4.0 More about Hidden Markov Models

Reference: 1. 6.1-6.6, Rabiner and Juang
2. 4.4.1 of Huang

Markov Model

« Markov Model (Markov Chain)

— First-order Markov chain of N states is a triplet (S,A,x)
- Sisasetof N states
- Ais the NXN matrix of state transition probabilities
P(G=)101=1 QoK ...)=P (Q=110,1=1) = &
7t IS the vector of initial state probabilities
7, =P(do=))
— The output for any given state Is an
observable event (deterministic)
— The output of the process Is a sequence

of observable events

A Markov chain with 5 states (labeled S; to S;)
with state transitions.

Markov Model

« Anexample : a 3-state Markov Chain 4

— State 1 generates symbol A only,
State 2 generates symbol B only,
and State 3 generates symbol C only

0.6 0.3 0.1]
A=|01 07 02
03 0.2 05]

7=[04 05 0.1]

— Given a sequence of observed symbols O={CABBCABC}, the only
one corresponding state sequence is {S;S,S,5,5,5,5,S;}, and the
corresponding probability is
P(0[4)=P(qy=S,)
P(S11S5)P(S,1S1)P(S,1S)P(SslS)P(S11S5)P(S,1S,)P(Ss1S,)

=0.1X0.3%X0.3X0.7X0.2%X0.3X0.3xX0.2=0.00002268

0.7

Hidden Markov Model

« HMM, an extended version of Markov Model

— The observation is a probabilistic function (discrete or continuous)
of a state instead of an one-to-one correspondence of a state

— The model is a doubly embedded stochastic process with an underlying
stochastic process that is not directly observable (hidden)

- What is hidden? The State Sequence
According to the observation sequence, we never know which state
seqguence generates it

« Elements of an HMM {S,A,B,r}
— S isaset of N states

— A'is the NXN matrix of state transition probabilities

— B is aset of N probability functions, each describing the observation
probability with respect to a state

— g IS the vector of initial state probabilities

Simplified HMM

RGBGGBBGRRR......

Hidden Markov Model

 Two types of HMM’s according to the observation functions

Discrete and finite observations :
— The observations that all distinct states generate are finite in number
V={v;, Vo, Vs, , Vb, Vi eRP
— the set of observation probability distributions B={b;(v,)} Is defined as
b(vi)=P(0=v,/a=])), 1<k<M, 1<)<N
o observation at time t, g, : state at time t
=> for state j, b;(v,) consists of only M probability values
Continuous and infinite observations :
— The observations that all distinct states generate are infinite and continuous,
V={v| veRP}
— the set of observation probability distributions B={b;(v)} Is defined as
b;(v)=P (Ot_vlqt_J) 1<)<N
2 b;(v) Is a continuous probability density function and is often assumed to
be a mlxture of Gaussian distributions

M

b)) =) G [L exp <——<(v —) 5 (v - ujk))>] = écjkbjk(v)

k=1 Vo |Z]k|2

Hidden Markov Model

« Anexample : a 3-state discrete HMM 4 0.6

(0.6 0.3 0.1]
A=01 07 0.2
0.3 02 05
b,(A)=0.3,b,(B)=0.2,b,(C)=0.5
b,(A)=0.7,b,(B)=0.1,b,(C)=0.2

=0.1

by(A)=0.3,b,(B)=10.6,b,(C)
7[:[0.4 05 0_1] {A:.7,B:.1,C:.2} {A:..3,B:.6,C..1}

=){A:.3,B:.2,C:.5}

0.7

— Given a sequence of observations O={ABC}, there are 27 possible
corresponding state sequences, and therefore the corresponding

probability is
_ 27 T/ 27
P(O\/i)z > P(O,qi\/l)z > P(O‘qi,i)P(qiM) q; : state sequence
i=1 i=1
e.g.when g = {523253}, p (G‘qi ,/1) —p (A‘SZ)P (B‘SZ)P (C‘SSJ = 0.7%0.1%0.1=0.007

P(qi 2)- P(q0 = SZ)P (SZ‘SZ)P (sg‘sz)z 0.5%0.7*0.2 = 0.07

Hidden Markov Model

» Three Basic Problems for HMMs
Given an observation sequence O=(0,,0,,.....,07), and an HMM
4 =(A,B,n)
— Problem 1:
How to efficiently compute P(O] 4) ?
= Evaluation problem
— Problem 2 :
How to choose an optimal state sequence d=(d,,9,....--. , q7) ?
= Decoding Problem
— Problem 3:
Given some observations O for the HMM 4 , how to adjust the
model parameter 2 =(A,B,x) to maximize P(O| 4)?
= Learning /Training Problem

O =0,0,0;......0;......07 Observation sequence
q= 0:9203......G......07 state sequence

e Problem 1: Given % and O,
find P(O|A)=Prob[observing O given A]
e Direct Evaluation: considering all possible state sequence q
P(OI2)-P(0,q]1)- £ P(Ola,))P(al)

allq allq
P(Ola, %)

_ 1T

P(Ol) :a%([bql(ol) * bg,(02)e...... by (07)]
[ﬂqlo aql<3I2. anQg IEEERRE aqT-1QT])
Il
P(alA)

total number of differentq : N'
huge computation requirements

Basic Problem 1 for HMM
« Forward Algorithm: defining a forward variable ou(i)

o(i) = P(0,0,......0¢, ¢ = i)
=Prob[observing 0,0,...0;, state I at time t|A]

- Initialization
O(.l(l) = TCibi(O]_) , 1<i<N

- Induction
- N -

() = [izlat(l)aij] b;j(Ot+1)
1<j<N
1<t<T-1

- Termination

- N
P(O) = X ot (i)
See Fig. 6.5 of Rabiner and Juang

- All state sequences, regardless of how long previously, merge to the
N state at each time instant t

Basic Problem 1

[
C‘:? Nl
'I'Y
V4
3 ! P & =3 ¢
A A
2 T * / s~ e—>
/A A
// //
1 o o -,a o _> o —=
1 2 3 t T
01 0Oz O3 O¢ OT

11

Basic Problem 1

l

12

Basic Problem 1

| — at+1(j) N
() = [iglat(i)aij] b;(0p.1)
] 1<j<N
|) 1<t<T-1
i =
! *’_’A a(1)
- 1

- Forward Algorithm

Basic Problem 2 for HMM

« Problem 2: Given A and O = 0,0,...0+, find a best state sequence @ = q,0.

« Backward Algorithm : defining a backward variable By(i)
Bt(l) = P(Ot+1, Ot+2,..., OT |qt= i, }\.)

= Prob[observing 0¢+1, Ows2,..., Of[State I at time t, A]

- Initialization
Br() =1, 1<i<N (Bra(i) :J_;aij bj(0r))
- Inductlon

Bt(I) Z alj j(0t+1)Bt+l(J)
t—T 1, T-2,...,2,1, 1<i<N
See Fig. 6.6 of Rabiner and Juang
« Combining Forward/Backward Variables
P(a, qt - I |7\“)
= Prob [observing 04, 05, ..., O¢, ..., 07, Q¢ =1 |A]
= OLt(')Bt(')
P(OA) = Z PO, qe=1iA) = Z Lo (1)Be(1)]

.07

Basic Problem 2

lBt(I) > Bi(1) = P(Ot41, Otz s---5 O |0= 1, A)

N l@

15

Basic Problem 2

Pi1() Bi(1) = Zau j(Ot+1)Bt+1()

y]! t=T- 1,T2 2.1, 1<i<N

[S R 1AL

pi()

tt+1 T

Backward Algorithm

16

Basic Problem 2

kB0
" '@ PO, g, =i %)
(i) 1 = Prob [observing 04, 0,, ..., 0;, ..., 01, Q; =1 [\]
f = o ()B(1)

A: (01 0, - 0¢|1)

B: (0t41,0¢42, - 07|4)

C:(q; = ilD)

P(A,B,C) = P(4,C) P(B|A4, C)

7 4 / (BLlA)
P(0,q; = il2) a:(i) P(B|C)

V4
Be (1)

17

Basic Problem 2

. P(O|7)

X

_ _ N
POI) = 2 PO, 6, =1 1) = X [a.(D (]

’ f

|

i\

a(1)f(1)

—

P(OI) = 2 ar()

18

Basic Problem 2 for HMM

e Approach 1 — Choosing state q* individually as the most likely state at time t
- Define a new variable (i) = P(qt = i | O,)
o _oy(Bi) _ PO a= M)
yt(') - N _ T —
2 ou(i)B(i) PO

- Solution
g =argmax f«(i)], 1S t< T

1<i<N

in fact _
ge* = arg max [P(O, q¢= i|A)]

1I<i<N

= arg max [on(i)By(i)]

- Problem
maximizing the probability at each time t individually

g*= g1*q2*...q7* may not be a valid sequence

(eg aqt*qt+1* — O)

Basic Problem 2 for HMM

« Approach 2—Viterbi Algorithm - finding the single best sequence
g*= q;*0y*...d7™
- Define a new variable o(i)
Ot(1) = max P[qy,ds,...01, G: =1, 04,0,,...,0¢|A]

A1.8++-Aq
= the highest probability along a certain single path ending at
state 1 at time t for the first t observations, given A

- Induction
O+1(]) = max [0t(1)ai;] bj(0t+1)

- Backtracking
yea(]) = arg max [S¢(1)ajj]

1<i<N

the best previous state at t—1 given at state j at time t
keeping track of the best previous state for each j and t

Viterbi Algorithm

Opiq()) = miaX [3:(ay;] » b;(0y+1)

\

- @/ 5t+1(j)

\ o(1)

Vs

t t
: : t t+1
&,(1) = max P[Q;,0s,-..Gi.1, 0 = 1, 01,05,...,0¢ [A]
q11q21"'q t-1

21

Viterbi Algorithm

Path backtracking

22

Basic Problem 2 for HMM
« Complete Procedure for Viterbi Algorithm

- Initialization
01(i) = mibj(01), 1<i<N
- Recursion
Bea(j) = max [3u(i)a] « bj(0)
1<t<T1, 1<j<N
Wisa(]) = arg max [o.(1)aij]
1<t<T1, 1<j<N

- Termination
P* = max [07(i)]

1<i<N

Gr* = arg max [&(i)]

1<i<N

- Path backtracking
0= Yer1(Q*), t=T-1,t-2,....2,1

Basic Problem 2 for HMM

« Application Example of Viterbi Algorithm
- Isolated word recognition

7‘0 — (Ao’ BO’TEO)
7‘1 — (A1’ Bl’ 7[1)

A, =(A,,B,,T,)
observation
O =(0,,0,,..0;)

k™ =argmaxP[O|,]~argmax[P" | ;]

1<i<n 1<i<n
Basic Problem 1 Basic Problem 2

Forward Algorithm Viterbi Algorithm
(for all paths) (for a single best path)

-The model with the highest probability for the most probable path
usually also has the highest probability for all possible paths.

Basic Problem 3 for HMM

« Problem 3: Give O and an initial model A=(A,B,r), adjust A to maximize P(O[7)
- Baum-Welch Algorithm (Forward-backward Algorithm)
- Define a new variable
&(1,j)= P(Qt=1,qu1=j| O, 1)
_ (1) aij bj(0t+1)Bre(])
% 3 o bi(0w)Buia(i)]

i=1 J=1
Prob[O, gt =i, 1= j|A]
P(OI2)
See Fig. 6.7 of Rabiner and Juang

- Recall yi(i) = P(g: = i| O,)
T-1 o
tZl v¢(1) = expected number of times that state i is visited in Ofromt=1tot=T-1
= expected number of transitions from state i in O

T-1 —
Zl (1, J) = expected number of transitions from state i to state j in O
t=

Basic Problem 3

“oy(1)

-y e

o (1) & By (0p1)Besa()

R

T

o :Bt+1(j)

-

26

Basic Problem 3

at(i)aij bj(ot+1):8t+1(j)
v

g

j !-- o el e e - o) *5"ﬂt+1(j)

(1) |

Basic Problem 3

a: (1) Be (1) _ P(é» q: = i)

ye(@) = —x PO P(q, = i|0,2)
z [a: (D) Be(D)]
=1
N a:: b: -
£.(i,) = Naltv(l) aij](Ot+1) Be+1()
D @) ay by(001) s ()
j=1i=1

_ P(GJQt — iJCIt+1 :]M')

— =P — ', — 5’/1
P(Ol/'{) (qt L dt+1]l)

Basic Problem 3

T
1.95/69
10.59/69

C_ll'j —

29

Basic Problem 3 for HMM
- Results
i = y1(i)
T-1 oo
Y el])

a t=1

' T

> (i) S (i)

t=1

bj(k) = Problo;= vi| g = 1=

(for discrete HMM) E‘lyt(j)
« Continuous Density HMM
040) = X GHN(; e, Uy
N(): Multi-variate Gaussian
Hjk: mean vector for the k-th mixture component
Ujk: covariance matrix for the k-th mixture component

M
2. Cijx = 1 for normalization
k=1

Basic Problem 3 for HMM

« Continuous Density HMM

- Define a new variable

vi(j, K) = 7¢(j) but including the probability of o;evaluated in the k-th mixture
component out of all the mixture components

_ [ou(D)B)) [€ i N(or; Wik, Ujk)
2. CimN(0¢; Hjm, Ujm)]

ol

- Results

See Fig. 6.9 of Rabiner and Juang

31

Basic Problem 3 for HMM
« Continuous Density HMM

> [r(ji K) + 04

t=1

Hjk = =5

E Yt(j’ k)
2T W) O]
U Jk — t=1

z vy K)

* Iterative Procedure
A= (A, B, 1) * L=(A,B, 1)

_ 7

O =040,...0¢1

- It can be shown (by EM Theory (or EM Algorithm))
P(O|L) > P(OJ|A) after each iteration

Basic Problem 3

)
_ D1 on(ik) ol

I
=

J_o:ox fx(x)|dx

Hi = T
PACHS!
t=1
>
_ [y (K)o =225) (0 =)' > -
0 = e | o= e ax =0

_
PACLS
t=1

fx(x): prob. density function

A

—| o k-

/\/\4(96)
& :

[0t; = Hjk, T
1 JK1
Ot, — Ujk
2 JK2
: 06, = Bjky O, = Hjic, " Oty — Hjkp |
OtD - :ujkD
> X

X X

33

Basic Problem 3

S
|

B EEEEER T

Um = E[Co = %) (tm — X))

_x1 _ x1_

X2 — X2

[x1 — X1, %3 — X3,])

Basic Problem 3 for HMM

« No closed-form solution, but approximated iteratively

o An initial model is needed-model initialization

« May converge to local optimal points rather than global optimal point
- heavily depending on the initialization

« Model training

Model Model
Initialization: » Re-estimation:
Segmental K-means Baum-Welch

(I (I

Basic Problem 3

P(O]4)

Local
optimum

/

P Global optimum

\ 4

V4

ijn

36

Vector Quantization (VQ)

« An Efficient Approach for Data Compression
— replacing a set of real numbers by a finite number of bits
« An Efficient Approach for Clustering Large Number of Sample
Vectors

— grouping sample vectors into clusters, each represented by a single vector
(codeword)

 Scalar Quantization
— replacmg a single real number by an R-Dbit pattern
— a mapping relation

Ji
F : : T i 1
A=m Vi A=m_
S= pl Je,V={Vv{,Vy,...,v } —Quantization characteristics (codebook)
Q:S—>V {J,,),...) }and {Vv,,V,,...,v }
Q(X[n]) = v if X[n] € J,, designed considering at least
L =2R 1. error sensitivity

Each v, represented by an R-bit pattern 2. probability distribution of x[n]

Vector Quantization
Scalar Quantization : Pulse Coded Modulation (PCM)

010 guantization error

100100101110

38

Vector Quantization

—7 Py(X)

39

Vector Quantization (VQ)

2-dim Vector Quantization (VQ)
Example:
X, = (X[n], x[n+1])
S ={X, = (X[n], x[n+1]) ; [X[n]| <A,|x[n+1]|<A}

.VQ
— S divided into L 2-dim regions — Considerations
{3, 3, ..),... 0 } 1.error sensitivity may depend on x[n],
S_ 0 I, x[n+1] jointly
k=1 2.distribution of x[n] , x[n+1] may be
each with a representative correlated statistically
vectorv, € J,,V={Vv;,Vy, ..., v, } 3.more flexible choice of J,
-Q:S->V — Quantization Characteristics
Q(Xp)= Vi 1T X, € Jy (codebook)
L =2~ £3,,3,, .., 3 Yand {v, [v,,....%, }

each v, represented by an R-bit pattern

Vector Quantization

11

41

Vector Quantization

-/
/ Ve
Az O

Vi
(256)°=(2°)?=2'8

1024=2"°

42

Vector Quantization

o4

43

Vector Quantization (VQ)

N-dim Vector Quantization Codebook Trained by a Large
X=Xy, Xy oees Xy) Training Set
S={X=(Xy, Xp, ..oy X)) ‘Define distance measure between

[Xil< AL k=1.2,..N two vectors X, y

S=UJ, d(X,y) : SxS — R* (non-negative
_ real numbers)
V=4V, ,V,, ... : :
0: é Y it -desired properties
QX) =v, If XeJ, d(f’x)zo
L = 2R, each Vv, represented SEX X; 8()
" X,y X
by an R-bit pattern d(X.y)+d(y 2) > d(X, Z)
examples :

d(X,) =3 (% -y,
d(X,Y) =21 % Y|
d(X,¥) = (*9) TH%Y)

Mahalanobis Distance
Y. Co-variance Matrix

Distance Measures

d(%,5) = lei —y,| city block distance
[

I

®

®

d(x,y) = (x—y»)tZ 1 (x—-%) Mahalanobis distance

z=

1

It

0

0

1

E],d(ﬁ?, y) = Z(Xi —¥i)*

. — 47.)2
A7) = Z(xl Gzyl)

Vector Quantization (VQ)

« K-Means Algorithm/Lloyd-Max Algorithm

1) (2)

Fixed{v,,V,,...,v } Fixed{J;,J,,....], }
find best set of find best set of
{Jl’JZ”JL} {vl’v27"'9VL}

(D) Je={x]d(x,v) <d(x,v),j=k} (3) Convergence condition

D=) dX,0X))=mi L
— a”Z‘i (X, Q(X)) = min b=5D,

nearest neighbor condition
(2) For each k

1 —
Vi = — X
M =
— D, = 2. d(X,V,)=min

XEJk

centroid condition

after each iteration D is reduced, but D >0
| DML — DM | < ¢, m : iteration

* [terative Procedure to Obtain Codebook from a Large Training Set

Vector Quantization

47

Vector Quantization (VQ)

« K-means Algorithm may Converge to Local Optimal Solutions
— depending on initial conditions, not unique in general

* Training VQ Codebook in Stages— LBG Algorithm
— step 1: Initialization. L =1, train a 1-vector VQ codebook

—_ 1 —_
V=—> Xj
N Z,: ’
— step 2: Splitting.
Splitting the L codewords into 2L codewords, L = 2L

« example 1 - example 2
_/k(l) = Vk(l+ 8) Vk(l) = V«
L - o.@.
far apart

— step 3: K-means Algorithm: to obtain L-vector codebook
— step 4: Termination. Otherwise go to step 2

« Usually Converges to Better Codebook

LBG Algorithm

49

Initialization in HMM Training

« An Often Used Approach— Segmental K-Means
— Assume an initial estimate of all model parameters (e.g. estimated by
segmentation of training utterances into states with equal length)

For discrete density HMM
b (k) _ number of vectorsin state jassociated with codeword k
. total number of vectorsin state j
For continuous density HMM (M Gaussian mixtures per state)
= cluster the observation vectorswithin each state jinto a set of M clusters
(e.g. with vector quantiziation)
C;» = number of vectors classified in cluster m of state j

divided by number of vectorsin state j
u;, =sample mean of the vectorsclassified in cluster m of state

Z,-m =sample covariance matrix of the vectors classified in cluster m of state j
— Step 1 : re-segment the training observation sequences into states based on the initial
model by Viterbi Algorithm
— Step 2 : Reestimate the model parameters (same as initial estimation)
— Step 3: Evaluate the model score P(QlA):

If the difference between the previous and current model scores exceeds a threshold, go
back to Step 1, otherwise stop and the initial model is obtained

Segmental K-Means

e

51

Initialization in HMM Training

* An example for Continuous HMM
— 3 states and 4 Gaussian mixtures per state

State | (g—s(s5— + (53— (53— (53— (55— (S5 b (S b (5)
?? . é? @
.. &) — G is:: (s, (sp)
LBG {112,215,C10} {m11,241,C1}
..................... — e s
() o o o o
c 5 Y o S
. . ‘Q-I'Obﬁ'l mean “Cluster 1‘me§n/ ° . o
..................... ® PS ~~o__ - ® ® ° °
() ® \A o @ o ‘ OA o ® o
® o ° o ® ° .ACI?Jstergmean) Q g . ®
K-means {13 213013} {M14:214,C

1}

Initialization in HMM Training

« Anexample for discrete HMM
— 3 states and 2 codewords

State‘@ (S (S— (S— (E—2 (6 (53— (5 (5 b (55)
????%%%%%@
(sp
4 5 6 9 10
@ - B
v, @
O1(\/1):3/4, 31(V2):1/4 v, O

0, (V,)=1/3, b,(v,)=2/3
04(V,)=2/3, by(v,)=1/3

