
7.0 Speech Signals and Front-end Processing

References: 1.  3.3, 3.4 of Becchetti

3.  9.3 of Huang
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Speech Production and Source Model
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Voiced and Unvoiced Speech
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Waveform plots of typical consonant sounds

Unvoiced （清音） Voiced （濁音）
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Waveform plot of a sentence
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Time and Frequency Domains (P.12 of 2.0)

X[k]

time domain

1-1 mapping

Fourier Transform

Fast Fourier Transform (FFT)

frequency domain

𝑅𝑒 𝑒𝑗𝜔1𝑡 = cos(𝜔1𝑡)

𝑅𝑒 (𝐴1 𝑒
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Frequency domain spectra of speech signals

Voiced Unvoiced
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Frequency Domain
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Input/Output Relationship for Time/Frequency Domains
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Spectrogram
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Spectrogram
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Formant Frequencies
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Formant frequency contours

He will allow a rare lie.

Reference: 6.1 of Huang, or 2.2, 2.3 of Rabiner and Juang
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Speech Signals

• Voiced/unvoiced 濁音、清音
• Pitch/tone 音高、聲調
• Vocal tract        聲道
• Frequency domain/formant frequency

• Spectrogram representation

• Speech Source Model

– digitization and transmission of the parameters will be adequate

– at receiver the parameters can produce x[n] with the model

– much less parameters with much slower variation in time lead to much less 

bits required

– the key for low bit rate speech coding

x[n]u[n]

parameters parameters

Excitation 

Generator

Vocal Tract 

Model

Ex G(),G(z), g[n]

x[n]=u[n]g[n]

X()=U()G()

X(z)=U(z)G(z)

U ()

U (z)
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Speech Source Model
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Speech Source Model

• Sophisticated model for speech production

• Simplified model for speech production
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Simplified Speech Source Model

– Excitation parameters

v/u : voiced/ unvoiced

N : pitch for voiced

G : signal gain

→ excitation signal u[n]    

unvoiced

voiced

random

sequence

generator

periodic 

pulse 

train

generator



x[n]

G(z) = 1

1−  akz-k 
P

k = 1

Excitation

G(z), G(), g[n]

Vocal Tract Model

u[n]

G

v/u

N

– Vocal Tract parameters

{ak} : LPC coefficients

→formant structure of speech signals

– A good approximation, though not      

precise enough

Reference: 3.3.1-3.3.6 of Rabiner and Juang, or 6.3 of Huang
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Speech Source Model

u[n] x[n]

𝑥 𝑛 −

𝑘=1

𝑃

𝑎𝑘 𝑥 𝑛 − 𝑘 = 𝑢[𝑛]

1
𝐺 𝑧 =

1 − 

𝑘=1

𝑃

𝑎𝑘 𝑧
−𝑘

19



Feature Extraction - MFCC

• Mel-Frequency Cepstral Coefficients (MFCC)

– Most widely used in the speech recognition

– Has generally obtained a better accuracy at relatively low 

computational complexity

– The process of MFCC extraction :
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Pre-emphasis

• The process of Pre-emphasis : 

– a high-pass filter

H(z)=1-a • z-1   0<a≤1

Speech signal   x(n) x’(n)=x(n)-ax(n-1)

21



Why pre-emphasis? 

• Reason :

– Voiced sections of the speech signal naturally have a negative spectral 

slope (attenuation) of approximately 20 dB per decade due to the 

physiological characteristics of the speech production system

– High frequency formants have small amplitude with respect to low 

frequency formants. A pre-emphasis of high frequencies is therefore 

helpful to obtain similar amplitude for all formants
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Why Windowing? 

• Why dividing the speech signal into successive and overlapping 

frames?

– Voice signals change their characteristics from time to time. The 

characteristics remain unchanged only in short time intervals (short-

time stationary, short-time Fourier transform)

• Frames

– Frame Length : the length of time over which a set of parameters 

can be obtained and is valid. Frame length ranges between 20 ~ 10 ms

– Frame Shift: the length of time between successive parameter 

calculations

– Frame Rate: number of frames per second
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Waveform plot of a sentence
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Hamming

Rectangular

x[n]

x[n]w[n]

F
F
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Effect of Windowing (1)

• Windowing : 

– xt(n)=w(n)•x’(n), w(n): the shape of the window 

(product in time domain)
• Xt()=W()*X’(), *: convolution 

(convolution in frequency domain)

– Rectangular window (w(n)=1 for 0 ≤ n ≤ L-1):
• simply extract a segment of the signal

• whose frequency response has high side lobes

– Main lobe : spreads out the narrow band power 

of the signal (that around the formant 

frequency) in a wider frequency range, 

and thus reduces the local frequency 

resolution in formant allocation

– Side lobe : swap energy from different 

and distant frequencies

2/ 



(dB)

Rectangular

Hamming
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Input/Output Relationship for Time/Frequency Domains 
(P.10 of 7.0)
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Windowing

main lobe

side lobes

– Main lobe : spreads out the narrow band 

power of the signal (that around the 

formant frequency) in a wider frequency 

range, and thus reduces the local frequency 

resolution in formant allocation

– Side lobe : swap energy from different 

and distant frequencies
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Effect of Windowing (2)

• Windowing (Cont.):

– For a designed window, we wish that

• the main lobe is as narrow as possible

• the side lobe is as low as possible

• However, it is impossible to achieve both simultaneously. Some 

trade-off is needed

– The most widely used window shape is the Hamming window 
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DFT and Mel-filter-bank Processing

• For each frame of signal (L points, e.g., L=512),

– the Discrete Fourier Transform (DFT) is first performed to obtain its 

spectrum (L points, for example L=512)

– The bank of filters based on Mel scale is then applied, and  each filter 

output is the sum of its filtered spectral components (M filters, and thus 

M outputs, for example M=24)

DFTt 

Time domain signal spectrum

sum

sum

sum







Yt(0)

Yt(1)

Yt(M-1)

xt(n) Xt(k)

n = 0,1,....L-1 k = 0,1,....   -12

L
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Peripheral Processing for Human Perception
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Mel-scale Filter Bank

𝜔

log𝜔

𝜔𝜔

𝑋(𝜔)
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Why Filter-bank Processing?

• The filter-bank processing simulates human ear perception

• Frequencies of a complex sound within a certain frequency band cannot be 

individually identified. 

• When one of the components of this sound falls outside this frequency band, 

it can be individually distinguished.

• This frequency band is referred to as the critical band.

• These critical bands somehow overlap with each other.

• The critical bands are roughly distributed linearly in the logarithm frequency 

scale (including the center frequencies and the bandwidths), specially at 

higher frequencies.

• Human perception for pitch of signals is proportional to the logarithm of the 

frequencies (relative ratios between the frequencies)

log𝜔
𝜔
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Feature Extraction - MFCC

• Mel-Frequency Cepstral Coefficients (MFCC)

– Most widely used in the speech recognition

– Has generally obtained a better accuracy at relatively low 

computational complexity

– The process of MFCC extraction :

Speech signal
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Logarithmic Operation and IDFT

• The final process of MFCC evaluation : logarithm operation 

and IDFT

Mel-filter output 

Yt(m) Filter index(m)

Filter index(m)

Log(| |2)

Y’t(m)

IDFT

quefrency( j)

MFCC vector yt( j)

yt=CY’t

0

0 M-1

0

M-1

J-1
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Why Log Energy Computation?

• Using the magnitude (or energy) only

– Phase information is not very helpful in speech recognition

• Replacing the phase part of the original speech signal with continuous 

random phase usually won’t be perceived by human ears

• Using the Logarithmic operation

– Human perception sensitivity is proportional to signal energy in 

logarithmic scale (relative ratios between signal energy values)

– The logarithm compresses larger values while expands smaller values, 

which is a characteristic of the human hearing system

– The dynamic compression also makes feature extraction less sensitive to 

variations in signal dynamics

– To make a convolved noisy process additive

• Speech signal x(n), excitation u(n) and the impulse response of vocal tract 

g(n)

x(n)=u(n)*g(n) ➔X()=U()G()

➔ |X()|=|U()||G()| ➔log|X()|=log|U()|+log|G()| 36



Why Inverse DFT?

• Final procedure for MFCC : performing the inverse DFT on 
the log-spectral power

• Advantages :

– Since the log-power spectrum is real and symmetric, the inverse DFT 
reduces to a Discrete Cosine Transform (DCT). The DCT has the 
property to produce highly uncorrelated features yt

• diagonal rather than full covariance matrices can be used in the Gaussian 
distributions in many cases

– Easier to remove the interference of excitation on formant structures

• the phoneme for a segment of speech signal is primarily based on the 
formant structure (or vocal tract shape)

• on the frequency scale the formant structure changes slowly over 
frequency, while the excitation changes much faster
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Speech Production and Source Model (P.3 of 7.0)
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• Human vocal  mechanism • Speech Source Model
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Voiced and Unvoiced Speech (P.4 of 7.0)

u(t) x(t)

pitch pitch

voiced

unvoiced
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Frequency domain spectra of speech signals (P.8 of 7.0)

Voiced Unvoiced
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Frequency Domain (P.9 of 7.0)

formant frequencies formant frequencies
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Formant
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Input/Output Relationship for Time/Frequency Domains 
(P.10 of 7.0)
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Logarithmic Operation

u[n]

g[n]

x[n]= u[n]*g[n]
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Derivatives

• Derivative operation : to obtain the change of the feature 

vectors with time

MFCC stream yt(j)
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Linear Regression

( x i ,  y i )

y = a x + b

( ) miny-bax

2

ii =+
i

find a, b
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Why Delta Coefficients?

• To capture the dynamic characters of the speech signal

– Such information carries relevant information for speech recognition

– The value of p should be properly chosen

• The dynamic characters may not be properly extracted if p is too small 

• Too large p may imply frames too far away

• To cancel the DC part (channel distortion or convolutional noise) 

of the MFCC features

– Assume, for clean speech, an MFCC parameter stream for an utterance is

{y(t-N), y(t-N+1),…....,y(t), y(t+1), y(t+2), ……},

y(t) is an MFCC parameter at time t,

while after channel distortion, the MFCC stream becomes

{y(t-N)+h, y(t-N+1)+h,…....,y(t)+h, y(t+1)+h, y(t+2)+h, ……}

the channel effect h is eliminated in the delta (difference) coefficients
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Convolutional Noise

y[n]= x[n]*h[n]
x[n]

h[n]

MFCC

y = x + h
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End-point Detection

• Push (and Hold) to Talk/Continuously Listening

• Keyword Spotting

• Adaptive Energy Threshold

• Low Rejection Rate

– false acceptance may be rescued

• Vocabulary Words Preceded and Followed by a Silence/Noise 

Model

• Two-class Pattern Classifier

– Gaussian density functions used to model the two classes

– log-energy, delta log-energy as the feature parameters

– dynamically adapted parameters

Speech
Silence/

Noise
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End-point Detection

silence
(noise)

false rejectionfalse acceptance

detected speech
segments

speech
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與語音學、訊號波型、頻譜特性有關的網址
17. Three Tutorials on Voicing and Plosives
http://homepage.ntu.edu.tw/~karchung/intro%20page%2017.htm

8. Fundamental frequency and harmonics
http://homepage.ntu.edu.tw/~karchung/phonetics%20II%20page%20eight.htm

9. Vowels and Formants I: Resonance (with soda bottle demonstration)
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20nine.htm

10. Vowels and Formants II (with duck call demonstration)
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20ten.htm

12. Understanding Decibels (A PowerPoint slide show)
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twelve.htm

13. The Case of the Missing Fundamental
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20thirteen.htm

14. Forry, wrong number! I The frequency ranges of speech and hearing
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20fourteen.htm

19. Vowels and Formants III: Formants for fun and profit (with samplesof exotic music)
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20nineteen.htm

20. Getting into spectrograms: Some useful links
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twenty.htm

21. Two other ways to visualize sound signals
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twentyone.htm

23. Advanced speech analysis tools II: Praat and more
http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twentythree.htm

25. Synthesizing vowels online
http://www.asel.udel.edu/speech/tutorials/synthesis/vowels.html 50
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