
4.0 More about Hidden Markov Models

Reference: 1. 6.1-6.6, Rabiner and Juang

2. 4.4.1 of Huang

Markov Model

• Markov Model (Markov Chain)

– First-order Markov chain of N states is a triplet (S,A,)

• S is a set of N states

• A is the NN matrix of state transition probabilities

P(qt=j|qt-1=i, qt-2=k, ……)=P (qt=j|qt-1=i)  aij

•  is the vector of initial state probabilities

j =P(q0=j)

– The output for any given state is an

observable event (deterministic)

– The output of the process is a sequence

of observable events

A Markov chain with 5 states (labeled S1 to S5)

with state transitions.

2

Markov Model

• An example : a 3-state Markov Chain λ

– State 1 generates symbol A only,
State 2 generates symbol B only,
and State 3 generates symbol C only

– Given a sequence of observed symbols O={CABBCABC}, the only
one corresponding state sequence is {S3S1S2S2S3S1S2S3}, and the
corresponding probability is
P(O|λ)=P(q0=S3)
P(S1|S3)P(S2|S1)P(S2|S2)P(S3|S2)P(S1|S3)P(S2|S1)P(S3|S2)

=0.10.30.30.70.20.30.30.2=0.00002268

 1.05.04.0

5.02.03.0

2.07.01.0

1.03.06.0

=

















=



A
s2 s3

A

B C

0.6

0.7

0.3
0.1

0.2

0.2
0.1

0.3

0.5

s1

3

Hidden Markov Model

• HMM, an extended version of Markov Model

– The observation is a probabilistic function (discrete or continuous)
of a state instead of an one-to-one correspondence of a state

– The model is a doubly embedded stochastic process with an underlying
stochastic process that is not directly observable (hidden)

• What is hidden? The State Sequence
According to the observation sequence, we never know which state
sequence generates it

• Elements of an HMM {S,A,B,}

– S is a set of N states

– A is the NN matrix of state transition probabilities

– B is a set of N probability functions, each describing the observation

probability with respect to a state

–  is the vector of initial state probabilities

4

Simplified HMM

RGBGGBBGRRR……

1 2 3

5

Hidden Markov Model

• Two types of HMM’s according to the observation functions

Discrete and finite observations :

– The observations that all distinct states generate are finite in number
V={v1, v2, v3, ……, vM}, vkRD

– the set of observation probability distributions B={bj(vk)} is defined as
bj(vk)=P(ot=vk|qt=j), 1kM, 1jN
ot : observation at time t, qt : state at time t
 for state j, bj(vk) consists of only M probability values

Continuous and infinite observations :
– The observations that all distinct states generate are infinite and continuous,

V={v| vRD}

– the set of observation probability distributions B={bj(v)} is defined as
bj(v)=P (ot=v|qt=j), 1jN
 bj(v) is a continuous probability density function and is often assumed to

be a mixture of Gaussian distributions

6

𝑏𝑗 𝑣 = ෍

𝑘=1

𝑀

𝐶𝑗𝑘
1

2𝜋
𝐷

Σ𝑗𝑘

1
2

𝑒𝑥𝑝 −
1

2
𝑣 − 𝜇𝑗𝑘

𝑡
Σ𝑗𝑘

−1 𝑣 − 𝜇𝑗𝑘 = ෍

𝑘=1

𝑀

𝐶𝑗𝑘𝑏𝑗𝑘 𝑣

Hidden Markov Model

• An example : a 3-state discrete HMM λ

– Given a sequence of observations O={ABC}, there are 27 possible

corresponding state sequences, and therefore the corresponding

probability is

s2

s1

s3

{A:.3,B:.2,C:.5}

{A:.7,B:.1,C:.2} {A:.3,B:.6,C:.1}

0.6

0.7

0.3
0.1

0.2

0.2
0.1

0.3

0.5
() () ()

() () ()

() () ()

 1.05.04.0

1.0,6.0,3.0

2.0,1.0,7.0

5.0,2.0,3.0

5.02.03.0

2.07.01.0

1.03.06.0

333

222

111

=

===

===

===

















=



CBA

CBA

CBA

A

bbb

bbb

bbb

() () ()

  () ()
() () () () 07.02.0*7.0*5.0

23

22

20

007.01.0*1.0*7.0
3

2

2

 , ,
322

 when ..

sequence state: ,
27

1

,
27

1

,

====

==




=





=


=






=

=

=

SSPSSPSqP
i

P

SPSPSP
i

PSSS
i

ge

i
i

i
P

i
P

i
i

PP







q

CBAqOq

qqqOqOO

7

Hidden Markov Model

• Three Basic Problems for HMMs

Given an observation sequence O=(o1,o2,…..,oT), and an HMM

λ =(A,B,)

– Problem 1 :

How to efficiently compute P(O| λ) ?

 Evaluation problem

– Problem 2 :

How to choose an optimal state sequence q=(q1,q2,……, qT) ?

 Decoding Problem

– Problem 3 :

Given some observations O for the HMM λ , how to adjust the

model parameter λ =(A,B,) to maximize P(O| λ)?

 Learning /Training Problem

8

Basic Problem 1 for HMM

= (A, B, )

O = o1o2o3……ot……oT observation sequence

q = q1q2q3……qt……qT state sequence

1 2 N

․Problem 1: Given  and O,

find P(O|)=Prob[observing O given ]

․Direct Evaluation: considering all possible state sequence q

P(O|) = ([bq1
(o1) • bq2

(o2) •……bqT
(oT)] •

[q1
• aq1q2

• aq2q3
•……aqT-1qT

])

P(q|)

total number of different q : NT

huge computation requirements

P(O|q,)

all q

 ==)λ|q(P)λ,q|O(P)λ|q,O(P)λ|O(P
all q all q

9

 4.0

Basic Problem 1 for HMM

•Forward Algorithm: defining a forward variable t(i)

 t(i) = P(o1o2……ot , qt = i|)

 =Prob[observing o1o2…ot , state i at time t|]

- Initialization

1(i) = ibi(o1) , 1  i  N

- Induction

t+1(j) = [ t(i)aij] bj(ot+1)

 1  j  N

 1  t  T−1

- Termination

P(O|) =  T(i)

See Fig. 6.5 of Rabiner and Juang

- All state sequences, regardless of how long previously, merge to the

N state at each time instant t

N

i = 1

N

i = 1

10

Basic Problem 1

𝑖

𝑡

𝑁

1

2

3

1 2 3 ⋯ 𝑡 ⋯ 𝑇
⋯ 𝑜𝑡 ⋯ 𝑜𝑇𝑜1 𝑜2 𝑜3

⋯
11

Basic Problem 1

αt(i)

t
t

i t(i) = P(o1o2……ot , qt = i|)

𝑖

12

Basic Problem 1

Forward Algorithm

αt(i)

αt+1(j)

j

i

t+1t

t+1(j) = [ t(i)aij] bj(ot+1)

1  j  N

1  t  T−1

N

i = 1

13

 4.0

Basic Problem 2 for HMM

•Problem 2: Given  and O = o1o2…oT , find a best state sequence q = q1q2…qT

•Backward Algorithm : defining a backward variable t(i)

 t(i) = P(ot+1 , ot+2 ,…, oT |qt= i, )

= Prob[observing ot+1 , ot+2 ,…, oT|state i at time t, ]

- Initialization

T(i) = 1, 1  i  N (T-1(i) =  aij bj(oT))

- Induction

t(i) =  aij bj(ot+1)t+1(j)

t = T−1, T−2,…, 2, 1, 1  i  N

See Fig. 6.6 of Rabiner and Juang

•Combining Forward/Backward Variables

P(O, qt = i |)

= Prob [observing o1, o2, …, ot , …, oT , qt = i |]

= t(i)t(i)

P(O|) =  P(O, qt = i |) =  [t(i)t(i)]

N

j = 1

N

i = 1

N

i = 1

N

j = 1

14

Basic Problem 2

βt(i)

t+1
t T

i

t(i) = P(ot+1 , ot+2 ,…, oT |qt= i, )

15

Basic Problem 2

Backward Algorithm

βt(i)
βt+1(j)

j

i

t+1t T

t(i) =  aij bj(ot+1)t+1(j)

t = T−1, T−2,…, 2, 1, 1  i  N

N

j = 1

16

Basic Problem 2

βt(i)

αt(i)

i

t

𝛽𝑡(𝑖)

P(O, qt = i |)

= Prob [observing o1, o2, …, ot , …, oT , qt = i |]

= t(i)t(i)

𝐴: (𝑜1 𝑜2 ⋯ 𝑜𝑡ȁ𝜆)

𝐵: (𝑜𝑡+1, 𝑜𝑡+2, ⋯ 𝑜𝑇ȁ𝜆)

𝐶: (𝑞𝑡 = 𝑖ȁ𝜆)

𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴, 𝐶 𝑃(𝐵ȁ𝐴, 𝐶)
(𝐵 ⊥ 𝐴)

𝑃(𝐵ȁ𝐶)𝛼𝑡(𝑖)𝑃(ത𝑂, 𝑞𝑡 = 𝑖ȁ𝜆)

17

Basic Problem 2

P(Ō|λ)

αt(i)βt(i)

t

i

P(O|) =  T(i)
N

i = 1

P(O|) =  P(O, qt = i |) =  [t(i)t(i)]
N

i = 1

N

i = 1

18

Basic Problem 2 for HMM

․Approach 1 – Choosing state q t* individually as the most likely state at time t

- Define a new variable gt(i) = P(qt = i | O, )

gt(i) = ⎯⎯⎯⎯⎯ = ⎯⎯⎯⎯⎯
t(i)t(i)

 t(i)t(i)
N

i = 1

P(O, qt= i|)

P(O|)

- Problem
maximizing the probability at each time t individually

q*= q1*q2*…qT* may not be a valid sequence

(e.g. aqt*qt+1* = 0)

- Solution
g t(i)], 1  t  Tqt* = arg max [

1 i  N

in fact
qt* = arg max [

1 i  N
P(O, qt= i|)]

= arg max [
1 i  N


t(i) t(i)]

19

 4.0

Basic Problem 2 for HMM

•Approach 2 ⎯Viterbi Algorithm - finding the single best sequence

q*= q1*q2*…qT*

- Define a new variable t(i)

t(i) = max P[q1,q2,…qt-1, qt = i, o1,o2,…,ot |]

= the highest probability along a certain single path ending at

state i at time t for the first t observations, given 

- Induction

t+1(j) = max [t(i)aij] • bj(ot+1)

- Backtracking

t+1(j) = arg max [t(i)aij]

the best previous state at t−1 given at state j at time t

keeping track of the best previous state for each j and t

q
1
,q

2
,…q

t-1

i

1  i  N

20

Viterbi Algorithm

δt(i)

δt+1(j)

δt(i)

i

t

t t+1

1

1

i

j

t+1(j) = max [t(i)aij] • bj(ot+1)
i

t(i) = max P[q1,q2,…qt-1, qt = i, o1,o2,…,ot |]
q1,q2,…q t-1

21

Viterbi Algorithm

Path backtracking

22

 4.0

Basic Problem 2 for HMM

•Complete Procedure for Viterbi Algorithm

- Initialization

1(i) = ibi(o1) , 1  i  N

- Recursion

t+1(j) = max [t(i)aij] • bj(ot+1)

 1  t  T-1, 1  j  N

t+1(j) = arg max [t(i)aij]

 1  t  T-1, 1  j  N

- Termination

P* = max [T(i)]

qT* = arg max [T(i)]

- Path backtracking

qt*= t+1(q*t+1) , t = T−1, t−2, …..2, 1

1  i  N

1  i  N

1  i  N

1  i  N

23

Basic Problem 2 for HMM

․Application Example of Viterbi Algorithm

- Isolated word recognition

),B,A(λ

),B,A(λ

),B,A(λ

nnnn

1111

0000

π

π
π

=

=

=

.

.

.

-The model with the highest probability for the most probable path

usually also has the highest probability for all possible paths.

observation

]λ|Pmax[arg]λ|O[Pmaxarg

),...,(O

i

*

i

*

T21

=

=

k

ooo

1 i  n 1 i  n

Basic Problem 1

Forward Algorithm

(for all paths)

Basic Problem 2

Viterbi Algorithm

(for a single best path)

24

 4.0

Basic Problem 3 for HMM

•Problem 3: Give O and an initial model =(A,B,), adjust  to maximize P(O|)

- Baum-Welch Algorithm (Forward-backward Algorithm)

- Define a new variable

t(i, j) = P(qt = i, qt+1 = j | O, )

 = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

See Fig. 6.7 of Rabiner and Juang

- Recall gt(i) = P(qt = i | O, )

 gt(i) = expected number of times that state i is visited in O from t = 1 to t = T−1

= expected number of transitions from state i in O

 t(i, j) = expected number of transitions from state i to state j in O

t(i) aij bj(ot+1)t+1(j)

  [t(i)aij bj(ot+1)t+1(j)]

Prob[O, qt = i, qt+1 = j|]

P(O|)

N

i =1

N

j =1

T−1

t =1

T−1

t =1

25

Basic Problem 3

βt+1(j)

αt(i)

t t+1

i

j

t(i) aij bj(ot+1)t+1(j)

26

αt(i)aijbj(ot+1)βt+1(j)

βt+1(j)

αt(i)

i

j

t t+1

Basic Problem 3

27

Basic Problem 3

𝛾𝑡 𝑖 =
𝛼𝑡 𝑖 𝛽𝑡(𝑖)

=
𝑃(ത𝑂, 𝑞𝑡 = 𝑖ȁ𝜆)

𝑃(ത𝑂ȁ𝜆)
= 𝑃(𝑞𝑡 = 𝑖ȁ ത𝑂, 𝜆)

𝜀𝑡 𝑖, 𝑗 =
𝛼𝑡 𝑖 𝑎𝑖𝑗 𝑏𝑗 𝑜𝑡+1 𝛽𝑡+1 𝑗

෍

𝑖=1

𝑁

[𝛼𝑡 𝑖 𝛽𝑡(𝑖)]

෍

𝑗=1

𝑁

෍

𝑖=1

𝑁

𝛼𝑡 𝑖 𝑎𝑖𝑗 𝑏𝑗 𝑜𝑡+1 𝛽𝑡+1(𝑗)

=
𝑃(ത𝑂, 𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗ȁ𝜆)

𝑃(ത𝑂ȁ𝜆)
= 𝑃(𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗ȁ ത𝑂, 𝜆)

28

Basic Problem 3

a ij = ⎯⎯⎯⎯⎯⎯⎯

T-1


t =1
t(i, j)/(T-1)

T-1


t =1
gt(i)/(T-1)

ത𝑎𝑖𝑗 = 1.95/69
10.59/69

29

 4.0

Basic Problem 3 for HMM

- Results

i = g1(i)

a ij = ⎯⎯⎯⎯

bj(k) = Prob[ot = vk | qt = j] = ⎯⎯⎯⎯

(for discrete HMM)

•Continuous Density HMM

bj(o) =  cjkN(o; jk , Ujk)

 N(): Multi-variate Gaussian

jk: mean vector for the k-th mixture component

Ujk: covariance matrix for the k-th mixture component

 cjk = 1 for normalization

T


t =1

ot = vk

gt(j)

T


t =1

gt(j)

T-1


t =1

M

k =1

T-1


t =1

t(i, j)

gt(i)

M

k =1

30

 4.0

Basic Problem 3 for HMM

‧Continuous Density HMM

- Define a new variable

gt(j, k) = gt(j) but including the probability of ot evaluated in the k-th mixture

component out of all the mixture components

= ⎯⎯⎯⎯⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯

- Results

c jk= ⎯⎯⎯⎯⎯⎯

See Fig. 6.9 of Rabiner and Juang

T


t =1

gt(j, k)

T M

  gt(j, k)
t =1 k=1

t(j)t(j)
N

 t(j)t(j)

j = 1

c jk N(ot; jk, Ujk)
M

 cjmN(ot; jm, Ujm)]
m = 1

31

 4.0

Basic Problem 3 for HMM

‧Continuous Density HMM

 jk = ⎯⎯⎯⎯⎯⎯

U jk = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

•Iterative Procedure

 = (A, B, )  = (A, B, )

- It can be shown (by EM Theory (or EM Algorithm))

P(O|)  P(O|) after each iteration

O = o1o2…oT

T

 gt(j, k)
t =1

T

 [gt(j, k) • ot]
t =1

T

 [gt(j, k)(ot−jk) (ot−jk)]
t =1

T

 gt(j, k)
t =1

32

Basic Problem 3




=




=

=

=

=

=

•

−−

T

t

t

T

t

jktjktt

T

t

t

T

t

tt

kj

ookj

jk

kj

okj

jk

U

1

1

1

1

),(

])()(),([

),(

]),([

g

g

g

g


න

−∞

∞

𝑥 𝑓𝑋 𝑥 𝑑𝑥 = ҧ𝑥

න
−∞

∞

(𝑥 − ҧ𝑥)2 𝑓𝑋 𝑥 𝑑𝑥 = 𝜎𝑥
2

𝑓𝑋 𝑥 : prob. density function

𝜎𝑥
2

𝑓𝑋 𝑥

𝑥
ҧ𝑥 𝑥

𝑜𝑡1
− 𝜇𝑗𝑘1

𝑜𝑡2
− 𝜇𝑗𝑘2

⋮
𝑜𝑡𝐷

− 𝜇𝑗𝑘𝐷

𝑜𝑡1
− 𝜇𝑗𝑘1

𝑜𝑡2
− 𝜇𝑗𝑘2

⋯ 𝑜𝑡𝐷
− 𝜇𝑗𝑘𝐷

33

Basic Problem 3

ത𝑢𝑙𝑚

𝑚

𝑙

34

⚫ No closed-form solution, but approximated iteratively

⚫ An initial model is needed-model initialization

⚫ May converge to local optimal points rather than global optimal point

- heavily depending on the initialization

⚫ Model training

Basic Problem 3 for HMM

Model

Initialization:

Segmental K-means

Model

Re-estimation:

Baum-Welch

35

Basic Problem 3

Global optimum

Local

optimum

P

jrnm

P(O|λ)

 jkn

36

Vector Quantization (VQ)

• An Efficient Approach for Data Compression
– replacing a set of real numbers by a finite number of bits

• An Efficient Approach for Clustering Large Number of Sample
Vectors

– grouping sample vectors into clusters, each represented by a single vector
(codeword)

• Scalar Quantization
– replacing a single real number by an R-bit pattern
– a mapping relation

Jk

-A=m0
vk A = mL

S = Jk , V ={ v1 , v2 , …, vL }

Q : S → V

Q(x[n]) = vk if x[n]  Jk

L = 2R

Each vk represented by an R-bit pattern

U
L

1k=
– Quantization characteristics (codebook)

{ J1 , J2 , …, JL } and { v1 , v2 , …, vL }

designed considering at least

1. error sensitivity

2. probability distribution of x[n]
37

Scalar Quantization：Pulse Coded Modulation (PCM)

Vector Quantization

quantization error

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

𝐽𝑘

𝑣𝑘

1 0 0 1 0 0 1 0 1 1 1 0

38

Vector Quantization

Px(x)

39

Vector Quantization (VQ)

– Considerations
1.error sensitivity may depend on x[n],

x[n+1] jointly

2.distribution of x[n] , x[n+1] may be

correlated statistically

3.more flexible choice of Jk

– Quantization Characteristics

(codebook)
{ J1 , J2 , …, JL } and { v1 , v2 , …, vL }

2-dim Vector Quantization (VQ)
Example:

xn = (x[n] , x[n+1])

S ={xn = (x[n] , x[n+1]) ; |x[n]| <A,|x[n+1]|<A}

•VQ
– S divided into L 2-dim regions

{ J1 , J2 , …, Jk ,…JL }

each with a representative

vector vk  Jk, V= { v1 , v2 , …, vL }

– Q : S → V

Q(xn)= vk if xn  Jk

L = 2R

each vk represented by an R-bit pattern

k

L

1k

JS U
=

=

40

Vector Quantization

𝐴

−𝐴

−𝐴

𝐴

41

(256)
2
=(2

8
)
2
=2

16

1024=2
10

Jk

vk

Vector Quantization

42

Vector Quantization

Jk

vk

43

Vector Quantization (VQ)

N-dim Vector Quantization

x = (x1 , x2 , …, xN)

S = {x = (x1 , x2 , …, xN) ,

| xk |< A , k = 1,2,…N}

V = {v1 , v2 , …, vL }

Q : S → V

Q(x) = vk if x  Jk

L = 2R , each vk represented

by an R-bit pattern

k

L

1k

J US
=

=

Codebook Trained by a Large

Training Set

˙Define distance measure between

two vectors x, y

d(x, y) : SS → R+ (non-negative

real numbers)

-desired properties
d(x, y)  0

d(x, x) = 0

d(x, y) = d(y, x)

d(x, y) + d(y, z)  d(x, z)

examples :

d(x, y) =  (xi − yi)
2

d(x, y) =  | xi − yi |

d(x, y) = (x-y)t -1(x-y)

Mahalanobis Distance

: Co-variance Matrix

i

i

44

Distance Measures

𝑑 ҧ𝑥, ത𝑦 = ෍

𝑖

𝑥𝑖 − 𝑦𝑖 city block distance

𝑑 ҧ𝑥, ത𝑦 = (ҧ𝑥 − ത𝑦)𝑡 Σ−1 (ҧ𝑥 − ത𝑦) Mahalanobis distance

෍ =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

, 𝑑 ҧ𝑥, ത𝑦 = ෍

𝑖

(𝑥𝑖 − 𝑦𝑖)2

෍ =
𝜎1

2 ⋯ 0

⋮ ⋮
0 ⋯ 𝜎𝑛

2
, 𝑑 ҧ𝑥, ത𝑦 = ෍

𝑖

(𝑥𝑖 − 𝑦𝑖)2

𝜎𝑖
2

⋱

𝜎2
2

45

Vector Quantization (VQ)

• K-Means Algorithm/Lloyd-Max Algorithm

• Iterative Procedure to Obtain Codebook from a Large Training Set

(1)

Fixed { v1 , v2 , …, vL }

find best set of

{ J1 , J2 , …, JL }

(2)

Fixed { J1 , J2 , …, JL }

find best set of

{ v1 , v2 , …, vL }

(1) Jk = { x | d(x , vk) < d(x , vj) , j  k }

→ D = d(x , Q(x)) = min

nearest neighbor condition

(2) For each k

→ Dk = d(x , vk) = min

centroid condition


x all


 kJx

=
 kJx

k x
M

1
v

(3) Convergence condition

D = Dk

after each iteration D is reduced, but D  0

| D(m+1) − D(m) | < , m : iteration

L

k = 1

46

Vector Quantization

47

Vector Quantization (VQ)

• K-means Algorithm may Converge to Local Optimal Solutions

– depending on initial conditions, not unique in general

• Training VQ Codebook in Stages― LBG Algorithm

– step 1: Initialization. L = 1, train a 1-vector VQ codebook

– step 2: Splitting.

Splitting the L codewords into 2L codewords, L = 2L
‧example 1

– step 3: K-means Algorithm: to obtain L-vector codebook

– step 4: Termination. Otherwise go to step 2

• Usually Converges to Better Codebook

)1(vv k

)2(

k −=

)1(vv k

)1(

k +=

‧example 2

k

)1(

k vv =
)2(

kv : the vector most

far apart

=
j

jx
N

1
v

48

LBG Algorithm

49

Initialization in HMM Training

• An Often Used Approach― Segmental K-Means
– Assume an initial estimate of all model parameters (e.g. estimated by

segmentation of training utterances into states with equal length)

•For discrete density HMM

•For continuous density HMM (M Gaussian mixtures per state)

– Step 1 : re-segment the training observation sequences into states based on the initial
model by Viterbi Algorithm

– Step 2 : Reestimate the model parameters (same as initial estimation)

– Step 3: Evaluate the model score P(|λ):

If the difference between the previous and current model scores exceeds a threshold, go
back to Step 1, otherwise stop and the initial model is obtained

()
j statein vectorsofnumber total

 k codeword with associated j statein vectorsofnumber
 kb j =

 =

=

=



jm

jm

jm

 j state of mcluster in classified vectors theofmatrix covariance sample

j state of mcluster in classified vectors theofmean sample

 j statein vectorsofnumber by divided

j state of mcluster in classified vectorsofnumber c

ion)quantiziator with vect(e.g.

clusters M ofset a into j stateeach within n vectorsobservatio ecluster th

O

50

Segmental K-Means

51

Initialization in HMM Training

• An example for Continuous HMM

– 3 states and 4 Gaussian mixtures per state

O1

State

O2

1 2 N
ON

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

Global mean Cluster 1 mean

Cluster 2mean

LBG {11,11,c11}{12,12,c12}

{13,13,c13} {14,14,c14}K-means
52

Initialization in HMM Training

• An example for discrete HMM

– 3 states and 2 codewords

b1(v1)=3/4, b1(v2)=1/4

b2(v1)=1/3, b2(v2)=2/3

b3(v1)=2/3, b3(v2)=1/3

O1

State

O2 O3

1 2 3 4 5 6 7 8 9 10
O4

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

O5 O6 O9O8O7 O10

v1

v2

53

