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Deep learning
attracts lots of attention.

e Google Trends

Deep learning obtains many exciting results.

:> The talks in this afternoon

This talk will focus on the technical part.

2007 2009 2011 2013 2015
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Part I;
Introduction of
Deep Learning

What people already knew in 1980s



Example Application

* Handwriting Digit Recognition




Handwriting Digit Recognition

Input Output

‘ ‘ The image
16x16 256

is “2”
Ink = 1

Each dimension represents
Noink > 0 the confidence of a digit.




Example Application

* Handwriting Digit Recognition

Y1

- Y,
- Machine N
Xass f:R256 — R10 Y10

In deep learning, the function f is

represented by neural network



Element of Neural Network

Neuron f:R¥ - R

A ~ W, Z=aW,+a,w,+---+a,w, +b
a, — ,
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a ‘ Activation
K : - )
weights X function

bias



Neural Network

neuron

Layer Hidden Layers Layer

Deep means many hidden layers




Example of Neural Network




Example of Neural Network
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Example of Neural Network
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Different parameters define different function



Matrix Operation
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Neural Network
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Neural Network

y | = f(
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) Using parallel computing techniques
to speed up matrix operation
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Softmax

e Softmax layer as the output layer

Ordinary Layer

In general, the output of
network can be any value.
L) m— O — yZZG(Zz)

May not be easy to interpret
s (P — v, —o(2,)



Softmax

Probability:
» Softmax layer as the output layer H1>y,>0
m)yvi=1
Softmax Layer
3 , 20 088 /&,
Zl_>e el_>+_>y1:el Zej
j=1




How to set network parameters
6 = {W1, b, W2 b2, .- W, b}

16 x 16 = 256

Ink > 1

Noink -0 How to let the neural value

network achieve this




Training Data

* Preparing training data: images and their labels

S} [O)o [+ [7]
c? “9” 3* “2" t “1” 3 “3”

Using the training data to find

the network parameters.




Given a set of network parameters 6,
each example has a cost value.

/]

Cost

Cost can be Euclidean distance or cross
entropy of the network output and target



Total Cost

For all training data ... Total Cost:

—
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Assume there are only two
parameters w, and w, in a

Gradient Descent  network

Error Surface
"'"n 5000 —— — 15.000 =200 — 7500

’ The colors represent the value of C

6 = {wy, Wy}

Randomly pick a
starting point Y

Compute the
negative gradient
at 6°

) —VC(0°)
A / Times the
6C(90)/0W1] learning rate 1y
9C(6°)/0w,] mmh —nVC(6°)

3 vceo) =[




Gradient Descent

=uwas Eventually, we would
reach a minima

9

Randomly pick a
starting point Y

Compute the
negative gradient
at 69

m) —-VC(69)

Times the
learning rate n

=) —nVC(6°)




Local Minima

* Gradient descent never guarantee global minima

¢ Reach different minima,
A so different results

., "Who is Afraid of Non-Convex
Loss Functions?
http://videolectures.net/eml07
_lecun_wia/




Besides local minima ......

cost

Very slow at the
plateau
Stuck at saddle point

Stuck at local minima

: A C)NERERAAC) > 7C(H)
parameter space



In physical world ......

* Momentum

I How about put this phenomenon

\ in gradient descent?

- o




Still not guarantee reaching

Momentum global minima, but give some

cost
Movement =

Negative of Gradient + Momentum

P Negative of Gradient
=== MOmentum
—=p Real Movement

Eq E»...-.' :.....> «L---»
— —] — =

Gradient=0



Mini-batch

Mini-batch

N

Mini-batch
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> Randomly initialize 8°

» Pick the 15t batch
C=L"+13+--
1 < 6° — nVC(H)

» Pick the 2" batch
C=1%+L16+
0% « 0t —nvc(6H)

Cis different each time

when we update
parameters!




Mini-batch

Original Gradient Descent

—

With Mini-batch

——— —

unstable

-0.1 . . E : k § . 0.7

The colors represent the total C on all training data.



Mini-batch

Mini-batch

Mini-batch

NN

> Y —
Cl

NN

—

31

> Randomly initialize 8°

N [

NN

NN

‘<k>

A

16|

» Pick the 15t batch
C=C'+cC3t+ -
91 — 8° — vV C(9°)

» Pick the 2" batch
C=C?+C'"*+--
0% « 0t —nvc(6H)

» Until all mini-batches
have been picked

one epoch

Repeat the above process



Backpropagation

* A network can have millions of parameters.
* Backpropagation is the way to compute the gradients
efficiently (not today)
* Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_201
5_2/Lecture/DNN%20backprop.ecm.mp4/index.html

* Many toolkits can compute the gradients automatically

Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS 2015 2/Lec

ture/Theano%20DNN.ecm.mp4/index.html



Part |l:
Why Deep?



Deeper is Better?

Word Error
Rate (%)

Layer X Size

Not surprised, more
parameters, better
performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Universality Theorem

N U
0

Any continuous function f
f:RY >RV

Can be realized by a network
with one hidden layer

Reference for the reason:

(glven enough h Idden http://neuralnetworksandde
neurons) eplearning.com/chap4.html

Why “Deep” neural network not “Fat” neural network?



Fat + Short v.s. Thin + Tall
The same number
B

-

Q ¢
/;‘z{/é A
‘(’ | Which one is better?
vvv



Fat + Short v.s. Thin + Tall

Word Error Word Error
Rate (%)

Layer X Size Layer X Size

Rate (%)

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks." Interspeech. 2011.



Why Deep?

* Deep - Modularization

Classifier Girls with
ﬁ
long hair

Classifier Boys with
long hair

Little examples
Image

Classifier Girls with %E‘,E Pl
3 short hair I & KB
S A
B
T e

T

53

5




Why Deep?

Each basic classifier can have

sufficient training examples.

* Deep - Modularization

Basic
Classifier

Image

Classifiers for the
attributes

K. b RS
. 1%555 2L
<

i




Why Deep?

can be trained by little data

* Deep - Modularization

Classifier _ Girls with
long hair

\ Boys with
) long | ;
Basic Little data

Classifier

Image

Classifier Girls with

3 ] short hair

-

Sharing by the
following classifiers
as module




J Deep Learning also works
Why Deep ' on small data set like TIMIT.

* Deep > Modularization —> Less training data?

The most basic Use 15t layer as module Use 2" layer as
classifiers to build classifiers module




Deep Learning

Hand-crafted

kernel function > ¢ o o
Y
SVM ® /o ‘. |
- oo o AT TN ,
® ® o Apply simple
classifier
Input Space Feature Space

Source of image: http://www.gipsa-lab.grenoble-
inp.fr/transfert/seminaire/455 Kadri2013Gipsa-lab.pdf

simple

Learnable kernel ¢(x) / classifier

A - < — v
X2§ % ...... Q — Y,
PON L SN




Hard to get the power of Deep ...

Handwritting Digit Classification
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Before 2006, deeper usually does not imply better.

3 4 5 6 7 8
Layers




Part |l1:
Tips for Training DNN




Recipe for Learning

Does itdo well |y, Does itdo well | ves

on the training | m—) on the test mmmd)p Done!
data? data?

lNo aw lNO

Bigger network . " More data

l (Rocket engine) ~ ° (Rocket fuel)

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/




Recipe for Learning

Does it do well Does it do well
on the training - on the test
data?

Better optlmlzatlon
l Strategy

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-
explained-in-a-single-powerpoint-slide/



Recipe for Learning

*—

e New activation functions, for example, ReLU
or Maxout

Better optimization Strategy

e Adaptive learning rates

Prevent Overfitting

* Dropout Only use this approach when you already

obtained good results on the training data.




Part |1
Tips for Training DNN

New Activation Function




RelLU

 Rectified Linear Unit (ReLU)

Reason:

a
0(z) 1 1. Fast to compute

2. Biological reason

3. Infinite sigmoid
with different biases

4. Vanishing gradient
[Xavier Glorot, AISTATS'11]
[Andrew L. Maas, ICML’13] prOblem

[Kaiming He, arXiv’15]



Vanishing Gradient Problem

In 2006, people used RBM pre-training.
In 2015 people use RelU.

Smaller gradients Larger gradients
Learn very slow Learn very fast
Almost random Already converge

based on random!?



Vanishing Gradient Problem

Smaller gradients

Xl

X2

XA S SE— /]
Aw

Intuitive way to compute the gradient ...

aC AC
=

ow  Aw



RelLU

¥ ¥ N
N



RelLU

A Thinner linear network

e

Do not have
smaller gradients

> Z



Maxout RelU is a special cases of Maxout

e Learnable activation function [ian J. Goodfellow, ICMI’13]

+> neuron +
AN D

You can have more than 2 elements in a group.



Maxout RelLU is a special cases of Maxout

e Learnable activation function [ian J. Goodfellow, ICMI’13]

e Activation function in maxout network can be
any piecewise linear convex function

* How many pieces depending on how many
elements in a group

2 elements in a group 3 elements in a group




Part |1
Tips for Training DNN

Adaptive Learning Rate




Lea rning Rate Set the learning

rate n carefully

:Z]VC (HO);rJ —3l |eaxrnin§ rate is too large

R A

Cost may not decrease
after each update




Can we give different

| eg rning Rate parameters different
learning rates?

~=TUy —T507—

9.50018.000 ————15.000°
500 13.500 . )
4% If learning rate is too large
,9.000""7‘5‘1 e “‘“‘ﬁ

Cost may not decrease

[ after each update

If learning rate is too small
7 = .u-»- —

———— T\

Training would be too slow
16.500 OUE

\ U




Original Gradient Descent

Adagrad 9t  0t-1 _ pC(at-1)
Each parameter w are considered separately
oCc(8Y)
t+1 t _ t t _
Wt e wh —nylg- g T

Parameter dependent
learning rate

Summation of the square of
the previous derivatives




Adagrad e
w, I w, I

0.1 20.0
Learning rate: Learning rate:
7 _ U 7
V0.12 1 — 202 ~ 20
n n n ]

VO12+022 022V * > 202+102 22

Observation: 1. Learning rate is smaller and
smaller for all parameters
2. Smaller derivatives, larger
learning rate, and vice versa




Larger
derivatives

Smaller
Learning Rate

—

Larger Learning Rate

2. Smaller derivatives, larger Why?
learning rate, and vice versa :

Wy
Smaller Derivatives



Not the whole story ......

e Adagrad [john Duchi, IMLR'11]
* RMSprop

* https://www.youtube.com/watch?v=03sxAc4hxZU

e Adadelta [Matthew D. Zeiler, arXiv’12]
e Adam [piederik P. Kingma, ICLR’15]
e AdaSecant [Caglar Gulcehre, arXiv’14]

* “No more pesky learning rates” [tom schaul, arxiv'12]



Part |1
Tips for Training DNN

Dropout




Pick a mini-batch

Dropout 6t  6t=1 — prC(6t1)

4 ,
NLNZ N0

Training:

NS X5
. O, ® .9,
MR 4&%‘ O—
N\ = 5 “ o

» Each time before computing the gradients
® Each neuron has p% to dropout



Pick a mini-batch

Dropout 6t  6t=1 — prC(6t1)

Training:

Thinner!

» Each time before computing the gradients
® Each neuron has p% to dropout

:> The structure of the network is changed.
® Using the new network for training

For each mini-batch, we resample the dropout neurons



Dropout

Testing:

» No dropout

® |f the dropout rate at training is p%,
all the weights times (1-p)%

® Assume that the dropout rate is 50%.
If a weight w = 1 by training, set w = 0.5 for testing.



Dropout - Intuitive Reason

FRHY partner

‘?‘\\\ SRR > FibL
‘ Y I

| X%
K s
/4&% .:‘ L ‘$ X

CRRIREX
‘\\V/"\\

» When teams up, if everyone expect the partner will do
the work, nothing will be done finally.

—»

» However, if you know your partner will dropout, you
will do better.

» When testing, no one dropout actually, so obtaining
good results eventually.



Dropout - Intuitive Reason

* Why the weights should multiply (1-p)% (dropout
rate) when testing?

Training of Dropout Testing of Dropout
Assume dropout rate is 50% | No dropout

(\ Weights from training
0.5 X

W1 Wy - z' = 2z
W2\ Z (O.S X WoN\_ Z'
w 0.5 X|w;

w ((_)TSXW

Weights multiply (1-p)%

-Z’%Z



Dropout is a kind of ensemble.

Ensemble / \
Set 1 Set 2 Set 3 Set 4
Network Network Network Network
1 2 3 4

Train a bunch of networks with different structures



Dropout is a kind of ensemble.

Ensemble

Testing data x

A//\\A

Network Netwo rk Network Network
1 3 4

Yq

Y1 yz\ /y3
\ S /



Dropout is a kind of ensemble.

minibatch @ minibatch @ minibatch 8 minibatch Training of
1 p) 3 4 Dropout

M neurons
2M possible
networks
Vo

» Using one mini-batch to train one network
»Some parameters in the network are shared




Dropout is a kind of ensemble.

Testing of Dropout

testing data x

‘ NS
' All the
weights
‘ multiply
~ (1-p)%

Y1 Y, Y3
average ~ Yy



More about dropout

More reference for dI’OpOUt [Nitish Srivastava, IMLR’14] [Pierre Baldi,
NIPS’13][Geoffrey E. Hinton, arXiv’'12]

Dropout works better with Maxout [lan J. Goodfellow, ICML'13]
Dropconnect [Li Wan, ICML’13]

* Dropout delete neurons

* Dropconnect deletes the connection between neurons
Annealed dropout [S.). Rennie, SLT'14]

* Dropout rate decreases by epochs
Standout [J. Ba, NISP’13]

* Each neural has different dropout rate



Part |V:
Neural Network
with Memory



Neural Network needs Memory

* Name Entity Recognition

* Detecting named entities like name of people,
locations, organization, etc. in a sentence.

»

0.1 people
apple

-

0.1 |ocation
0.5 organization
0.3 none




Neural Network needs Memory

* Name Entity Recognition

* Detecting named entities like name of people,
locations, organization, etc. in a sentence.

I ORG QNONE

y! y? y? y*

x1 NG X3 NG

the president of [|apple eats an

DNN needs memory!




Recurrent Neural Network (RNN)

Y1 Y

The output of hidden layer } }

are stored in the memory.

a,

Memory can be considered X, X,
as another input.



The same network is used again and again.

Output y' depends on x1, x?, ...... X'



RNN

e I et
E ILZ

51

y

Find the network parameters to minimize the total cost:

Backpropagation through time (BPTT)



Of course it can be deep ...




Bidirectional RNN




Many to Many (Output is shorter)

* Both input and output are both sequences, but the output
is shorter.

* E.g. Speech Recognition

Problem?

Output: “%F%

7%=” (character sequence)

g e

Why can’t it be

b

7 =))
=

9f S5

%%%%%

111

P11t

(vector
Input:
sequence)

ANl e Rl



Many to Many (Output is shorter)

* Both input and output are both sequences, but the output
is shorter.

e Connectionist Temporal Classification (CTC) [Alex Graves,

ICML'06][Alex Graves, ICML 14][Hasim Sak, Interspeech’15][Jie Li,
Interspeech’15][Andrew Senior, ASRU’15]

whzfer  Add an extra symbol “Q”  “fpjrin
' representing “null”

_H

i b 1 bbb i o 1 4
| |

SEERERE RN
JH 1111

I 1

B b
|
1]



Many to Many (No Limitation)

e Both input and output are both sequences with different
lengths. —> Sequence to sequence learning

* E.g. Machine Translation (machine learning>123£83)

Containing all
information about
input sequence

l
8u!u193|7

aulysew —



Many to Many (No Limitation)

e Both input and output are both sequences with different
lengths. —> Sequence to sequence learning
4 ELE EX

* E.g. Machine Translation (machine learning>123£83)

BN BN\ 2\ B\ E M
1\ 1\ 1\ 1\ T\1
VAAVRVIRVIRY.

Don’t know when to stop

|

aulydew .
duluies| —




Many to Many (No Limitation)

Ref:http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%
E6%SE%AS%E6%I6%87 (FTEEHF)



Many to Many (No Limitation)

e Both input and output are both sequences with different
lengths. —> Sequence to sequence learning

* E.g. Machine Translation (machine learning>f#z328%)

alatatat

T ! T

VAV

Q Q

% g Add a symbol “===" (&)
D 0Q

[llya Sutskever, NIPS’14][Dzmitry Bahdanau, arXiv’15]



B EiaE SR B RS R

Unfortunately ......

* RNN-based network is not always easy to learn

Real experiments on Language modeling

« sometimes

Lucky

— >4

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
epoch

cost




The error surface is rough.

'0.35
'0.30
'0.25
'0.20
'0.15
'0.10
'0.05

1507

-2.8 ' W, [Razvan Pascanu, ICML’13]



Why?

w = =) y10%9 =1 Large Small
w=101 == y1%0~20000 :=cclu Learning rate?
_ 1000 .
w=099 == Yy ~ 0 JuEll Large
w=0.01 ==) 1000~ gradient Learning rate?
999
1 2 3 leOO

Y
Toy Example I
1

|1




Helpful Techniques

* Nesterov’s Accelerated Gradient (NAG):
 Advance momentum method

* RMS Prop

* Advanced approach to give each parameter
different learning rates

* Considering the change of Second derivatives

* Long Short-term Memory (LSTM)

e Can deal with gradient vanishing (not gradient
explode)



Long Short-term Memory (LSTM)

Other part of the network

Special Neuron:
4 inputs,
1 output

“ Forget Signal control
the forget gate
(Other part of

the network)

Signal control
the output gate

(Other part of
the network)

Output Gate

Signal control
the input gate
(Other part of
the network)

Input Gate

Other part of the network



d a=h(c)f(z)

Z 44 ) multipl
7 '/f-/'Dutput Gat:’ p y

f(2,)

Input Gate

z ___@ f(z;) >,g(Z)f(Zi)

multiply
9(2)

Forget Gate

c f(z)

cf (zr)

Activation function f is
usually a sigmoid function

Between O and 1

Mimic open and close gate

-~ Zf

¢ = g@Df @) + cf (z)

Block

1,



Original Network:

»Simply replace the neurons with LSTM

Xy X5 Input



4 times of parameters X X, Input







Other Simpler Alternatives

Structurally Constrained

Gated Recurrent Unit (GRU)
Recurrent Network (SCRN)

| Yt |

3, -
/
Z
| (C=Y
—@—)‘r/—;— E - X
(= ] [Tomas Mikolov,

[Cho, EMNLP’14] ICLR’15]

St ] (0}

Vanilla RNN Initialized with Identity matrix + ReLU activation
function [Quoc V. Le, arXiv’15]

» Outperform or be comparable with LSTM in 4 different tasks



What is the next wave?

Internal memory or

* Attention-based Model information from output
Reading Head - Writing Head

Reading Head

Controller

Input x > outputy

Already applied on speech recognition, caption
generation, QA, visual QA



What is the next wave?

Attention-based Model

End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus.
arXiv Pre-Print, 2015.

Neural Turing Machines. Alex Graves, Greg Wayne, Ivo Danihelka. arXiv Pre-Print,
2014

Ask Me AnYthing: Dynamic Memory Networks for Natural Language Processing.
Kumar et al. arXiv Pre-Print, 2015

Neural Machine Translation by Jointly Learning to Align and Translate. D.
Bahdanau, K. Cho, Y. Bengio; International Conference on Representation
Learning 2015.

Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention. Kelvin Xu et. al.. arXiv Pre-Print, 2015.

Attention-Based Models for Speech Recognition. Jan Chorowski, Dzmitry
g(a)?csianau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio. arXiv Pre-Print,

Recurrent models of visual attention. V. Mnih, N. Hees, A. Graves and K.
Kavukcuoglu. In NIPS, 2014.

A Neural Attention Model for Abstractive Sentence Summarization. A. M. Rush,
S. Chopra and J. Weston. EMINLP 2015.



Concluding Remarks



Concluding Remarks

* Introduction of deep learning
e Discussing some reasons using deep learning

* New techniques for deep learning
* ReLU, Maxout
e Giving all the parameters different learning rates
* Dropout

* Network with memory

* Recurrent neural network
* Long short-term memory (LSTM)



Reading Materials

* “Neural Networks and Deep Learning”
e written by Michael Nielsen
* http://neuralnetworksanddeeplearning.com/

* “Deep Learning” (not finished yet)

* Written by Yoshua Bengio, lan J. Goodfellow and
Aaron Courville

* http://www.iro.umontreal.ca/~bengioy/dlbook/



Thank you
for your attention!
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Appendix



Matrix Operation

4 0.98
Xl :rf_ :f =f— yl
1 |

1

-2 0.
X, =f > f :f—’ Y>
1 ,

0

o( W x_]+b )=[:a§]




Why Deep? — Logic Circuits

* A two levels of basic logic gates can represent any
Boolean function.

 However, no one uses two levels of logic gates to
build computers

* Using multiple layers of logic gates to build some
functions are much simpler (less gates needed).

A a
AND Q BQ N
W
“ TS 66—

w

A Al _ ‘
Activati
BQ B NAND Q dy weights b f{l:.lrlm\(’:iicﬁn

bias

w >
@)
S




Boosting Weak classifier

Weak classifier

. Combine

Weak classifier

Deep Learning

Weak Boosted weak Boosted Boosted
classifier classifier weak classifier




Maxout RelLU is a special cases of Maxout

+_’Zl
@ o a
X%/-I- "4 max{z, ,z, }
1




Maxout RelLU is a special cases of Maxout

+_’Zl
: 'W/ >‘

/ max{z, ,z, }
b’
1

Learnable Activation
Function




