7.0 Speech Signals and Front-end Processing

References: 1. 3.3, 3.4 of Becchetti

3. 9.3 of Huang

Waveform plots of typical vowel sounds - Voiced (濁音)

Speech Production and Source Model

Voiced and Unvoiced Speech

Waveform plots of typical consonant sounds

Waveform plot of a sentence

Time and Frequency Domains (P.12 of 2.0)

time domain

1-1 mapping Fourier Transform Fast Fourier Transform (FFT)

frequency domain

Frequency domain spectra of speech signals

Frequency Domain

Input/Output Relationship for Time/Frequency Domains

time domain: convolution

 $X(\omega) = U(\omega)G(\omega)$ X[k] = U[k]G[k]frequency domain: product

ω, κ

 $g(t), G(\omega)$: Formant structure: differences between phonemes

 $u(t), U(\omega)$: excitation

Spectrogram

11

Spectrogram

Formant Frequencies

Formant frequency contours

He will allow a rare lie.

Reference: 6.1 of Huang, or 2.2, 2.3 of Rabiner and Juang

Speech Signals

- Voiced/unvoiced 濁音、清音
- Pitch/tone 音高、聲調
- Vocal tract

- 音高、 聲道
- Frequency domain/formant frequency
- Spectrogram representation
- Speech Source Model

- digitization and transmission of the parameters will be adequate
- at receiver the parameters can produce x[n] with the model
- much less parameters with much slower variation in time lead to much less bits required
- the key for low bit rate speech coding

Speech Source Model

Speech Source Model

• Sophisticated model for speech production

Unvoiced

Simplified Speech Source Model

- Excitation parameters
 - v/u : voiced/ unvoiced
 - N : pitch for voiced
 - G : signal gain
 - \rightarrow excitation signal u[n]

- Vocal Tract parameters
 - $\{a_k\}$: LPC coefficients
 - \rightarrow formant structure of speech signals
- A good approximation, though not precise enough

Reference: 3.3.1-3.3.6 of Rabiner and Juang, or 6.3 of Huang

Speech Source Model

$$x[n] - \sum_{k=1}^{P} a_k x[n-k] = u[n]$$

Feature Extraction - MFCC

- Mel-Frequency Cepstral Coefficients (MFCC)
 - Most widely used in the speech recognition
 - Has generally obtained a better accuracy at relatively low computational complexity
 - The process of MFCC extraction :

Pre-emphasis

- The process of Pre-emphasis :
 - a high-pass filter

• Reason :

- Voiced sections of the speech signal naturally have a negative spectral slope (attenuation) of approximately 20 dB per decade due to the physiological characteristics of the speech production system
- High frequency formants have small amplitude with respect to low frequency formants. A pre-emphasis of high frequencies is therefore helpful to obtain similar amplitude for all formants

Why Windowing?

- Why dividing the speech signal into successive and overlapping frames?
 - Voice signals change their characteristics from time to time. The characteristics remain unchanged only in short time intervals (shorttime stationary, short-time Fourier transform)
- Frames
 - Frame Length : the length of time over which a set of parameters can be obtained and is valid. Frame length ranges between 20 ~ 10 ms
 - Frame Shift: the length of time between successive parameter calculations
 - Frame Rate: number of frames per second

Waveform plot of a sentence

- Windowing :
 - $x_t(n)=w(n)\bullet x'(n)$, w(n): the shape of the window (product in time domain)
 - X_t(ω)=W(ω)*X'(ω), *: convolution
 (convolution in frequency domain)
 - Rectangular window (w(n)=1 for $0 \le n \le L-1$):
 - simply extract a segment of the signal
 - whose frequency response has high side lobes
 - *Main lobe* : spreads out the narrow band power of the signal (that around the formant frequency) in a wider frequency range, and thus reduces the local frequency resolution in formant allocation
 - *Side lobe* : swap energy from different and distant frequencies

ω

Input/Output Relationship for Time/Frequency Domains (P.10 of 7.0)

formant
structure
$$x(t) = u(t) * g(t) = \int_{\tau} u(\tau)g(t-\tau)d\tau$$

 $x[n] = u[n] * g[n] = \sum_{k} u[k]g[n-k]$

time domain: convolution

 $X(\omega) = U(\omega)G(\omega)$ X[k] = U[k]G[k]frequency domain: product

 $g(t), G(\omega)$: Formant structure: differences between phonemes

 $u(t), U(\omega)$: excitation

Windowing

Effect of Windowing (2)

- Windowing (Cont.):
 - For a designed window, we wish that
 - the main lobe is as narrow as possible
 - the side lobe is as low as possible
 - However, it is impossible to achieve both simultaneously. Some trade-off is needed
 - The most widely used window shape is the Hamming window

$$w(n) = \begin{cases} 0.54 - 0.46 \cos\left(\frac{2\pi n}{L-1}\right), & n = 0, 1, \dots, L-1 \\ 0 & \text{otherwise} \end{cases}$$

DFT and Mel-filter-bank Processing

- For each frame of signal (*L* points, e.g., L=512),
 - the Discrete Fourier Transform (DFT) is first performed to obtain its spectrum (*L* points, for example *L*=512)
 - The bank of filters based on Mel scale is then applied, and each filter output is the sum of its filtered spectral components (*M* filters, and thus *M* outputs, for example *M*=24)

30

Peripheral Processing for Human Perception

Mel-scale Filter Bank

Why Filter-bank Processing?

- The filter-bank processing simulates human ear perception
 - Frequencies of a complex sound within a certain frequency band cannot be individually identified.
 - When one of the components of this sound falls outside this frequency band, it can be individually distinguished.
 - This frequency band is referred to as the critical band.
 - These critical bands somehow overlap with each other.
 - The critical bands are roughly distributed linearly in the logarithm frequency scale (including the center frequencies and the bandwidths), specially at higher frequencies.
 - Human perception for pitch of signals is proportional to the *logarithm* of the frequencies (relative ratios between the frequencies)

 $\log \omega$

Feature Extraction - MFCC

- Mel-Frequency Cepstral Coefficients (MFCC)
 - Most widely used in the speech recognition
 - Has generally obtained a better accuracy at relatively low computational complexity
 - The process of MFCC extraction :

Logarithmic Operation and IDFT

• The final process of MFCC evaluation : logarithm operation and IDFT

Why Log Energy Computation?

- Using the magnitude (or energy) only
 - Phase information is not very helpful in speech recognition
 - Replacing the phase part of the original speech signal with continuous random phase usually won't be perceived by human ears
- Using the Logarithmic operation
 - Human perception sensitivity is proportional to signal energy in logarithmic scale (relative ratios between signal energy values)
 - The logarithm compresses larger values while expands smaller values, which is a characteristic of the human hearing system
 - The dynamic compression also makes feature extraction less sensitive to variations in signal dynamics
 - To make a convolved noisy process additive
 - Speech signal *x*(*n*), excitation *u*(*n*) and the impulse response of vocal tract *g*(*n*)

$$x(n)=u(n)^*g(n) \rightarrow X(\omega)=U(\omega)G(\omega)$$

 $\Rightarrow |X(\omega)| = |U(\omega)| |G(\omega)| \Rightarrow \log |X(\omega)| = \log |U(\omega)| + \log |G(\omega)|$

Why Inverse DFT?

• Final procedure for MFCC : performing the inverse DFT on the log-spectral power

$$y_t(j) = \sum_{m=0}^{M-1} \log(|Y_t(m)|^2) \cos\left[j\left(m - \frac{1}{2}\right)\frac{\pi}{M}\right], \quad j = 0, 1, \dots, J-1 < M$$

- Advantages :
 - Since the log-power spectrum is real and symmetric, the inverse DFT reduces to a Discrete Cosine Transform (DCT). The DCT has the property to produce highly uncorrelated features y_t
 - diagonal rather than full covariance matrices can be used in the Gaussian distributions in many cases
 - Easier to remove the interference of excitation on formant structures
 - the phoneme for a segment of speech signal is primarily based on the formant structure (or vocal tract shape)
 - on the frequency scale the formant structure changes slowly over frequency, while the excitation changes much faster

Speech Production and Source Model (P.3 of 7.0)

Voiced and Unvoiced Speech (P.4 of 7.0)

Frequency domain spectra of speech signals (P.8 of 7.0)

40

Frequency Domain (P.9 of 7.0)

Input/Output Relationship for Time/Frequency Domains (P.10 of 7.0)

formant
excitation
$$x(t) = u(t) * g(t) = \int_{\tau} u(\tau)g(t-\tau)d\tau$$

 $x[n] = u[n] * g[n] = \sum_{k} u[k]g[n-k]$

time domain: convolution

 $X(\omega) = U(\omega)G(\omega)$ X[k] = U[k]G[k]frequency domain: product

 $g(t), G(\omega)$: Formant structure: differences between phonemes

 $u(t), U(\omega)$: excitation

Logarithmic Operation

Derivatives

• Derivative operation : to obtain the change of the feature vectors with time

Linear Regression

Why Delta Coefficients?

- To capture the dynamic characters of the speech signal
 - Such information carries relevant information for speech recognition
 - The value of p should be properly chosen
 - The dynamic characters may not be properly extracted if p is too small
 - Too large p may imply frames too far away
- To cancel the DC part (channel distortion or convolutional noise) of the MFCC features
 - Assume, for clean speech, an MFCC parameter stream for an utterance is $\{\mathbf{y}(t-N), \mathbf{y}(t-N+1), \dots, \mathbf{y}(t), \mathbf{y}(t+1), \mathbf{y}(t+2), \dots\},\$

 $\mathbf{y}(t)$ is an MFCC parameter at time t,

while after channel distortion, the MFCC stream becomes

{y(t-N)+h, y(t-N+1)+h,...,y(t)+h, y(t+1)+h, y(t+2)+h,}

the channel effect h is eliminated in the delta (difference) coefficients

Convolutional Noise

n

End-point Detection

- Push (and Hold) to Talk/Continuously Listening
- Keyword Spotting
- Adaptive Energy Threshold
- Low Rejection Rate
 - false acceptance may be rescued
- Vocabulary Words Preceded and Followed by a Silence/Noise Model
- Two-class Pattern Classifier

- Gaussian density functions used to model the two classes
- log-energy, delta log-energy as the feature parameters
- dynamically adapted parameters

End-point Detection

與語音學、訊號波型、頻譜特性有關的網址

17. Three Tutorials on Voicing and Plosives http://homepage.ntu.edu.tw/~karchung/intro%20page%2017.htm

8. Fundamental frequency and harmonics http://homepage.ntu.edu.tw/~karchung/phonetics%20II%20page%20eight.htm

9. Vowels and Formants I: Resonance (with soda bottle demonstration) http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20nine.htm

10. Vowels and Formants II (with duck call demonstration) http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20ten.htm

12. Understanding Decibels (A PowerPoint slide show) http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twelve.htm

13. The Case of the Missing Fundamental http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20thirteen.htm

14. Forry, wrong number! I The frequency ranges of speech and hearing http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20fourteen.htm

19. Vowels and Formants III: Formants for fun and profit (with samplesof exotic music) http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20nineteen.htm

20. Getting into spectrograms: Some useful links http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twenty.htm

21. Two other ways to visualize sound signals http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twentyone.htm

23. Advanced speech analysis tools II: Praat and more http://homepage.ntu.edu.tw/~karchung/Phonetics%20II%20page%20twentythree.htm

25. Synthesizing vowels online http://www.asel.udel.edu/speech/tutorials/synthesis/vowels.html