Structured Support Vector Machine
Hung-yi Lee
公告

• 因為作業二的 deadline 正好卡到期中考週，為了不要讓大家太辛苦，所以作業二的 deadline 延後一週
 • 作業二的 deadline 延後到 11/20
• 作業三公布的日期和 deadline 不變
 • 作業三公布的日期仍然為 11/13
• 也就是說，作業二和作業三會有一週的重疊
Structured Learning

- We need a more powerful function f
 - Input and output are both objects with structures
 - *Object*: sequence, list, tree, bounding box ...

\[f : X \rightarrow Y \]

- X is the space of one kind of object
- Y is the space of another kind of object
Unified Framework

Step 1: Training
- Find a function F
 $$F : X \times Y \to \mathbb{R}$$
- $F(x, y)$: evaluate how compatible the objects x and y is

Step 2: Inference (Testing)
- Given an object x
 $$\tilde{y} = \arg \max_{y \in Y} F(x, y)$$
Three Problems

Problem 1: Evaluation
- What does $F(x,y)$ look like?

Problem 2: Inference
- How to solve the “arg max” problem

$$y = \arg \max_{y \in Y} F(x, y)$$

Problem 3: Training
- Given training data, how to find $F(x,y)$
Example Task: Object Detection

Example Task

Keep in mind that what you will learn today can be applied to other tasks.

Source of image:
http://www.vision.ee.ethz.ch/~hpedemo/gallery.php
Problem 1: Evaluation

- $F(x,y)$ is linear

\[F(x) = w \cdot \phi(x) \]

Open question: What if $F(x,y)$ is not linear?
Problem 2: Inference

\[\tilde{y} = \arg \max_{y \in \mathbb{Y}} w \cdot \phi(x, y) \]
Problem 2: Inference

- Object Detection
- Branch and Bound algorithm
- Selective Search
- Sequence Labeling
- Viterbi Algorithm
- The algorithms can depend on $\phi(x, y)$
- Genetic Algorithm
- Open question:
 - What happens if the inference is non exact?
Problem 3: Training

Principle

Training data: \[\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^N, \hat{y}^N)\} \]

We should find \(F(x,y) \) such that

Let’s ignore problems 1 and 2 and only focus on problem 3 today.
Outline

1. Structured SVM
2. Regularization
3. Cutting Plane Algorithm for Structured SVM
4. Multi-class and binary SVM
5. Beyond Structured SVM (open question)
Outline

1. Separable case
2. Non-separable case
3. Considering Errors
4. Regularization
5. Structured SVM
6. Cutting Plane Algorithm for Structured SVM
7. Multi-class and binary SVM
8. Beyond Structured SVM (open question)
Assumption: Separable

- There exists a weight vector \hat{w}

\[
\hat{w} \cdot \phi(x^1, \hat{y}^1) \geq \hat{w} \cdot \phi(x^1, y) + \delta \\
\hat{w} \cdot \phi(x^2, \hat{y}^2) \geq \hat{w} \cdot \phi(x^2, y) + \delta
\]
Structured Perceptron

- **Input**: training data set \(\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^N, \hat{y}^N)\} \)
- **Output**: weight vector \(w \)
- **Algorithm**: Initialize \(w = 0 \)
 - do
 - For each pair of training example \((x^n, \hat{y}^n)\)
 - Find the label \(\tilde{y}^n\) maximizing \(w \cdot \phi(x^n, y)\)
 \[
 \tilde{y}^n = \arg\max_{y \in Y} w \cdot \phi(x^n, y) \quad \text{(problem 2)}
 \]
 - If \(\tilde{y}^n \neq \hat{y}^n\), update \(w\)
 \[
 w \rightarrow w + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)
 \]
 - until \(w\) is not updated -> We are done!
Warning of Math

In separable case, to obtain a \hat{w}, you only have to update at most $(R/\delta)^2$ times

δ: margin

R: the largest distance between $\phi(x, y)$ and $\phi(x, y')$

Not related to the space of y!
Proof of Termination

w is updated once it sees a mistake

\[w^0 = 0 \rightarrow w^1 \rightarrow w^2 \rightarrow \ldots \ldots \rightarrow w^k \rightarrow w^{k+1} \rightarrow \ldots \ldots \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \] (the relation of \(w^k\) and \(w^{k-1}\))

Remind: we are considering the separable case

Assume there exists a weight vector \(\hat{w}\) such that

\[\forall n \; \text{(All training examples)} \]
\[\forall y \in Y - \{\hat{y}^n\} \; \text{(All incorrect label for an example)} \]

\[\hat{w} \cdot \phi(x^n, \hat{y}^n) \geq \hat{w} \cdot \phi(x^n, y) + \delta \]

Assume \(\|\hat{w}\| = 1\) without loss of generality
Proof of Termination

w is updated *once it sees a mistake*

\[w^0 = 0 \rightarrow w^1 \rightarrow w^2 \rightarrow \ldots \rightarrow w^k \rightarrow w^{k+1} \rightarrow \ldots \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \] (the relation of \(w^k \) and \(w^{k-1} \))

Proof that: The angle \(\rho_k \) between \(\hat{w} \) and \(w^k \) is smaller as \(k \) increases

Analysis \(\cos \rho_k \) (larger and larger?) \[
\cos \rho_k = \frac{\hat{w} \cdot w^k}{||\hat{w}|| \cdot ||w^k||}
\]

\[
\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)) \\
= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \geq \hat{w} \cdot w^{k-1} + \delta \\
\geq \delta \quad \text{(Separable)}
\]
Proof of Termination

w is updated once it sees a mistake

\[w^0 = 0 \rightarrow w^1 \rightarrow w^2 \rightarrow \ldots \ldots \rightarrow w^k \rightarrow w^{k+1} \rightarrow \ldots \ldots \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \] (the relation of \(w^k \) and \(w^{k-1} \))

Proof that: The angle \(\rho_k \) between \(\hat{w} \) and \(w^k \) is smaller as \(k \) increases

Analysis \(\cos \rho_k \) (larger and larger?) \[\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \cdot \|w^k\|} \]

\[\hat{w} \cdot w^k \geq \hat{w} \cdot w^{k-1} + \delta \]

\[= 0 \geq \delta \]

\[\hat{w} \cdot w^1 \geq \hat{w} \cdot w^0 + \delta \]

\[\hat{w} \cdot w^2 \geq \hat{w} \cdot w^1 + \delta \]

\[\hat{w} \cdot w^1 \geq \delta \]

\[\hat{w} \cdot w^2 \geq 2\delta \]

\[\begin{cases} \hat{w} \cdot w^k \geq k \delta \end{cases} \]

(so what)
Proof of Termination

\[\cos \rho_k = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^k}{\|w^k\|} \]

\[w^k = w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n) \]

\[\|w^k\|^2 = \|w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)\|^2 \]

\[= \|w^{k-1}\|^2 + \|\phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)\|^2 + 2w^{k-1} \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)) \]

\[> 0 \]

Assume the distance between any two feature vectors is smaller than \(R \)

\[\leq \|w^{k-1}\|^2 + R^2 \]

\[\|w^1\|^2 \leq \|w^0\|^2 + R^2 = R^2 \]

\[\|w^2\|^2 \leq \|w^1\|^2 + R^2 \leq 2R^2 \]

\[\cdots \]

\[\|w^k\|^2 \leq kR^2 \]
Proof of Termination

\[\cos \rho_k = \frac{\hat{w} \cdot w^k}{\|\hat{w}\| \cdot \|w^k\|} \]

\[\hat{w} \cdot w^k \geq k \delta \]

\[\|w^k\|^2 \leq k R^2 \]

\[\geq \frac{k \delta}{\sqrt{k R^2}} = \sqrt{k} \frac{\delta}{R} \]

\[\sqrt{k} \frac{\delta}{R} \leq 1 \]

\[k \leq \left(\frac{R}{\delta} \right)^2 \]
End of Warning

In separable case, to obtain a $\widehat{\mathbf{w}}$, you only have to update at most $(R/\delta)^2$ times.

δ: margin

R: the largest distance between $\phi(x, y)$ and $\phi(x, y')$

Not related to the space of y!
How to make training fast?

The largest distances between features

Margin: Is it easy to separable red points from the blue ones

Normalization

Larger margin, less update

All feature times 2

\[k \leq \left(\frac{R}{\delta} \right)^2 \]

\[\phi(x^n, \hat{y}^n) \]

\[\phi(x^n, y) \]

\[\delta \]

\[\hat{w} \]

\[\vec{R} \]

\[\delta \uparrow \]
Outline

- Separable case
- Non-separable case
- Considering Errors
- Regularization
- Structured SVM
- Cutting Plane Algorithm for Structured SVM
- Multi-class and binary SVM
- Beyond Structured SVM (open question)
Non-separable Case

• When the data is non-separable, some weights are still better than the others.

Undoubtedly, \(w' \) is better than \(w'' \).
Defining Cost Function

- Define a cost C to evaluate how bad a w is, and then pick the w minimizing the cost C

$$C^n = \max_y [w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)$$

$$C = \sum_{n=1}^{N} C^n$$

What is the minimum value?

Other alternatives?
(Stochastic) Gradient Descent

Find w minimizing the cost C

$$C = \sum_{n=1}^{N} C^n$$

$$C^n = \max_{y} [w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)$$

(Stochastic) Gradient descent:

We only have to know how to compute ∇C^n.

However, there is “max” in C^n
\[C^n = \max_y [w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]

How to compute \(\nabla C^n \)?

When \(w \) is different, the \(y \) can be different.

Space of \(w \)

\[\nabla C^n = \phi(x^n, y') - \phi(x^n, \hat{y}^n) \]
\[w \cdot \phi(x^n, y') - w \cdot \phi(x^n, \hat{y}^n) \]

\[\nabla C^n = \phi(x^n, y'') - \phi(x^n, \hat{y}^n) \]
\[w \cdot \phi(x^n, y'') - w \cdot \phi(x^n, \hat{y}^n) \]

\[\nabla C^n = \phi(x^n, y''') - \phi(x^n, \hat{y}^n) \]
\[w \cdot \phi(x^n, y''') - w \cdot \phi(x^n, \hat{y}^n) \]

\[\arg\max_y [w \cdot \phi(x^n, y)] \]
(Stochastic) Gradient Descent

For $t = 1$ to T:

Update the parameters T times

Randomly pick a training data $\{x^n, \hat{y}^n\}$

\[\hat{y}^n = \underset{y}{\arg\max} [w \cdot \phi(x^n, y)] \]

\[\nabla C^n = \phi(x^n, \hat{y}^n) - \phi(x^n, \hat{y}^n) \]

\[w \rightarrow w - \eta \nabla C^n \]

\[= w - \eta [\phi(x^n, \hat{y}^n) - \phi(x^n, \hat{y}^n)] \]

If we set $\eta = 1$, then we are doing structured perceptron.
Outline

- Beyond Structured SVM (open question)
- Multi-class and binary SVM
- Cutting Plane Algorithm for Structured SVM
- Structured SVM
- Regularization
- Considering Errors
- Non-separable case
- Separable case
Based on what we have considered

\[F(x, y) \]

\[w \cdot \phi(\text{something}) \]

The right case is better.

Treat all incorrectly equally

\[F(x, y) \]

\[w \cdot \phi(\text{something}) \]

acceptable

very bad!
Considering the incorrect ones

\[w \cdot \phi(\text{different from correct box}) \]

\[w \cdot \phi(\text{close to correct box}) \]

How to measure the difference
Defining Error Function

• $\Delta(\hat{y}, y)$: difference between \hat{y} and y (> 0)

\[
A(y): \text{area of bounding box } y
\]

\[
\Delta(\hat{y}, y) = 1 - \frac{A(\hat{y}) \cap A(y)}{A(\hat{y}) \cup A(y)}
\]
Another Cost Function

\[C^n = \max_y [w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]

\[C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]
Gradient Descent

\[C^n = \max_y [w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]

\[C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]

In each iteration, pick a training data \(\{x^n, \hat{y}^n\} \)

\[\tilde{y}^n = \arg\max_y [w \cdot \phi(x^n, y)] \quad \text{and} \quad \tilde{y}^n = \arg\max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] \]

\[\nabla C^n(w) = \phi(x^n, \tilde{y}^n) - \phi(x^n, \hat{y}^n) \]

\[w \rightarrow w - \eta [\phi(x^n, \tilde{y}^n) - \phi(x^n, \hat{y}^n)] \]
Another Viewpoint

\[\hat{y}^n = \arg \max_y w \cdot \phi(x^n, y) \]

- Minimizing the new cost function is minimizing the upper bound of the errors on training set

\[C' = \sum_{n=1}^{N} \Delta(\hat{y}^n, \tilde{y}^n) \leq C = \sum_{n=1}^{N} C^n \text{ upper bound} \]

We want to find \(w \) minimizing \(C' \) (errors)

It is hard!
Because \(y \) can be any kind of objects, \(\Delta(\cdot,\cdot) \) can be any function

\(C \) serves as the surrogate of \(C' \)

Proof that \(\Delta(\hat{y}^n, \tilde{y}^n) \leq C^n \)
Another Viewpoint

\[C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n) \]

Proof that \(\Delta(\hat{y}^n, \tilde{y}^n) \leq C^n \)

\[
\Delta(\hat{y}^n, \tilde{y}^n) \leq \Delta(\hat{y}^n, \tilde{y}^n) + \underbrace{[w \cdot \phi(x^n, \tilde{y}^n) - w \cdot \phi(x^n, \hat{y}^n)]}_{\geq 0} \\
\tilde{y}^n = \arg \max_y w \cdot \phi(x^n, y)
\]

\[
= \Delta(\hat{y}^n, \tilde{y}^n) + w \cdot \phi(x^n, \tilde{y}^n) - w \cdot \phi(x^n, \hat{y}^n)
\]

\[
\leq \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)
\]

\[= C^n \]
More Cost Functions

\[\Delta(\hat{y}^n, \check{y}^n) \leq C^n \]

Margin rescaling:

\[C^n = \max_{y} \left[\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y) \right] - w \cdot \phi(x^n, \check{y}^n) \]

Slack variable rescaling:

\[C^n = \max_{y} \Delta(\hat{y}^n, y) \left[1 + w \cdot \phi(x^n, y) - w \cdot \phi(x^n, \check{y}^n) \right] \]
Regularization

Training data and testing data can have different distribution.

\(w \) close to zero can minimize the influence of mismatch.

\[
C = \sum_{n=1}^{N} C^n \\
C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)
\]

Regularization:
Find the \(w \) close to zero

\[
C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} C^n
\]
Regularization

In each iteration, pick a training data \(\{x^n, \hat{y}^n\} \)

\[
\bar{y}^n = \arg\max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)]
\]

\[
\nabla C^n = \phi(x^n, \bar{y}^n) - \phi(x^n, \hat{y}^n) + w
\]

\[
w \rightarrow w - \eta[\phi(x^n, \bar{y}^n) - \phi(x^n, \hat{y}^n)] - \eta w
\]

\[
= (1 - \eta)w - \eta[\phi(x^n, \bar{y}^n) - \phi(x^n, \hat{y}^n)]
\]

Weight decay as in DNN
Outline

Beyond Structured SVM (open question)

Multi-class and binary SVM

Cutting Plane Algorithm for Structured SVM

Structured SVM

Regularization

Considering Errors

Non-separable case

Separable case
Structured SVM

Find w minimizing C

$$C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} C^n$$

$$C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)$$

$$C^n + w \cdot \phi(x^n, \hat{y}^n) = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)]$$

Are they equivalent? We want to minimize C

For $\forall y$:

$$C^n + w \cdot \phi(x^n, \hat{y}^n) \geq \Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)$$

$$w \cdot \phi(x^n, \hat{y}^n) - w \cdot \phi(x^n, y) \geq \Delta(\hat{y}^n, y) - C^n$$
Structured SVM

Find w minimizing C

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} C^n$$

$$C^n = \max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)$$

Find $w, \varepsilon^1, \ldots, \varepsilon^N$ minimizing C

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} \varepsilon^n$$

For $\forall n$:

For $\forall y$:

$$w \cdot \phi(x^n, \hat{y}^n) - w \cdot \phi(x^n, y) \geq \Delta(\hat{y}^n, y) - \varepsilon^n$$

Slack variable
Structured SVM

Find \(w, \varepsilon^1, \ldots, \varepsilon^N \) minimizing \(C \)

\[
C = \frac{1}{2} \| w \|^2 + \lambda \sum_{n=1}^{N} \varepsilon^n
\]

For \(\forall n \):

For \(\forall y \):

\[
w \cdot \phi(x^n, \hat{y}^n) - w \cdot \phi(x^n, y) \geq \Delta(\hat{y}^n, y) - \varepsilon^n
\]

For \(\forall y \neq \hat{y}^n \):

\[
w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \varepsilon^n, \ \varepsilon^n \geq 0
\]

If \(y = \hat{y}^n \):

\[
w \cdot \phi(x^n, \hat{y}^n) - w \cdot \phi(x^n, \hat{y}^n) \geq \Delta(\hat{y}^n, \hat{y}^n) - \varepsilon^n
\]

\[
= 0 = 0 \quad \Rightarrow \quad \varepsilon^n \geq 0
\]
Structured SVM - Intuition

It is possible that no \(w \) can achieve this.

\[
\begin{align*}
 w \cdot \phi(\text{image}) - \phi(\text{image}) & \geq \Delta(\text{margin}) \\
 \forall y \neq \hat{y} \quad \text{(lots of inequalities)}
\end{align*}
\]
Structured SVM - Intuition

\[w \cdot \phi(x) \geq \Delta - \varepsilon \]
\[w \cdot \phi(y) \leq \Delta - \varepsilon \]

\(\varepsilon \geq 0 \)
\((\varepsilon < 0 \text{ make the constraints more strict}) \)

\(\varepsilon \) should be minimized

\[w \cdot (\phi(x) - \phi(y)) \geq \Delta - \varepsilon \]

(lots of inequalities)

slack variable
Structured SVM - Intuition

Minimize \[\frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{2} \varepsilon^n \]

For \(x^1 \)

\[w \cdot (\phi(x^1)) - \phi(y^1) \geq \Delta(\hat{y}^1) - \varepsilon^1 \]
\[\forall y \neq \hat{y}^1 \]

(lots of inequalities)

\[\varepsilon^1 \geq 0 \]

For \(x^2 \)

\[w \cdot (\phi(x^2)) - \phi(y^2) \geq \Delta(\hat{y}^2) - \varepsilon^2 \]
\[\forall y \neq \hat{y}^2 \]

(lots of inequalities)

\[\varepsilon^2 \geq 0 \]
Structured SVM

Find $w, \varepsilon^1, \cdots, \varepsilon^N$ minimizing C

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} \varepsilon^n$$

For $\forall n$:

For $\forall y \neq \hat{y}^n$:

$$w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \varepsilon^n, \; \varepsilon^n \geq 0$$

Solve it by the solver in SVM package

Quadratic Programming (QP) Problem

Too many constraints
Outline

1. Separable case
2. Non-separable case
3. Considering Errors
4. Regularization
5. Structured SVM
6. Cutting Plane Algorithm for Structured SVM
7. Multi-class and binary SVM
8. Beyond Structured SVM (open question)
Find $w, \epsilon^1, \ldots, \epsilon^N$ minimizing C

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} \epsilon^n$$

For $\forall n$:

For $\forall y \neq \hat{y}^n$:

$$w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \epsilon^n, \ \epsilon^n \geq 0$$

Cutting Plane Algorithm

Parameter space $(w, \varepsilon^1, ... \varepsilon^N)$

Color is the value of C which is going to be minimized:

$$C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} \varepsilon^n$$

For $\forall r, \forall y, y \neq \hat{y}^n$:

- $w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \varepsilon^n$
- $\varepsilon^n \geq 0$
Cutting Plane Algorithm

Although there are lots of constraints, most of them do not influence the solution.

\[(w, \varepsilon^1, \ldots, \varepsilon^N) \]

\(y \in A^n \)

For \(\forall r, \forall \gamma, y \neq \gamma^n \):
- \(w \cdot (\phi(x^n, \gamma^n) - \phi(x^n, y)) \geq \Delta(\gamma^n, y) - \varepsilon^n \)
- \(\varepsilon^n \geq 0 \)

\(A^n \): a very small set of \(y \to \text{working set} \)
Cutting Plane Algorithm

- Elements in **working set** \mathbb{A}^n is selected iteratively

Initialize $\mathbb{A}^1 \ldots \mathbb{A}^N$

Find $w, \varepsilon^1 \ldots \varepsilon^N$ minimizing C

$$C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} \varepsilon^n$$

For $\forall r$:

For $\forall y \in \mathbb{A}^n$, $y \neq \hat{y}^n$:

$$w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \varepsilon^n$$

$\varepsilon^n \geq 0$

Obtain solution w

Repeatedly

Add elements into $\mathbb{A}^1 \ldots \mathbb{A}^N$
Cutting Plane Algorithm

- Strategies of adding elements into **working set** \mathbb{A}^n

Initialize $\mathbb{A}^n = \text{null}$

No constraint at all

Solving QP

The solution w is the blue point.

Image credit: Yisong Yue
Cutting Plane Algorithm

• Strategies of adding elements into **working set** A^n

There are lots of constraints is violated

Find **the most violated one**

Suppose it is the constraint from y'

Extent the working set

$A^n = A^n \cup \{y'\}$

[Image credit: Yisong Yue]
Cutting Plane Algorithm

• Strategies of adding elements into *working set* \mathbb{A}^n
Find the most violated one

• Given w' and ε' from working sets at hand, which constraint is the most violated one?

Constraint:
$$w \cdot (\phi(x, \hat{y}) - \phi(x, y)) \geq \Delta(\hat{y}, y) - \varepsilon$$

Violate a Constraint:

$$w' \cdot (\phi(x, \hat{y}) - \phi(x, y)) < \Delta(\hat{y}, y) - \varepsilon'$$

Degree of Violation

$$\Delta(\hat{y}, y) - \varepsilon' - w' \cdot (\phi(x, \hat{y}) - \phi(x, y))$$

$$\Delta(\hat{y}, y) + w' \cdot \phi(x, y)$$

The most violated one:

$$\arg \max_y [\Delta(\hat{y}, y) + w \cdot \phi(x, y)]$$
Cutting Plane Algorithm

Given training data: \{ (x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^N, \hat{y}^N) \}

Working Set \(A^1 \leftarrow \text{null} \), \(A^2 \leftarrow \text{null} \), \ldots, \(A^N \leftarrow \text{null} \)

Repeat

\(w \leftarrow \text{Solve a QP with Working Set } A^1, A^2, \ldots, A^N \)

\[\text{QP: Find } w, \varepsilon^1 \ldots \varepsilon^N \text{ minimizing } \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} \varepsilon^n \]

For \(\forall n \):

For \(\forall y \in A^n \):

\[w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \geq \Delta(\hat{y}^n, y) - \varepsilon^n, \varepsilon^n \geq 0 \]
Cutting Plane Algorithm

Given training data: \{ (x^1, \hat{y}^1), (x^2, \hat{y}^2), \ldots, (x^N, \hat{y}^N) \}

Working Set \(A^1 \leftarrow \text{null}, A^2 \leftarrow \text{null}, \ldots, A^N \leftarrow \text{null} \)

Repeat

1. \(w \leftarrow \text{Solve a QP with Working Set } A^1, A^2, \ldots, A^N \)

2. For each training data \((x^n, \hat{y}^n)\):

 \[
 \bar{y}^n = \arg\max_y [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)]
 \]

 find the most violated constraints

3. Update working set \(A^n \leftarrow A^n \cup \{\bar{y}^n\} \)

Until \(A^1, A^2, \ldots, A^N \) doesn’t change any more

Return \(w \)
Training data:

\[x^1 \quad y^1 \quad x^2 \quad y^2 \]

\[w = 0 \]

\[\mathbb{A}^1 = \emptyset \]

\[\mathbb{A}^2 = \emptyset \]

QP: Find \(w, \varepsilon^1, \varepsilon^2 \) minimizing

\[
\frac{1}{2} \| w \|^2 + \lambda \sum_{n=1}^{2} \varepsilon^n
\]

There is no constraint

Solution: \(w = 0 \)
Training data:

\[x^1 \quad y^1 \quad \hat{y}^1 \quad x^2 \quad y^2 \quad \hat{y}^2 \]

\[\mathbb{A}^1 = \{ \} \quad \rightarrow \quad \mathbb{A}^1 = \{ \square \} \]

\[\mathbb{A}^2 = \{ \} \quad \rightarrow \quad \mathbb{A}^2 = \{ \square \} \]

\[w = 0 \]

\[y^1 = \arg \max_y [\Delta(\hat{y}^1, y) + 0 \cdot \phi(x^1, y)] \]

\[\Delta(\quad) + w \cdot \phi(\quad) = 0.90 \]

\[\Delta(\quad) + w \cdot \phi(\quad) = 0.25 \]

\[\Delta(\quad) + w \cdot \phi(\quad) = 1.0 \]

\[y^2 = \arg \max_y [\Delta(\hat{y}^2, y) + 0 \cdot \phi(x^2, y)] \]

\[\Delta(\quad) + w \cdot \phi(\quad) = 1.0 \]

\[y^1 = 1.0 \]
Training data:

\[x_1, y_1 \quad x_2, y_2 \]

\[\hat{y}_1, \hat{y}_2 \]

\[A^1 = \{ \square \} \]

\[A^2 = \{ \Box \} \]

\[w = w^1 \]

QP: Find \(w, \varepsilon^1, \varepsilon^2 \) minimizing

\[
\frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{2} \varepsilon^n
\]

\[
w \cdot (\phi(x_1) - \phi(x_2)) \geq \Delta(\square) - \varepsilon^1
\]

\[
w \cdot (\phi(x_2) - \phi(x_1)) \geq \Delta(\Box) - \varepsilon^2
\]

Solution: \(w = w^1 \)
Training data: \(\hat{y}^1 \) \(\hat{y}^2 \)

\[\begin{align*}
\hat{y}^1 &= \arg\max_y [\Delta(\hat{y}^1, y) + w^1 \cdot \phi(x^1, y)] \\
\Delta(\hat{y}^1, y) + w \cdot \phi(x^1, y) &= 0.97 \\
\Delta(\hat{y}^1, y) + w \cdot \phi(x^1, y) &= 1.25 \\
\Delta(\hat{y}^1, y) + w \cdot \phi(x^1, y) &= 0.97 \\
\Delta(\hat{y}^2, y) + w^1 \cdot \phi(x^2, y) &= -0.99 \\
\hat{y}^2 &= \arg\max_y [\Delta(\hat{y}^2, y) + w^1 \cdot \phi(x^2, y)] \\
\end{align*} \]
Training data: \hat{y}^1, \hat{y}^2

x^1, x^2

$A^1 = \{ \square, \square \}$

$A^2 = \{ \square, \square \}$

QP: Find $w, \varepsilon^1, \varepsilon^2$ minimizing

$$\frac{1}{2} \|w\|^2 + \lambda \sum_{r=1}^{2} \varepsilon^n$$

The process repeats iteratively.
Concluding Remarks

- Separable case
- Non-separable case
- Considering Errors
- Regularization
- Structured SVM
- Cutting Plane Algorithm for Structured SVM
- Multi-class and binary SVM
- Beyond Structured SVM (open question)
Multi-class SVM

\[F(x, y) = w \cdot \phi(x, y) \]

- **Problem 1: Evaluation**
 - If there are \(K \) classes, then we have \(K \) weight vectors \(\{w^1, w^2, \ldots, w^K\} \)

\(y \in \{1, 2, \ldots, k, \ldots, K\} \)

\[F(x, y) = w^y \cdot \tilde{x} \]

\(\tilde{x} \): vector representation of \(x \)
Multi-class SVM

- Problem 2: Inference

\[F(x, y) = w^y \cdot \hat{x} \]

\[\hat{y} = \arg \max_{y \in \{1, 2, \ldots, k, \ldots, K\}} F(x, y) \]

\[= \arg \max_{y \in \{1, 2, \ldots, k, \ldots, K\}} w^y \cdot \hat{x} \]

The number of classes are usually small, so we can just enumerate them.
Multi-class SVM

• Problem 3: Training

Find \(w, \varepsilon^1, \cdots, \varepsilon^N \) minimizing \(C \)

\[
C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^{N} \varepsilon^n
\]

For \(\forall n \):

For \(\forall y \neq \hat{y}^n \):

\[
(w^{\hat{y}^n} - wy) \cdot \tilde{x} \geq \Delta(\hat{y}^n, y) - \varepsilon^n, \: \varepsilon^n \geq 0
\]

\[
w \cdot \phi(x^n, \hat{y}^n) = w^{\hat{y}^n} \cdot \tilde{x}
\]

\[
w \cdot \phi(x^n, y) = wy \cdot \tilde{x}
\]

Some types of misclassifications may be worse than others.

\(y \in \{\text{dog, cat, bus, car}\} \)

\(\Delta(\hat{y}^n = \text{dog}, y = \text{cat}) = 1 \)

\(\Delta(\hat{y}^n = \text{dog}, y = \text{bus}) = 100 \)

(defined as your wish)

There are only \(N(K-1) \) constraints.
Binary SVM

- Set $K = 2$ \(y \in \{1,2\} \)

For \(\forall y \neq \hat{y}^n \):

\[
(w^{\hat{y}^n} - w^y) \cdot \hat{x} \geq \Delta(\hat{y}^n, y) - \varepsilon^n, \; \varepsilon^n \geq 0
\]

If \(y = 1 \):

\[
(w^1 - w^2) \cdot \hat{x} \geq 1 - \varepsilon^n
\]

\(w \)

\[
w \cdot \hat{x} \geq 1 - \varepsilon^n
\]

If \(y = 2 \):

\[
(w^2 - w^1) \cdot \hat{x} \geq 1 - \varepsilon^n
\]

\(-w \)

\[
-w \cdot \hat{x} \geq 1 - \varepsilon^n
\]
Concluding Remarks

- Separable case
- Non-separable case
- Considering Errors
- Regularization
- Structured SVM
- Cutting Plane Algorithm for Structured SVM
- Multi-class and binary SVM
- Beyond Structured SVM (open question)
Beyond Structured SVM

• Involving DNN when generating $\phi(x, y)$

Beyond Structured SVM

• Jointly training structured SVM and DNN

Ref: Shi-Xiong Zhang, Chaojun Liu, Kaisheng Yao, and Yifan Gong, “DEEP NEURAL SUPPORT VECTOR MACHINES FOR SPEECH RECOGNITION”, Interspeech 2015
Beyond Structured SVM

• Replacing Structured SVM with DNN

A DNN with \(x \) and \(y \) as input and \(F(x, y) \) (a scalar) as output

\[
C = \frac{1}{2} \| \theta \|^2 + \frac{1}{2} \| \theta' \|^2 + \lambda \sum_{n=1}^{N} C^n
\]

\[
C^n = \max_{y} [\Delta(\hat{y}^n, y) + F(x^n, y)] - F(x^n, \hat{y}^n)
\]

Concluding Remarks

Separable case

Non-separable case

Considering Errors

Regularization

Structured SVM

Cutting Plane Algorithm for Structured SVM

Multi-class and binary SVM

Beyond Structured SVM (open question)
Acknowledgement

- 感謝 劉柏儒 同學於上課時發現投影片上的錯誤
- 感謝 徐翊祥 同學於上課時發現投影片上的錯誤