Structured Linear Model

Hung-yi Lee
Structured Linear Model

Problem 1: Evaluation
• What does $F(x, y)$ look like? in a specific form

Problem 2: Inference
• How to solve the “arg max” problem

$$y = \arg \max_{y \in Y} F(x, y)$$

Problem 3: Training
• Given training data, how to find $F(x, y)$
Structured Linear Model: Problem 1

- Evaluation: What does $F(x,y)$ look like?

Characteristics

$$F(x, y) = w_1 \cdot \phi_1(x, y) + w_2 \cdot \phi_2(x, y) + w_3 \cdot \phi_3(x, y) + \cdots$$

Learning from data
Structured Linear Model: Problem 1

• Evaluation: What does F(x,y) look like?

• Example: **Object Detection**

\[\phi(x, y) = \begin{bmatrix}
\text{percentage of color red in box } y \\
\text{percentage of color green in box } y \\
\text{percentage of color blue in box } y \\
\text{percentage of color red out of box } y \\
\text{area of box } y \\
\text{number of specific patterns in box } y
\end{bmatrix} \]
\[\phi(x, y) \]

- Convolutional Layer
- Sub-sampling Layer
- Fully-connected Layer
- Output Layer

\[\phi(x, y) \]
Structured Linear Model: Problem 1

• Evaluation: What does $F(x,y)$ look like?

• Example: *Summarization*

\[
\phi_1(x, y) \quad \phi_2(x, y) \quad \phi_3(x, y) \quad \phi_4(x, y) \quad \phi_5(x, y) \\
\vdots
\]

- Whether the sentence containing the word “important” is in y
- Whether the sentence containing the word “definition” is in y
- Length of y
- How succinct is y?
- How representative of y?
Structured Linear Model: Problem 1

• Evaluation: What does F(x,y) look like?
• Example: **Retrieval**

The degree of relevance with respect to x for the top 1 webpages in y.

Is the top 1 webpage more relevant than the top 2 webpage?

How much different information does y cover? *(Diversity)*
Structured Linear Model: Problem 2

• **Inference**: How to solve the “arg max” problem

\[
y = \arg \max_{y \in Y} F(x, y)
\]

\[
F(x, y) = w \cdot \phi(x, y) \quad \Rightarrow \quad y = \arg \max_{y \in Y} w \cdot \phi(x, y)
\]

• Assume we have solved this question.
Structured Linear Model: Problem 3

- Training: Given training data, how to learn $F(x, y)$
 - $F(x, y) = w \cdot \phi(x, y)$, so what we have to learn is w

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^r, \hat{y}^r), \ldots\}$

We should find w such that

$$\forall r \ (\text{All training examples})$$

$$\forall y \in Y - \{\hat{y}^r\} \ (\text{All incorrect label for } r\text{-th example})$$

$$w \cdot \phi(x^r, \hat{y}^r) > w \cdot \phi(x^r, y)$$
Structured Linear Model:
Problem 3

\[\hat{y}^1, \hat{y}^2, \phi(x^1, \hat{y}^1), \phi(x^1, y), \phi(x^2, \hat{y}^2), \phi(x^2, y) \]
Structured Linear Model:

Problem 3

\[\phi(x^1, \hat{y}^1) \]
\[\phi(x^1, y) \]
\[\phi(x^2, \hat{y}^2) \]
\[\phi(x^2, y) \]
Structured Linear Model:
Problem 3

\[w \cdot \phi(x^1, \hat{y}^1) \geq w \cdot \phi(x^1, y) \]
\[w \cdot \phi(x^2, \hat{y}^2) \geq w \cdot \phi(x^2, y) \]
Solution of Problem 3

Difficult?

Not as difficult as expected
Algorithm

- **Input**: training data set \(\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^r, \hat{y}^r), \ldots\} \)
- **Output**: weight vector \(w \)
- **Algorithm**: Initialize \(w = 0 \)
 - do
 - For each pair of training example \((x^r, \hat{y}^r) \)
 - Find the label \(\tilde{y}^r \) maximizing \(w \cdot \phi(x^r, y) \)
 \[\tilde{y}^r = \arg \max_{y \in Y} w \cdot \phi(x^r, y) \] (question 2)
 - If \(\tilde{y}^r \neq \hat{y}^r \), update \(w \)
 \[w \rightarrow w + \phi(x^r, \hat{y}^r) - \phi(x^r, \tilde{y}^r) \]
 - until \(w \) is not updated

We are done!
Algorithm - Example

\begin{align*}
 w \cdot \phi(x^1, \hat{y}^1) & \geq w \cdot \phi(x^1, y) \\
 w \cdot \phi(x^2, \hat{y}^2) & \geq w \cdot \phi(x^2, y)
\end{align*}
Algorithm - Example

Initialize $w = 0$

pick (x^1, \hat{y}^1)

$\tilde{y}^1 = \arg\max_{y \in Y} w \cdot \phi(x^1, y)$

If $\tilde{y}^1 \neq \hat{y}^1$, update w

$$w \rightarrow w + \phi(x^1, \hat{y}^1) - \phi(x^1, \tilde{y}^1)$$

Because $w=0$ at this time, $\phi(x^1, y)$ always 0

Random pick one point as \tilde{y}^r
Algorithm - Example

pick \((x^2, \hat{y}^2)\)

\[\tilde{y}^2 = \arg \max_{y \in Y} w \cdot \phi(x^2, y)\]

If \(\tilde{y}^2 \neq \hat{y}^2\), update \(w\)

\[w \rightarrow w + \phi(x^2, \hat{y}^2) - \phi(x^2, \tilde{y}^2)\]
Algorithm - Example

pick \((x^1, \hat{y}^1)\) again

\[\tilde{y}^1 = \arg \max_{y \in Y} w \cdot \phi(x^1, y)\]
\[\tilde{y}^1 = \hat{y}^1 \quad \text{do not update } w\]

pick \((x^2, \hat{y}^2)\) again

\[\tilde{y}^2 = \arg \max_{y \in Y} w \cdot \phi(x^2, y)\]
\[\tilde{y}^2 = \hat{y}^2 \quad \text{do not update } w\]

So we are done
Assumption: Separable

- There exists a weight vector \hat{w} such that $\|\hat{w}\| = 1$

For all training examples r:

$\forall r \ (\text{All training examples})$

$\forall y \in Y - \{\hat{y}^r\} \ (\text{All incorrect label for an example})$

$\hat{w} \cdot \phi(x^r, \hat{y}^r) \geq \hat{w} \cdot \phi(x^r, y) \ (\text{The target exists})$

$\hat{w} \cdot \phi(x^r, \hat{y}^r) \geq \hat{w} \cdot \phi(x^r, y) + \delta$
Assumption: Separable

\[\hat{w} \cdot \phi(x^r, \hat{y}^r) \geq \hat{w} \cdot \phi(x^r, y) + \delta \]

- \(\phi(x^1, \hat{y}^1) \)
- \(\phi(x^1, y) \)
- \(\phi(x^2, \hat{y}^2) \)
- \(\phi(x^2, y) \)
-

\[w^* \]
Proof of Termination

w is updated once it sees a mistake

\[w^0 = 0 \rightarrow w^1 \rightarrow w^2 \rightarrow \ldots \rightarrow w^k \rightarrow w^{k+1} \rightarrow \ldots \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \] (the relation of \(w^k \) and \(w^{k-1} \))

Proof that: The angle \(\rho_k \) between \(\hat{w} \) and \(w_k \) is smaller as \(k \) increases

Analysis

\[\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \|w^k\|} \]

\[\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)) \]

\[= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \geq \hat{w} \cdot w^{k-1} + \delta \]

\[\geq \delta \] (Separable)
Proof of Termination

w is updated once it sees a mistake

\[w^0 = 0 \rightarrow w^1 \rightarrow w^2 \rightarrow \ldots \ldots \rightarrow w^k \rightarrow w^{k+1} \rightarrow \ldots \ldots \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \] (the relation of \(w^k\) and \(w^{k-1}\))

Proof that: The angle \(\rho_k\) between \(\hat{w}\) and \(w_k\) is smaller as \(k\) increases

Analysis \(\cos \rho_k\) (larger and larger?) \(\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \cdot \|w^k\|}\)

\[\hat{w} \cdot w^k \geq \hat{w} \cdot w^{k-1} + \delta \]

\[= 0 \ldots \geq \delta \]

\[\hat{w} \cdot w^1 \geq \hat{w} \cdot w^0 + \delta \]

\[\hat{w} \cdot w^2 \geq \hat{w} \cdot w^1 + \delta \]

\[\hat{w} \cdot w^3 \geq \hat{w} \cdot w^2 + \delta \ldots \]

\[\hat{w} \cdot w^1 \geq \delta \]

\[\hat{w} \cdot w^2 \geq 2\delta \]

\[\hat{w} \cdot w^k \geq k\delta \] (so what)
Proof of Termination

\[\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \cdot \|w^k\|} \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \]

\[\|w^k\|^2 = \|w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)\|^2 \]

\[= \|w^{k-1}\|^2 + \|\phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)\|^2 + 2w^{k-1} \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)) \]

\[> 0 \]

\[\text{Assume the distance between any two feature vector is smaller than R} \]

\[\leq \|w^{k-1}\|^2 + R^2 \]

\[\|w^1\|^2 \leq \|w^0\|^2 + R^2 = R^2 \]

\[\|w^2\|^2 \leq \|w^1\|^2 + R^2 \leq 2R^2 \]

\[\cdots \]

\[\|w^k\|^2 \leq kR^2 \]
Proof of Termination

\[\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \cdot \|w^k\|} \]

\[\hat{w} \cdot w^k \geq k\delta \quad \|w^k\|^2 \leq kR^2 \]

\[\geq \frac{k\delta}{\sqrt{kR^2}} = \sqrt{k} \frac{\delta}{R} \]

\[\sqrt{k} \frac{\delta}{R} \leq 1 \]

\[k \leq \left(\frac{R}{\delta} \right)^2 \]
Proof of Termination

\[k \leq \left(\frac{R}{\delta} \right)^2 \]

- The largest distances between features
- Margin: Is it easy to separable red points from the blue ones
- Normalization
- Larger margin, less update

All feature times 2

\[\phi(x^r, \hat{y}^r) \]
\[\phi(x^r, y) \]
Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation
• How to define $F(x,y)$

Problem 2: Inference
• How to find the y with the largest $F(x,y)$

Problem 3: Training
• How to learn $F(x,y)$

Problem A: Feature
• How to define $\phi(x,y)$

Problem B: Inference
• How to find the y with the largest $w \cdot \phi(x,y)$

$F(x,y) = w \cdot \phi(x,y)$