Deep Learning Tutorial

李宏毅

Hung-yi Lee

Deep learning attracts lots of attention.

Google Trends

Deep learning obtains many exciting results.

This talk will focus on the technical part.

2007 2009 2011 2013 2015

Outline

Part I: Introduction of Deep Learning Part II: Why Deep? Part III: Tips for Training Deep Neural Network

Part IV: Neural Network with Memory

Part I: Introduction of Deep Learning

What people already knew in 1980s

Example Application

Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Example of Neural Network

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \qquad f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} \quad f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Softmax

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

How to set network parameters

$$\theta = \{W^1, b^1, W^2, b^2, \cdots W^L, b^L\}$$

Ink \rightarrow 1 No ink \rightarrow 0 Set the network parameters θ such that

Input How to let the neural network achieve this

y₂ nas tne maxımum value

m value

Input:

Training Data

Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost

Given a set of network parameters θ , each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w₁ and w₂ in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Gradient Descent

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Local Minima

Gradient descent never guarantee global minima

Besides local minima

In physical world

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch $C = L^1 + L^{31} + \cdots$ $\theta^1 \leftarrow \theta^0 \eta \nabla C(\theta^0)$
- $C = L^2 + L^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$ \vdots

Pick the 2nd batch

C is different each time when we update parameters!

Mini-batch

0.9

0.8

-0.1

0.1

0.0

0.2

Original Gradient Descent

1.5 1.4 1.3 1.2 1.1

0.4

0.5

0.6

With Mini-batch

The colors represent the total C on all training data.

Mini-batch

- \triangleright Randomly initialize θ^0
- Pick the 1st batch $C = C^{1} + C^{31} + \cdots$ $\theta^{1} \leftarrow \theta^{0} \eta \nabla C(\theta^{0})$
- Pick the 2nd batch $C = C^2 + C^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$:
- Until all mini-batches have been picked

one epoch

Repeat the above process

Backpropagation

- A network can have millions of parameters.
 - Backpropagation is the way to compute the gradients efficiently (not today)
 - Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201 5_2/Lecture/DNN%20backprop.ecm.mp4/index.html
- Many toolkits can compute the gradients automatically

theano

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Theano%20DNN.ecm.mp4/index.html

Part II: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksandde eplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

Deep → Modularization

Why Deep?

Each basic classifier can have sufficient training examples.

Deep → Modularization

Why Deep? can be trained by little data Deep → Modularization Classifier Girls with long hair Boy or Girl? Classifier Boys with Little data fine Basic **Image** Classifier Classifier Girls with short hair 3 Long or short? Classifier Boys with Sharing by the short hair following classifiers

as module

Why Deep?

Deep Learning also works on small data set like TIMIT.

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Hard to get the power of Deep ...

Part III: Tips for Training DNN

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

Modify the Network

New activation functions, for example, ReLU or Maxout

Better optimization Strategy

Adaptive learning rates

Prevent Overfitting

Dropout

Only use this approach when you already obtained good results on the training data.

Part III: Tips for Training DNN

New Activation Function

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Vanishing Gradient Problem

based on random!?

Vanishing Gradient Problem

Smaller gradients

Intuitive way to compute the gradient ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

a = zReLU a = 0A Thinner linear network y_2 Do not have smaller gradients

Maxout

ReLU is a special cases of Maxout

Learnable activation function [lan J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

Maxout

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

3 elements in a group

Part III: Tips for Training DNN

Adaptive Learning Rate

Learning Rate

Set the learning rate η carefully

Learning Rate

Can we give different parameters different learning rates?

Adagrad

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

$$w^{t+1} \leftarrow w^t - \eta_w \underline{g}^t \qquad \underline{g}^t = \frac{\partial C(\theta^t)}{\partial w}$$

Parameter dependent learning rate

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

constant

Summation of the square of the previous derivatives

Adagrad

$$\eta_w = \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}}$$

$$w_1 = \frac{g^0}{0.1}$$

$$w_2 = \frac{g^0}{20.0}$$

Learning rate:

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1} \qquad \frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{0.1^2 + 0.2^2}} = \frac{\eta}{0.22} \qquad \frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

Observation:

- 1. Learning rate is smaller and smaller for all parameters
- 2. Smaller derivatives, larger learning rate, and vice versa

2. Smaller derivatives, larger learning rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- Adadelta [Matthew D. Zeiler, arXiv'12]
- Adam [Diederik P. Kingma, ICLR'15]
- AdaSecant [Caglar Gulcehre, arXiv'14]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]

Part III: Tips for Training DNN Dropout

Pick a mini-batch

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Pick a mini-batch

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the gradients
 - Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

No dropout

- If the dropout rate at training is p%,
 all the weights times (1-p)%
- Assume that the dropout rate is 50%. If a weight w = 1 by training, set w = 0.5 for testing.

Dropout - Intuitive Reason

- ➤ When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Part IV: Neural Network with Memory

Neural Network needs Memory

- Name Entity Recognition
 - Detecting named entities like name of people, locations, organization, etc. in a sentence.

Neural Network needs Memory

- Name Entity Recognition
 - Detecting named entities like name of people, locations, organization, etc. in a sentence.

DNN needs memory!

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.

Output yi depends on x1, x2, xi

Find the network parameters to minimize the total cost:

Backpropagation through time (BPTT)

Of course it can be deep ...

Bidirectional RNN

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output</u> is shorter.
 - E.g. Speech Recognition

Output: "好棒" (character sequence)

Problem?

Why can't it be "好棒棒"

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)


```
06/12 10:39
                                          06/12 10:40
                                          06/12 10:41
          tion:
                                          06/12 10:47
         host:
                                          06/12 10:59
          403:
                                          06/12 11:11
                                          06/12 11:13
推
                                          06/12 11:17
                                          06/12 11:32
                                          06/12 12:15
推 tlkagk:
```

Ref:http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87 (鄉民百科)

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \Rightarrow $y^{1000}=1$ Large gradient Learning rate?

 $w=0.99$ \Rightarrow $y^{1000}\approx0$ small $y^{1000}\approx0$ learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx0$ gradient \Rightarrow Large Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx0$

Helpful Techniques

- Nesterov's Accelerated Gradient (NAG):
 - Advance momentum method
- RMS Prop
 - Advanced approach to give each parameter different learning rates
 - Considering the change of Second derivatives
- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)

Long Short-term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

Extension: "peephole"

Other Simpler Alternatives

Gated Recurrent Unit (GRU)

Structurally Constrained Recurrent Network (SCRN)

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

What is the next wave?

Already applied on speech recognition, caption generation, QA, visual QA

What is the next wave?

Attention-based Model

- End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. arXiv Pre-Print, 2015.
- Neural Turing Machines. Alex Graves, Greg Wayne, Ivo Danihelka. arXiv Pre-Print, 2014
- Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. Kumar et al. arXiv Pre-Print, 2015
- Neural Machine Translation by Jointly Learning to Align and Translate. D. Bahdanau, K. Cho, Y. Bengio; International Conference on Representation Learning 2015.
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Kelvin Xu et. al.. arXiv Pre-Print, 2015.
- Attention-Based Models for Speech Recognition. Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio. arXiv Pre-Print, 2015.
- Recurrent models of visual attention. V. Mnih, N. Hees, A. Graves and K. Kavukcuoglu. In NIPS, 2014.
- A Neural Attention Model for Abstractive Sentence Summarization. A. M. Rush,
 S. Chopra and J. Weston. EMNLP 2015.

Concluding Remarks

Concluding Remarks

- Introduction of deep learning
- Discussing some reasons using deep learning
- New techniques for deep learning
 - ReLU, Maxout
 - Giving all the parameters different learning rates
 - Dropout
- Network with memory
 - Recurrent neural network
 - Long short-term memory (LSTM)

Reading Materials

- "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://neuralnetworksanddeeplearning.com/
- "Deep Learning" (not finished yet)
 - Written by Yoshua Bengio, Ian J. Goodfellow and Aaron Courville
 - http://www.iro.umontreal.ca/~bengioy/dlbook/

Thank you for your attention!

Acknowledgement

• 感謝 Ryan Sun 來信指出投影片上的錯字

Appendix

Matrix Operation

Why Deep? – Logic Circuits

- A two levels of basic logic gates can represent any Boolean function.
- However, no one uses two levels of logic gates to build computers
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).

Deep Learning

Maxout

ReLU is a special cases of Maxout

Maxout

ReLU is a special cases of Maxout

