信號與系統
 Signals \＆Systems

李琳山

$\underline{\text { A Signal }}$

- A signal is a function of one or more variables, which conveys information on the nature of some physical phenomena.
- Examples
$-f(t) \quad:$ a voice signal, a music signal
$-f(x, y)$: an image signal, a picture
$-\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{t})$: a video signal
$-x_{n} \quad:$ a sequence of data (n : integer $)$
$-b_{n} \quad:$ a bit stream (b:1 or 0)
- continuous-time, discrete-time
- analog, digital
- Human Perceptible/Machine Processed

$\underline{\text { A Signal }}$

$$
b_{n}: \quad 11010100101001 \ldots
$$

A System

- An entity that manipulates one or more signals to accomplish some function, including yielding some new signals.

- Examples
- an electric circuit
- a telephone handset
- a PC software receiving pictures from Internet
- a TV set
- a computer with some software handling some data

Typical Examples of Signals/Systems

Concerned

- Communication Systems

Typical Examples of Signals/Systems

Concerned

- Computers
- Signal Processing Systems
- software systems processing the signal by computation/ memory
- examples : audio enhancement systems, picture processing systems, video compression systems, voice recognition/ synthesis systems, array signal processors, equalizers, etc.

Audio Enhancement

Picture Processing

Typical Examples of Signals/Systems

Concerned

- Networks

Typical Examples of Signals/Systems

Concerned

- Information Retrieval Systems

- Internet
- Other Information Systems
- examples : remote sensing systems, biomedical signal processing systems, etc.

Internet

Internet

- Network Technology Connects Everywhere Globally
- Huge Volume of Information Disseminated across the Globe in Microseconds
- Multi-media, Multi-lingual, Multi-functionality
- Cross-cultures, Cross-domains, Cross-regions
- Integrating All Knowledge Systems and Information related Activities Globally

Typical Examples of Signals/Systems

Concerned

- Control Systems
- close-loop/feedback control systems

- example: aircraft landing systems, satellite stabilization systems, robot arm control systems, etc.

Typical Examples of Signals/Systems

Concerned

- Other Systems
- manufacturing systems, computer-aided-design systems, mechanical systems, chemical process systems, etc.

Scope of The Course

- Those Signals/Systems Operated by Electricity, in Particular by Software and Computers, with Extensive Computation and Memory, for Information and Control Primarily
- Analytical Framework to Handle Such Signals/Systems
- Mathematical Description/Representation of Such Signals/Systems

Scope of The Course

- Language and Tools to Solve Problems with Such Signals/Systems
- Closely Related to: Communications, Signal Processing, Computers, Networks, Control, Biomedical Engineering, Circuits, Chips, EM Waves, etc.
- A Fundamental Course for E.E.

Text／Reference Books and Lecture Notes

－Textbook：
－Oppenheim \＆Willsky，＂Signals \＆Systems＂，2 ${ }^{\text {nd }}$ Ed． 1997
－Prentice－Hall，新月
－Reference：
－S．Haykin \＆B．Van Veen，＂Signals \＆Systems＂， 1999
－John Willey \＆Sons，歐亞
－Lecture Notes：
－Available on web before the day of class

Course Outline

1. Fundamentals
2. Linear Time-invariant Systems
3. Fourier Series \& Fourier Transform
4. Discrete Fourier Transform (DFT)
5. Time/Frequency Characterization of Signals/Systems
6. Sampling \& Sampling Theorem
7. Communication Systems
8. Laplace Transform
9. Z-Transform
10. Linear Feedback Systems
11. Some Application Examples

History of the Area

- Independently Developed by People Working on Different Problems in Different Areas
- Fast Development after Computers Become Available and Powerful
- Re-organized into an Integrated Framework

Background Required

- 2nd semester of 2 nd year of EE
- Mathematics
- Pre-requisite : No

Grading

- Midterm

35\%

- Final

35\%

- MATLAB Problems 20\%
- Homeworks

10\%

- 每週準時上課認真聽講，不遲到缺席
- 每週自行閱讀課本，跟上上課進度
- 課本中上課未能提到之處，自行仔細研讀（含例題，習題）

1.0 Fundamentals

1.1 Signals

Continuous/Discrete-time Signals

$$
x(t), x[n]
$$

Signal Energy/Power

$$
\begin{array}{ll}
E=\int_{t_{1}}^{t_{2}}|x(t)|^{2} d t, \quad E=\sum_{n=n_{1}}^{n_{2}}|x[n]|^{2} \\
P=E /\left(t_{2}-t_{1}\right) \quad, \quad P=E /\left(n_{2}-n_{1}+1\right)
\end{array}
$$

Continuous/Discrete-time

Transformation of A Signal

- Time Shift

$$
x(t) \rightarrow x\left(t-t_{0}\right) \quad, \quad x[n] \rightarrow x\left[n-n_{0}\right]
$$

- Time Reversal

$$
x(t) \rightarrow x(-t) \quad, \quad x[n] \rightarrow x[-n]
$$

- Time Scaling

$$
x(t) \rightarrow x(a t) \quad, \quad x[n] \rightarrow ?
$$

- Combination

$$
x(t) \rightarrow x(a t+b) \quad, \quad x[n] \rightarrow ?
$$

Time Scaling

$x(a t), a<1$

Periodic Signal

$$
\begin{array}{lll}
x(t)=x(t+T) & , & T: \text { period } \\
x(t)=x(t+m T) & , & m: \text { integer }
\end{array}
$$

T_{0} : Fundamental period : the smallest positive value of T aperiodic : NOT periodic

$$
x[n]=x[n+N]=x[n+m N], \quad N_{0}
$$

Even/Odd Signals

- Even $\quad x(-t)=x(t) \quad, x[-n]=x[n]$
- Odd $x(-t)=-x(t) \quad, x[-n]=-x[n]$
- Any signal can be discomposed into a sum of an even and an odd

$$
x_{1}(t)=\frac{1}{2}[x(t)+x(-t)], x_{2}(t)=\frac{1}{2}[x(t)-x(-t)]
$$

Even/Odd

Even

$x(-t)=x(t)$

Odd

$$
x(-t)=-x(t)
$$

Exponential/Sinusoidal Signals

- Basic Building Blocks from which one can construct many different signals and define frameworks for analyzing many different signals efficiently

$$
\begin{array}{cl}
x(t)=e^{j \omega_{0} t}, & \text { fundamental period } T_{0}=\frac{2 \pi}{\left|\omega_{0}\right|} \\
& \text { fundamental frequency } \omega_{0}=\frac{2 \pi}{T_{0}} \\
\omega_{0}: \mathrm{rad} / \mathrm{sec}
\end{array}
$$

Exponential/Sinusoidal Signals

$x(t)=e^{j \omega_{0} t}$

$\operatorname{Re}\left\{e^{j \omega_{0} t}\right\}=\cos \omega_{0} t$

$\operatorname{Im}\left\{e^{j \omega_{0} t}\right\}=\sin \omega_{0} t$
$e^{j x}=\cos x+j \sin x$

Vector Space

$$
\begin{gathered}
V=\{v \mid \cdots\} \\
a v
\end{gathered}
$$

3－dim Vector Space

$$
\begin{aligned}
& (\vec{A}) \cdot \hat{j}=(a \widehat{i}+b \widehat{j}+c \hat{k}) \cdot \hat{j} \text { (合成) } \\
& b=\vec{A} \cdot \hat{j} \quad \text { (分析) }
\end{aligned}
$$

$\underline{N-d i m ~ V e c t o r ~ S p a c e ~}$

$$
\begin{aligned}
\vec{A} & =\sum_{k=1}^{N} a_{k}\left(\hat{v}_{k}\right) \\
a_{j} & =\vec{A} \cdot \widehat{v}_{j} \\
\widehat{v}_{i} \cdot \widehat{v_{j}} & =\delta_{i j}
\end{aligned}
$$

Signal Analysis

$$
x(t)=\sum_{k} a_{k} x_{k}(t)
$$

$$
x_{k}(t)=\operatorname{Re}\left\{e^{j \omega_{k} t}\right\}=\cos \omega_{k} t^{t=n}
$$

$$
a_{k}=A_{k} e^{j \phi_{k}}
$$

$$
\operatorname{Re}\left\{\left(A_{k} e^{j \phi_{k}}\right)\left(e^{j \omega_{k} t}\right)\right\}=A_{k} \cos \left(\omega_{k} t+\underline{\underline{\phi_{k}}}\right)
$$

$$
\omega_{k}=k \omega_{0}
$$

Exponential/Sinusoidal Signals

- Harmonically related signal sets

$$
\left\{\phi_{k}(t)=e^{j k \omega_{0} t}, k=0, \pm 1, \pm 2, \ldots .\right\}
$$

fundamental period $\quad T_{k}=\frac{2 \pi}{\left|k \omega_{0}\right|}$
fundamental frequency $\left|k \omega_{0}\right|$
all with common period $T_{1}=\frac{2 \pi}{\left|\omega_{0}\right|}$

Exponential/Sinusoidal Signals

- Sinusoidal signal

$$
x(t)=A \cos \left(\omega_{0} t+\phi\right)=\operatorname{Re}\left\{A e^{j\left(\omega_{0} t+\phi\right)}\right\}
$$

- General format

$$
x(t)=C e^{a t}=|C| e^{j \theta} \cdot e^{\left(r+j \omega_{0}\right) t}=|C| e^{r t} \cdot e^{j\left(\omega_{0} t+\theta\right)}
$$

- Discrete-Time

$$
\begin{aligned}
& x[n]=e^{j \omega_{0} n}, \omega_{0}: r a d \\
& x[n]=A \cos \left(\omega_{0} n+\phi\right) \\
& x[n]=C e^{\beta n}
\end{aligned}
$$

Exponential/Sinusoidal Signals

- Important Differences Between Continuous-time and Discrete-time Exponential/Sinusoidal Signals
- For discrete-time, signals with frequencies ω_{0} and $\omega_{0}+m \cdot 2 \pi$ are identical. This is Not true for continuous-time.

$$
\begin{aligned}
& e^{j\left(\omega_{0}+m \cdot 2 \pi\right) n}=e^{j \omega_{0} n} \\
& e^{j\left(\omega_{0}+X\right) t}=e^{j\left(\omega_{0}+X\right) t}
\end{aligned}
$$

see : Fig.1.27, p. 27 of text

Continuous/Discrete Sinusoidals

Im

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

Fig. 1.27

$$
e^{j \omega_{0} n} \neq e^{j\left(2 \pi-\omega_{0}\right) n}
$$

but

$$
\begin{aligned}
\operatorname{Re}\left\{e^{j \omega_{0} n}\right\} & =\operatorname{Re}\left\{e^{-j \omega_{0} n}\right\} \\
& =\operatorname{Re}\left\{e^{j\left(2 \pi-\omega_{0}\right) n}\right\}
\end{aligned}
$$

Note:

$$
\operatorname{Im}\left\{e^{j \omega_{0} n}\right\} \neq \operatorname{Im}\left\{e^{j\left(2 \pi-\omega_{0}\right) n}\right\}
$$

Exponential/Sinusoidal Signals

- Important Differences Between Continuous-time and Discrete-time Exponential/Sinusoidal Signals
- For discrete-time, ω_{0} is usually defined only for $[-\pi, \pi]$ or $[0,2 \pi]$. For continuous-time, ω_{0} is defined for $(-\infty, \infty)$
- For discrete-time, the signal is periodic only when

$$
\omega_{0} N=2 \pi m, \quad \omega_{0}=\left(\frac{2 \pi}{N}\right) m=2 \pi\left(\frac{m}{N}\right)
$$

$$
\text { see : Fig.1.25, p. } 24 \text { of text }
$$

$x[n]=\cos (2 \pi n / 12)$

(a)

$$
\times[n]=\cos (8 \pi n / 31)
$$

(b)

(c)

Figure 1.25 Discrete-time sinusoidal signals.

Harmonically Related Signal Sets

For being periodic

$\frac{2 \pi}{N} \rightarrow H H$

$$
\phi_{k}[n]=e^{j k\left(\frac{2 \pi}{N}\right) n} \Rightarrow \phi_{k+N}[n]=e^{j(k+N)\left(\frac{2 \pi}{N}\right) n}=e^{j k\left(\frac{2 \pi}{N}\right) n}=\phi_{k}[n]
$$

Exponential/Sinusoidal Signals

- Harmonically related discrete-time signal sets
$\left\{\phi_{k}[n]=e^{j k\left(\frac{2 \pi}{N}\right) n}, \quad \mathrm{k}=0, \pm 1, \pm 2, \ldots \ldots ..\right\}$
all with common period N

$$
\phi_{k+N}[n]=\phi_{k}[n]
$$

This is different from continuous case. Only N distinct signals in this set.

Unit Impulse and Unit Step Functions

- Continuous-time
$\delta(t) \quad, \quad u(t)$
- First Derivative

$$
\delta(t)=\frac{d u(t)}{d t}
$$

see: Fig1.33, Fig1.34, P,33 of text

- Running Integral

$$
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau
$$

- Sampling property

$$
x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right)
$$

Figure 1.33 Continuous approximation to the unit step, $u_{\Delta}(t)$.

Figure 1.34 Derivative of $u_{\Delta}(t)$.

Unit Impulse and Unit Step Functions

- Discrete-time

$$
\delta[n]=\left\{\begin{array}{ll}
0, & n \neq 0 \\
1, & n=0
\end{array} \quad u[n]= \begin{cases}0, & n<0 \\
1, & n \geq 0\end{cases}\right.
$$

- First difference

$$
\delta[n]=u[n]-u[n-1] \quad\left(\lim _{\Delta \rightarrow 0}\left[\frac{x(t)-x(t-\Delta)}{\Delta}\right]\right)
$$

- Running Sum

$$
\begin{aligned}
& u[n]=\sum_{m=-\infty}^{n} \delta[m] \\
& u[n]=\sum_{k=0}^{\infty} \delta[n-k]
\end{aligned}
$$

- Sampling property

$$
x[n] \delta\left[n-n_{0}\right]=x\left[n_{0}\right] \delta\left[n-n_{0}\right]
$$

Unit Impulse \& Unit Step

- Discrete-time

$$
\delta[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-1]
$$

Vector Space Representation of Discrete－

time Signals

－ n －dim

$$
\begin{gathered}
\vec{a}=\left(a_{1}, a_{2}, \cdots a_{n}\right) \\
\vec{b}=\left(b_{1}, b_{2}, \cdots b_{n}\right) \\
\widehat{v_{1}}=(1,0,0, \cdots 0) \\
\widehat{v_{2}}=(0,1,0, \cdots 0) \\
\vdots \\
\vec{a} \cdot \vec{b}=\sum_{i} a_{i} b_{i}
\end{gathered}
$$

$$
\vec{x}=\sum_{i} x_{i} \widehat{v_{i}} \text { 合成 }
$$

$$
x_{j}=\vec{x} \cdot \widehat{v}_{j} \quad \text { 分析 }
$$

Vector Space Representation of Discrete－

time Signals

－ n extended to $\pm \infty$

$$
\begin{aligned}
& \vec{x}=\left(\cdots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, x_{3}, \cdots\right) \\
& \widehat{v_{0}}=(\cdots, 0,0,1,0,0,0, \cdots)=\delta[n] \\
& \widehat{v_{1}}=(\cdots, 0,0,0,1,0,0, \cdots)=\delta[n-1] \\
& \widehat{v_{k}}=(\cdots, 0,0,0, \cdots, 0,1, \cdots)=\delta[n-k] \\
&\{\delta[n-k], k: \text { inter }\} \square \vec{x}=\sum_{i} x_{i} \widehat{v_{i}} \text { 合成 } \\
& x_{j}=\vec{x} \cdot \widehat{v_{j}} \quad \text { 分析 }
\end{aligned}
$$

1.2 Systems

- Continuous/Discrete-time Systems

- Interconnections of Systems
- Series

- Parallel

- Interconnections of Systems
- Feedback

- Combinations
- Stability
- stable : bounded inputs lead to bounded outputs
- Time Invariance
- time invariant : behavior and characteristic of the system are fixed over time

Stability

Examples of unstable systems

Time Invariance

- Linearity
- linear : superposition property

$$
\begin{aligned}
& x_{k}[n] \rightarrow y_{k}[n] \\
& \sum_{k} a_{k} x_{k}[n] \rightarrow \sum_{k} a_{k} y_{k}[n]
\end{aligned}
$$

- scaling or homogeneity property

$$
\begin{aligned}
& x[n] \rightarrow y[n] \\
& a x[n] \rightarrow a y[n]
\end{aligned}
$$

- additive property

$$
\begin{aligned}
& x_{i}[n] \rightarrow y_{i}[n] \\
& x_{1}[n]+x_{2}[n] \rightarrow y_{1}[n]+y_{2}[n]
\end{aligned}
$$

- Memoryless/With Memory
- Memoryless : output at a given time depends only on the input at the same time
eg.

$$
y[n]=\left(a x[n]-x^{2}[n]\right)^{2}
$$

- With Memory

- Invertibility
- invertible : distinct inputs lead to distinct outputs, i.e. an inverse system exits
eg. $\quad y[n]=\sum_{k=-\infty}^{n} x[k]$

$$
z[n]=y[n]-y[n-1]
$$

- Causality
- causal : output at any time depends on input at the same time and in the past
eg.

$$
y[n]=\sum_{k=-\infty}^{n} x[k]
$$

Causality

$$
y[n]=\sum_{k=-\infty}^{n+m} x[k]
$$

Examples

- Example 1.12, p. 47 of text

$$
\begin{aligned}
& y[n]=x[-n] \\
& y(t)=x(t) \cos (t+1)
\end{aligned}
$$

"NOT" causal causal

- Example 1.13, p. 49 of text

$$
\begin{aligned}
& y(t)=t x(t) \\
& y(t)=e^{x(t)}
\end{aligned}
$$

unstable
stable

Examples

- Example 1.20, p. 55 of text

$$
y[n]=2 x[n]+3 \quad \text { "NOT" linear }
$$

- zero input leads to zero output for linear systems
- incrementally linear: difference between the responses to any two inputs is a linear function of the difference between the two inputs

Problem 1.35, p. 64 of text

- $x[n]=e^{j k\left(\frac{2 \pi}{N}\right) n}$
$k\left(\frac{2 \pi}{N}\right) N_{0}=2 \pi m$
fundamental period=?
- a has to divide N for N_{0} being an integer and $N_{0} \leq N$
$-a$ has to divide k for m being an integer

$$
a=\operatorname{gcd}(k, N), \quad N_{0}=N / \operatorname{gcd}(k, N)
$$

example: $\mathrm{N}=12, \mathrm{k}=3, \mathrm{~N}_{0}=4, \mathrm{~m}=1$

$$
\mathrm{N}=12, \mathrm{k}=9, \mathrm{~N}_{0}=4, \mathrm{~m}=3
$$

- Selected problems for chap $1: 4,9,14,16,18,19,27,30$, 35, 37, 47

