
8.0 Search Algorithms for Speech Recognition

References: 1. 12.1-12.5 of Huang, or

2. 7.2-7.6 of Becchetti, or

3. 5.1-5.7, 6.1-6.5 of Jelinek

4. “ Progress in Dynamic Programming Search for LVCSR
(Large Vocabulary Continuous Speech Recognition)”,
Proceedings of the IEEE, Aug 2000

• A Simplified Block Diagram

• Example Input Sentence
this is speech

• Acoustic Models
(th-ih-s-ih-z-s-p-ih-ch)

• Lexicon (th-ih-s) → this

(ih-z) → is

(s-p-iy-ch) → speech

• Language Model (this) – (is) – (speech)

P(this) P(is | this) P(speech | this is)

P(wi|wi-1) bi-gram language model

P(wi|wi-1,wi-2) tri-gram language model,etc

Basic Approach for Large Vocabulary Speech Recognition

Front-end

Signal Processing

Acoustic

Models Lexicon

Feature

Vectors
Linguistic Decoding

and

Search Algorithm

Output

Sentence

Speech

Corpora

Acoustic

Model

Training

Language

Model

Construction

Text

Corpora

Language

Model

Input Speech

2

DTW and Dynamic Programming

• Dynamic Time Warping (DTW)
– well accepted pre-HMM approach

– find an optimal path for matching two templates with different length

– good for small-vocabulary isolated-word recognition even today

• Test Template [yj, j=1,2,...N] and Reference Template [xi, i=1,2,..M]

– warping both templates to a common length L

warping functions: fx(m)= i, fy(m)= j, m=1,2,...L

– endpoint constraints: fx(1)= fy(1)= 1, fx(L)=M, fy(L)= N

monotonic constraints: fx(m+1) ≥ fx(m), fy(m+1) ≥ fy(m)

– matching pair: for every m, m: index for matching pairs

– recursive relationship:

– global constraints/local constraints

– lack of a good approach to train a good reference pattern

• Dynamic Programming
– replacing the problem by a smaller sub-problem and formulating an iterative procedure

• Reference: 4.7 up to 4.7.3 of Rabiner and Juang

)],(),1(),1([
1

)],();1,[(

),()],();1,1[(:examples

y and for x measure distance j) (i, d

j) (i, to)j ,i(extending distance additional :]j) (i,;)j ,i([d

j) (i, toup distance minimum daccumulate :j) D(i, ,)]},();,[(),({),(

ji

'''' min

),(''

jidjidjkid
k

jijkid

jidjijid

jijidjiDjiD
ji

+−+++−=−−

=−−

=



+=



(m)f(m)f yx
yx 

3

4

DTW

programming

(reference)

(test)

reference

test

5

DTW

6

DTW

fx(m)= i, fy(m)= j, m=1,2,...L

fx(1)= fy(1)= 1, fx(L)=M, fy(L)= N

fx(m+1) ≥ fx(m), fy(m+1) ≥ fy(m)

j) (i, to)j ,i(extending
distance additional :]j) (i,;)j ,i([d

j) (i, toup
 :j) D(i,

 ,)]},();,[(),({),('''' min

),(''




+= jijidjiDjiD
ji

)],(),1(),1([1)],();1,[(

),()],();1,1[(

 yand xfor measure distance j) (i, d ji

jidjidjkid
k

jijkid

jidjijid

+−+++−=−−

=−−

=



accumulated minimum distance

7

 4.0

Basic Problem 2 for HMM (P.20 of 4.0)

•Approach 2 ⎯Viterbi Algorithm - finding the single best sequence

q*= q1*q2*…qT*

- Define a new variable t(i)

t(i) = max P[q1,q2,…qt-1, qt = i, o1,o2,…,ot |]

= the highest probability along a certain single path ending at

state i at time t for the first t observations, given 

- Induction

t+1(j) = max [t(i)aij] • bj(ot+1)

- Backtracking

t(j) = arg max [t-1(i)aij]

the best previous state at t−1 given at state j at time t

keeping track of the best previous state for each j and t

q
1
,q

2
,…q

t-1

i

1  i  N

8

Viterbi Algorithm (P.21 of 4.0)

δt(i)

δt+1(j)

δt(i)

i

t

t t+1

1

1

i

j

t+1(j) = max [t(i)aij] • bj(ot+1)
i

t(i) = max P[q1,q2,…qt-1, qt = i, o1,o2,…,ot |]
q1,q2,…q t-1

9

Viterbi Algorithm (P.22 of 4.0)

Continuous Speech Recognition Example: Digit String

Recognition― One-stage Search

• Unknown Number of Digits

• No Lexicon/Language Model Constraints

• Search over a 3-dim Grid

• Switched to the First State of the

Next Model at the End of the

Previous Model

• May Result with Substitution,

Deletion and Insertion

0
1

9

0

1

9

t

0
1
2

9

10

Recognition Errors

Reference:
(T)

Recognized:

insertion
(I)

substitution
(S)

deletion
(D)

𝑇 − 𝐷 − 𝑆 − 𝐼

𝑇
× 100% = Accuracy

Aligned

11

Continuous Speech Recognition Example: Digit String

Recognition ― Level-Building

• Known Number of Digits

• No Lexicon/Language Model Constraints

• Higher Computation Complexity, No Deletion/Insertion

0

1

.

9

0

1

.

9

0

1

.

9

0

1

.

9

State

01...9

01...9

t

01...9

01...9 – number of levels = number of digits in an

utterance

– automatic transition from the last state of

the previous model to the first state of the

next model

12

Time (Frame)- Synchronous Viterbi Search for

Large-Vocabulary Continuous Speech Recognition

•MAP Principle

•An Approximation

– the word sequence with the highest probability for the most probable state sequence usually
has approximately the highest probability for all state sequences

– Viterbi search, a sub-optimal approach
•Viterbi Search―Dynamic Programming

– replacing the problem by a smaller sub-problem and formulating an iterative procedure

– time (frame)- synchronous: the best score at time t is updated from all states at time t-1
•Tree Lexicon as the Basic Working Structure

from

HMM

from Language Model

– each arc is an HMM (phoneme, tri-phone, etc.)
– each leaf node is a word
– search processes for a segment of utterance

through some common units for different
words can be shared

– search space constrained by the lexicon
– the same tree copy reproduced at each leaf

node in principle
13

Basic Problem 2 for HMM (P.24 of 4.0)

․Application Example of Viterbi Algorithm

- Isolated word recognition

),B,A(λ

),B,A(λ

),B,A(λ

nnnn

1111

0000

π

π
π

=

=

=

.

.

.

-The model with the highest probability for the most probable path

usually also has the highest probability for all possible paths.

observation

]λ|Pmax[arg]λ|O[Pmaxarg

),...,(O

i

*

i

*

T21

=

=

k

ooo

1 i  n 1 i  n

Basic Problem 1

Forward Algorithm

(for all paths)

Basic Problem 2

Viterbi Algorithm

(for a single best path)

14

15

Tree Lexicon

states

time

o1 o2 …. ot …. oT

16

Time (Frame)- Synchronous Viterbi Search for
Large –Vocabulary Continuous Speech Recognition

• Define Key Parameters
D (t, qt, w) : objective function for the best partial path ending at time t in state qt for the word w

h (t, qt, w) : backtrack pointer for the previous state at the pervious time when the best partial path

ends at time t in state qt for the word w

• Intra-word Transition―HMM only, no Language Model

• Inter-word Transition―Language Model only, no HMM (bi-gram as an example)

 

),,(),,(

),,1(),,(),,(

),(log),(log),,(

)],,1(),,([),,(

11

11

11

max arg

 1-tq

max

1

wqtqwqth

wqtDwqqodwqtq

wqqpwqopwqqod

wqtDwqqodwqtD

tt

ttttt

ttttttt

ttttt tq

=

−+=

+=

−+=

−−

−−

−−−

)(),,(h

)]),(,()([log :

 wordfor the state final the:)(

 w wordfor the state initial pseudo a :Q

 before word the:

)]),(,()([log),,(

max arg

max

vqwQt

vvqtDuvpv

vvq

vu

vvqtDuvpwQtD

f

f

f

f

v

v

=

+

+=

17

18

Time Synchronous Viterbi Search

D (t, qt , w)

ot

qtw

19

Viterbi Algorithm (P.21 of 4.0)

δt(i)

δt+1(j)

δt(i)

i

t

t t+1

1

1

i

j

t+1(j) = max [t(i)aij] • bj(ot+1)
i

t(i) = max P[q1,q2,…qt-1, qt = i, o1,o2,…,ot |]
q1,q2,…q t-1

20

qf (v)

Q

t

t

Time (Frame)- Synchronous Viterbi Search for
Large-Vocabulary Continuous Speech Recognition

• Beam Search
– at each time t only a subset of promising paths are kept
– example 1: define a beam width L (i.e. keeping only L paths at each time)

example 2: define a threshold Th (i.e. all paths with D< Dmax,t-Th are deleted)
– very helpful in reducing the search space

• Two-pass Search (or Multi-pass Search)

– use less knowledge or less constraints (e.g. acoustic model with less context dependency or
language model with lower order) in the first stage, while more knowledge or more
constraints in rescoring in the second path

– search space significantly reduced by decoupling the complicated search process into
simpler processes

• N-best List and Word Graph (Lattice)

W1 W2

W1 W6 W5

W3 W4 W5

W7 W8 W9

W10 W9

– similarly constructed with dynamic programming iterations

N-best List or

Word Graph

Generation

RescoringX

N-best

List

Word

Graph

W

Time

21

S: starting
G: goal

− to find the minimum distance path

• Blind Search Algorithms
− Depth-first Search: pick up an arbitrary

alternative and proceed

− Breath-first Search: consider all nodes on the
same level before going to the next level

− no sense about where the goal is

2.8

G

E

F

C

B

A

D
S

3 3
3

5
54

4

2

3

10
10.3 7.0

3.0

5.7
8.5

• An Example – a city traveling problem

Some Search Algorithm Fundamentals

• Search Tree(Graph)
S

A B

B A
F

D

G

EC
C

C

D E

E G

3
7

11

16

2

6
11

6

9

14

11
14

9

6

12

• Heuristic Search
− Best-first Search
− based on some knowledge, or “heuristic information”

f(n) = g(n)+h*(n)
g(n): distance up to node n
h*(n): heuristic estimate for the remaining distance up to G

− heuristic pruning

A

S

C
11.7

11.5

12.0

11.8
E

G

h*(n):

straight-line

distance

22

A

B C D

E F G L4

L1 L2 L3

4 3 2

3

2

4

1

8

1

3

List of Candidate Steps

Node g(n) h*(n) f(n)

A 0 15 15

B 4 9 13

C 3 12 15

D 2 5 7

E 7 4 11

F 7 2 9

G 11 3 14

L1 9 0 9

L2 8 0 8

L3 12 0 12

L4 5 0 5

Heuristic Search: Another Example

() () ()
()
()
() h(n)for alue estimated :

node leaf specific a to node from scoreexact :

 node tonoderoot from score :

*

*

vnh

nnh

nng

nhngnf +=

• Problem: Find a path with the highest score from root node “A” to

some leaf node (one of “L1”,”L2”,”L3”,”L4”)

Top Candidate List

A(15) A(15)

C(15) C(15), B(13), D(7)

G(14) G (14), B(13), F(9), D(7)

B(13) B(13), L3(12), F(9), D(7)

L3(12) L3 (12), E(11), F(9), D(7)
23

A* Search and Speech Recognition

• Admissibility
– a search algorithm is admissible if it is guaranteed that the first solution found is

optimal, if one exists (for example, beam search is NOT admissible)

• It can be shown
– the heuristic search is admissible if

for all n with a highest-score problem

– A* search when the above is satisfied

• Procedure
– Keep a list of next-step candidates, and proceed with the one with the highest f(n)

(for a highest-score problem)

• A* search in Speech Recognition
– example 1: use of weak constraints in the first pass to generate heuristic estimates

in multi-pass search

– example 2: estimated average score per frame as the heuristic information

)()(* nhnh 

t)-(T and][Min ,][Ave ,][Max from obtained)(h

data trainingfrom pairs j)(i,many with estimated

j toi frame from sequences state : , j toi frame from nsobservatio :

)1/()]([log

*

,,

,,

fff

jiji

jijif

sssn

qo

ijqoPs +−=

24

