.65 | 29.67
(D-5) Adversarial REINFORCE 33.33 | 14.18 | 30.48
(D-6)(Miao and Blunsom, 2016)t 31.09 | 12.79 | 28.97
M (D-7) WGAN 33.18 | 14.19 | 30.69
(D-8) Adversarial REINFORCE 34.21 | 15.16 | 31.64
(E-1) Pre-trained generator 21.49 | 6.28 | 19.34
(E) Transfer learning | 0 (E-2) WGAN 25.11 | 7.94 | 23.05
(E-3) Adversarial REINFORCE 27.15 | 9.09 | 24.11

Table 1: Average F1 ROUGE scores on English Gigaword. R-1, R-2 and R-L refers to ROUGE 1,
ROUGE 2 and ROUGE L respectively. Results marked with T are obtained from corresponding papers.
In part (A), the model was trained supervisedly. In row (B-1), we select the article’s first eight words
as its summary. Part (C) are the results obtained without paired data. In part (D), we trained our model
with few labeled data. In part (E), we pre-trained generator on CNN/Diary and used the summaries from

CNN/Diary as real data for the discriminator.

on part of or fully unparalleled data on 3.8M train-
ing set. To have fair comparison with previous
works, the following experiments were evaluated
on the 2K testing set same as (Rush et al., 2015;
Miao and Blunsom, 2016). We used the sentences
in article headlines as real data for discriminator>.
As shown in the following experiments, the head-
lines can even come from another set of docu-
ments not related to the training documents.

The results on English Gigaword are shown in
Table 1. WGAN and adversarial REINFORCE
refer to the adversarial training methods men-
tioned in Sections 5.1 and 5.2 respectively. Re-
sults trained by full labeled data are in part (A).
In row (A-1), We trained our generator by su-
pervised training. Compared with the previous
work (Zhou et al., 2017), we used simpler model
and smaller vocabulary size. We did not try to
achieve the state-of-the-art results because the fo-
cus of this work is unsupervised learning, and the
proposed approach is independent to the summa-

3Instead of using general sentences as real data for dis-
criminator, we chose sentences from headlines because they
have their own unique distribution.

rization models used. In row (B-1), we simply
took the first eight words in a document as its sum-
mary.

The results for the pre-trained generator with
method mentioned in Appendix.C is shown in
row (C-1). In part (C), we directly took the sen-
tences in the summaries of Gigaword as the train-
ing data of discriminator. Compared with the pre-
trained generator and the trivial baseline , the pro-
posed unsupervised approach (rows (C-2) and (C-
3)) showed good improvement. In Fig. 4, we pro-
vide a real example. More examples can be found
in the Appendix.D.

6.2 Semi-Supervised Learning

In semi-supervised training, generator was pre-
trained with few available labeled data. During
training, we conducted teacher-forcing with la-
beled data on generator every several unsupervised
updates. With 10K, 500K and 1M labeled data,
the teacher-forcing was conducted every 25, 5 and
3 unsupervised updates, respectively. In teacher-
forcing, given source text as input, the generator
was teacher-forced to predict the human-written
summary of source text. Teacher-forcing can be



regarded as regularization of unsupervised train-
ing that prevents generator from producing unrea-
sonable summaries of source text. We found that if
we teacher-forced generator too frequently, gener-
ator would overfit on training data since we only
used very few labeled data on semi-supervised
training.

The performance of semi-supervised model in
English Gigaword regarding available labeled data
is shown in Table 1 part (D). We compared our
results with (Miao and Blunsom, 2016) which
was the previous state-of-the-art method on semi-
supervised summarization task under the same
amount of labeled data. With both 500K and 1M
labeled data, our method performed better. Fur-
thermore, with only 1M labeled data, using ad-
versarial REINFORCE even outperformed super-
vised training in Table 1 (A-1) with the whole
3.8M labeled data.

Source Text:

global one communications will launch its global intranet
<unk> -lrb- virtual private networks -rrb- service in new
zealand by the end of the year , the new zealand infotech
weekly reported monday .

Ground Truth:

(A-1)Supervised Result:

international intranet service
destined for new zealand

global one communications to
launch global networks in new
zealand

(C-2)WGAN:
global communications launch
global service in new zealand

(C-3)Adversarial REINFORCE:
global communications launch
global virtual private
networks in new zealand

(E-2)WGAN:

global one communications will
launch its global networks -rrb-
service

(E-3)Adversarial REINFORCE:
global one communications
will launch its global virtual
networks

Figure 4: Real examples with methods referred in
Table 1. The proposed methods generated sum-
maries that grasped the core idea of the articles.

6.3 CNN/Daily Mail dataset

The CNN/Daily Mail dataset is a long text sum-
marization dataset which is composed of news ar-
ticles paired with summaries. We evaluated our
model on this dataset because it’s a popular bench-
mark dataset, and we want to know whether the
proposed model works on long input and long
output sequences. The details of corpus pre-
processing can be found in Appendix.B . In un-
supervised training, to prevent the model from di-
rectly matching the input articles to its correspond-
ing summaries, we split the training pairs into two
equal sets, one set only supplied articles and the
other set only supplied summaries.

The results are shown in Table 2. For super-
vised approaches in part (A), although our seq2seq
model was similar to (See et al., 2017), due to
the smaller vocabulary size (we didn’t tackle out-
of-vocabulary words), simpler model architecture,
shorter output length of generated summaries,
there was a performance gap between our model
and the scores reported in (See et al., 2017). Com-
pared to the lead-3 baseline in part (B) which took
the first three sentences of articles as summaries,
the seq2seq models fell behind. That was be-
cause news writers often put the most important
information in the first few sentences, and thus
even the best abstractive summarization model
only slightly beat the lead-3 baseline on ROUGE
scores. However, during pre-training or training
we didn’t make assumption that the most impor-
tant sentences are in first few sentences.

We observed that our unsupervised model
yielded decent ROUGE-1 score, but it yielded
lower ROUGE-2 and ROUGE-L score. That was
probably because the length of our generated se-
quence was shorter than ground truth, and our
vocabulary size was small. Another reason was
that the generator was good at selecting the most
important words from the articles, but sometimes
failed to combine them into reasonable sentences
because it’s still difficult for GAN to generate
long sequence. In addition, since the reconstruc-
tor only evaluated the reconstruction loss of whole
sequence, as the generated sequence became long,
the reconstruction reward for generator became
extremely sparse. However, compared to pre-
trained generator (rows (C-2), (C-3) v.s. (C-1)),
our model still enhanced the ROUGE score. An
real example of generated summary can be found
at Appendix.D Fig.11 .

6.4 Transfer Learning

The experiments conducted up to this point re-
quired headlines unpaired to the documents but
in the same domain to train discriminator. In
this subsection, we generated the summaries from
English Gigaword (target domain), but the sum-
maries for discriminator were from CNN/Daily
Mail dataset (source domain).

The results of transfer learning are shown in Ta-
ble. 1 part (E). Table 1 (E-1) is the result of pre-
trained generator and the poor pre-training result
indicates that the data distributions of two datasets
are quite different. We find that using sentences
from another dataset yields lower ROUGE scores



’ Methods

| R-1 [ R2 | RL |

. (A-1)Supervised training on our generator | 38.89 | 13.74 | 29.42
(A)Supervised =7 (SI;e etal, 2017)*rg : 3053 | 17.28 | 36.38
(B)Lead-3 baseline (See et al., 2017)* 40.34 | 17.70 | 36.57

(C-1) Pre-trained generator 29.86 | 5.14 | 14.66
(C) Unsupervised | (C-2) WGAN 35.14 | 9.43 | 21.04
(C-3) Adversarial REINFORCE 35.51 | 9.38 | 20.98

Table 2: F1 ROUGE scores on CNN/Diary Mail dataset. In row (B), the first three sentences were taken as
summaries. Part (C) are the results obtained without paired data. The results with symbol 1 are directly

obtained from corresponding papers.

| Methods | R11 | R2 | RL |
(A) Training with paired data (supervised) 49.62 | 34.10 | 46.42
(B)Lead-3 baseline (See et al., 2017) 30.08 | 18.24 | 27.74
(C-1) Pre-trained generator 28.36 | 16.73 | 26.48
(C) Unsupervised | (C-2) WGAN 38.15 | 24.60 | 35.27
(C-3) Adversarial REINFORCE | 41.25 | 26.54 | 37.76

Table 3: F1 ROUGE scores on Chinese Gigaword. In row (B), we selected the article’s first fifteen words
as its summary. Part (C) are the results obtained without paired data.

on the target testing set (parts (E) v.s. (C)) due to
the mismatch word distributions between the sum-
maries of the source and target domains. How-
ever, the discriminator still regularizes the gener-
ated word sequence. After unsupervised training,
the model enhanced the ROUGE scores of the pre-
trained model (rows (E-2), (E-3) v.s. (E-1)) and it
also surpassed the trivial baselines in part (B).

6.5 GAN Training
In this section, we discuss the performance of

two GAN training methods. As shown in the
Table 1, in English Gigaword, our proposed ad-
versarial REINFORCE method performed better
than WGAN. However, in Table 2, our proposed
method slightly outperformed by WGAN. In addi-
tion, we find that when training with WGAN, con-
vergence is faster. Because WGAN directly eval-
uates the distance between the continuous distri-
bution from generator and the discrete distribution
from real data, the distribution was sharpened at
an early stage in training. This caused generator to
converge to a relatively poor place. On the other
hand, when training with REINFORCE, genera-
tor keeps seeking the network parameters that can
better fool discriminator. We believe that training
GAN on language generation with this method is
worth exploring.

6.6 Chinese Gigaword
The Chinese Gigaword is a long text summariza-
tion dataset composed of paired headlines and

news. Unlike the input news in English Gigaword,
the news in Chinese Gigaword consists of sev-
eral sentences. The results are shown in Table 3.
Row (A) lists the results using 1.1M document-
summary pairs to directly train the generator with-
out the reconstructor and discriminator: this is the
upper bound of the proposed approach. In row (B),
we simply took the first fifteen words in a docu-
ment as its summary. The number of words was
chosen to optimize the evaluation metrics. Part
(C) are the results obtained in the unsupervised
scenario without paired data. The discriminator
took the summaries in the training set as real data.
We show the results of the pre-trained generator in
row (C-1); rows (C-2) and (C-3) are the results for
the two GAN training methods respectively. We
find that despite the performance gap between the
unsupervised and supervised methods (rows (C-2),
(C-3) v.s. (A)), the proposed method yielded much
better performance than the trivial baselines (rows
(C-2), (C-3) v.s. (B)).

7 Conclusion and Future Work

Using GAN, we propose a model that encodes text
as a human-readable summary, learned without
document-summary pairs. Promising results are
obtained on both Chinese and English corpora. In
future work, we hope to use extra discriminators
to control the style and sentiment of the generated
summaries.
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A Implementation

Network Architecture. The model architecture
of generator and reconstructor is almost the same
except the length of input and output sequence.
We adapt model architecture for our generator and
reconstructor from (See et al., 2017) who used
hybrid-pointer network for text summarization.
The hybrid-pointer networks of generator and re-
constructor are all composed of two one-layer uni-
directional LSTMs as its encoder and decoder, re-
spectively, with a hidden layer size of 600. Since
we use two kinds of methods on adversarial train-
ing, there are two discriminators with different
model architecture. In the Section 5.1, the dis-
criminator is composed of four residual blocks
with 512 hidden dimensions. While in Section 5.2,
we use only one layer unidirectional LSTM with a
hidden size of 512 as our discriminator.

Details of Training. In all experiments except in
Section 6.4 , we set the weight « in (2) control-
ling Ry, to 25. In Section 6.4, to prevent genera-
tor from overfitting to sentences from CNN/Daily
Mail summary, we set the weight o to 50 which
was larger than other experiments. We find that
the if the value of « is too large, generator will
start to generate output unlike human-written sen-
tences. On the other hand, if the value of « is too
small, the sentences generated by generator will
sometimes become unrelated to input text of gen-
erator. For all the experiments, the baseline b in
(3) gradually decreases from 0.25 to zero within
10000 updates on generator.

We set the weight 5 of the gradient penalty
in Section 5.1 to 10, and used RMSPropOpti-
mizer with a learning rate of 0.00001 and 0.001
on the generator and discriminator, respectively.
In Section 5.2.1, the weight 35 of gradient penalty
terms was 1.0, and used RMSPropOptimizer with
a learning rate of 0.00001 and 0.001 on the gener-
ator and discriminator, respectively. It’s also feasi-
ble to apply weight clipping in discriminator train-
ing, but the performance of gradient penalty trick
was better.

B Corpus Pre-processing

e English Gigaword: We used the script of
(Rush et al., 2015) to construct our training
and testing datasets. The vocabulary size was
set to 15K in all experiments.

o CNN/Diary Mail: We obtained 287227 train-

ing pairs, 13368 validation pairs and 11490
testing pairs identical to (See et al., 2017)
by using the scripts provided by (See et al.,
2017). To make our model easier to train,
during training and testing time, we truncated
input articles to 250 tokens (original articles
has 781 tokens on average) and restricted the
length of generator output summaries (origi-
nal summaries has 56 tokens on average) to
50 tokens. The vocabulary size was set to
15k.

e Chinese Gigaword: The Chinese Gigaword
is a long text summarization dataset which is
composed of 2.2M paired data of headlines
and news. We preprocessed the raw data as
following. First, we selected the 4K most fre-
quent Chinese characters to form our vocabu-
lary. We filtered out headline-news pairs with
excessively long or short news segments, or
that contained too many out-of-vocabulary
Chinese characters, yielding 1.1M headline-
news pairs from which we randomly selected
5K headline-news pairs as our testing set, SK
headline-news pairs as our validation set, and
the remaining pairs as our training set. Dur-
ing training and testing, the generator took
the first 80 Chinese characters of the source
text as input.

C Model Pre-training

As we found that the different pre-training meth-
ods for the generator influenced final performance
dramatically in all of the experiments, we felt it
was important to find a proper unsupervised pre-
training method to help the machine grasp se-
mantic meaning. The summarization tasks on
two datasets is different: One is sentence summa-
rization, while the other is long text summariza-
tion. Therefore, we used the different pre-training
strategies on two datasets described below.

e CNN/Diary Mail: The CNN/Diary Mail is
a long text summarization dataset in which
the source text consists of several sen-
tences. Given the previous ¢ — 1 sentences
sentg, sentq, ..., sent;_1 from the source
text, the generator predicted the next four
sentences sent;, sentiyq, .., sent;+3 in the
source text as its pre-training target. If more
than 40% of the words in target sentences
sent;, sentiy1, ..., sent;+3 did not appear in



the given text, we filtered out this pre-training
sample pair. This pre-training method al-
lowed the generator to capture the impor-
tant semantic meanings of the source text.
Although the first few sentences of articles
in CNN/Diary Mail contains the main infor-
mation of articles, we hope we can provide
a more general pre-training method which
don’t have any assumption of dataset and can
be easily applied to other datasets.

Chinese Gigaword: The pre-training
method of Chinese Gigaword was similar
to CNN/Diary Mail except that generator
predicted the next sentence instead of next
consecutive four sentences.

English/Chinese Gigaword: As the source
text of English Gigaword is made up of only
one sentence, it is not feasible to split the last
sentence from the source text; hence the pre-
vious pre-training method on Chinese Giga-
word is not appropriate for this dataset. To
properly initialize the set, we randomly se-
lected 6 to 11 consecutive words in the source
text, after which we randomly swapped 70%
of the words in the source text. Given text
with incorrect word arrangements, the gener-
ator predicted the selected words in the cor-
rect arrangement. We pre-trained in this way
because we expect the generator to initialize
with a rough language model. In Chinese
Gigaword we also conducted experiments on
pre-training in this manner, but the results
were not as good as those shown in the part
(C) of Table 3. In addition, we also used the
retrieved paired data in row (B-1) in Table 1
to pre-train the generator in English Giga-
word. However, pre-training generator with
this method doesn’t yield results better than
those in Table 1.

Transfer Learning: Before unsupervised
training, the generator was pre-trained with
paralleled data on CNN/Daily Mail dataset.
However, the characteristics for two datasets
are different. In English Gigaword, the ar-
ticles were short and the summaries consist
of only one sentence, while in CNN/Daily
Mail dataset, the articles were extremely long
and summaries consist of several sentences.
To overcome these differences, during pre-
training time, we took the first 35-45 words

in each CNN/Diary Mail article as genera-
tor input, and generator randomly predicted
one of the sentences of the article’s summary.
In addition, we used the one sentence from
CNN/Diary Mail summaries as real data to
discriminator instead full summaries.



D Examples

Source Text:

south korea issued a stern warning monday against illegal
labor disputes and campus protests and announced the arrest
of ### radicals for violent weekend disturbances .

Ground Truth:

south korea issues stern
warning against labor and
campus activists

(A-1)Supervised Result:
south korea issues stern
warning against illegal labor
disputes

Source Text:

the thai government will set up an independent committee to
investigate the management and lending practices of the
state-owned krung thai bank -lrb- ktb -rrb- , channel # ,
thailand 's state television station reported monday .

(C-2)WGAN:
south korea issued stern
warning against illegal labor
disputes

(C-3)Adversarial REINFORCE:
south korea issued stern
warning against illegal labor
disputes campus arrest

Ground Truth:
thailand to investigate
state-owned bank

(A-1)Supervised Result:
thai government to set up
committee to investigate
lending practices

(E-2)WGAN :
south korea issued stern
warning against illegal labor
disputes and arrest

(E-3)Adversarial REINFORCE:
south korea issued stern
warning against illegal labor
disputes campus protests

(C-2)WGAN:
thai set up independent
committee to investigate

(C-3)Adversarial REINFORCE:
thai government set up
independent committee to

Figure 5

management investigate management
lending practices
(E-2)WGAN : (E-3)Adversarial REINFORCE:

the thai committee will set up
an independent committee to
investigate the management

thai government will set up
an independent committee to
investigate

Source Text:

news agency reported .

dutch police arrested monday ## environmentalists who were
attempting to prevent the destruction of a <unk> -lrb- ##-acre
-rrb- woods next to an airport used by nato forces , the anp

Figure 8

Ground Truth:
dutch police arrest ##
environmental protesters

(A-1)Supervised Result:
dutch police arrest ##
environmentalists over nato
destruction

Source Text:

the bewildering fight between the government and
telemarketers over the national do-not-call list took another
turn when a second federal agency said it would enforce the
program , promising that consumers would soon see some
reduction in telephone sales pitches .

(C-2)WGAN:

dutch police arrested ##
environmentalists attempting
to prevent destruction

(C-3)Adversarial REINFORCE:
dutch police arrested ##
environmentalists attempting
to prevent destruction of
woods

Ground Truth:

fcc steps in to enforce
do-not-call list ; bush signs
new law to support program

(A-1)Supervised Result:
second federal agency vows
to reduction telephone sales

(E-2)WGAN :
dutch police arrested who
were attempting to prevent
destruction of a -lrb-

(E-3)Adversarial REINFORCE:
dutch police arrested monday
## environmentalists who
were attempting to prevent
destruction woods

(C-2)WGAN:
fight between government
over national list took turn

(C-3)Adversarial REINFORCE:
fight between government
over national list took turn
second

Figure 6

(E-2)WGAN :
three stores and markets was
forced to shut down

(E-3)Adversarial REINFORCE:
fight between the

government over the national
list took another turn second

Source Text:

wednesday .

the fbi has arrested a father and son with suspected links to
al-qaeda in lodi , california , the los angeles times reported

Ground Truth:

two men with suspected
al-qaeda links arrested in
california

(A-1)Supervised Result:
fbi arrests father son with
suspected links to al-qaeda

Figure 9

(C-2)WGAN:
fbi arrested in father son with
al-qaeda links

(C-3)Adversarial REINFORCE:
fbi arrested father and son
with suspected links to
al-qaeda california

Source Text:

three stores and markets in beijing 's fengtai district have
been forced to shut down and yesterday each was fined

#i## ### yuan -lrb- ##,### us dollars -rrb- for violating laws and
regulations on fire prevention and control .

(E-2)WGAN :

fbi has arrested father and son
with suspected links to
al-qaeda

(E-3)Adversarial REINFORCE:
fbi has arrested a father and
son with suspected links
al-qaeda

Ground Truth:
stores markets punished for
lack of fire controls

(A-1)Supervised Result:
three stores fined for
violating on fire

Figure 7

(C-2)WGAN:
three stores markets in beijing
's district have forced to shut
down yesterday

(C-3)Adversarial REINFORCE:
three stores markets in
beijing 's district have forced
to shut down

(E-2)WGAN :

three stores and markets was
forced to shut down and was
fined

(E-3)Adversarial REINFORCE:
three stores and markets in
beijing ‘s district was fined

Figure 10




Source text:

Irb enn rrb civil unions between people of the same sex will soon be
recognized in chile . the country joined several of its south american
neighbors in allowing the unions when president michelle bachelet
enacted a new law on monday . this is a concrete step in the drive to
end the difference between homosexual and heterosexual couples ,
bachelet said . the new law will take effect in six months . it will give
legal weight to cohabiting relationships between two people of the
same sex and between a man and a woman . the chilean government
estimates that around 2 million people will be able to benefit from the
change . the law is intended to end discrimination faced by
commonlaw couples , such as not being allowed to visit partners in
hospital , make medical decisions on their behalf or decide what to do
with their remains . it also gives the couples greater rights in the
realms of property , health care , pensions and inheritance . a number
of south american nations have moved to allow samesex civil unions
in recent years . but marriage between people of the same sex is legal
only in argentina , brazil and uruguay .

Ground Truth:
president michelle bachelet signs law that will take effect in six months
. chile joins several other south american nations that allow the unions

(C-2)WGAN:

civil unions between people of the same sex will soon be recognized in
chile . the country joined several of its south american neighbors in
allowing the unions when president michelle enacted a new law on
monday . this is a concrete step in the drive .

(C-3)Adversarial REINFORCE:

president michelle enacted a new law on monday . this is a concrete
step in the same sex will soon be recognized in chile . the country
joined several of its south american neighbors .

Figure 11: An example of generated summary of CNN/Diary Mail.




