2.0 Linear Time-Invariant Systems

2.1 Discrete-time Systems: the Convolution Sum

e Representing an arbitrary signal as a sequence of
unit impulses
x[n] = > x[k]s[n - k]
k=—o0 x

an unit impulse located at n = k on the index n
See Fig. 2.1, p.76 of text

ufn]=>» S[n—k]  aspecial case
k=0
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Figure 2.1 Decomposition of a
discrete-time signal into a weighted
sum of shifted impulses.



Vector Space Representation of Discrete-

time Signals (P.47 of 1.0)
e N-dim

ad = (al'aZJ '"an) X = (x11x2’°'°xn)

b = (bl'bz""bn)
f=zxi§i =y

v; =(1,0,0,---0) :

75 = (0,1,0,-- 0) X =%

&-E=Zaibi

i



Vector Space Representation of Discrete-

time Signals (P.48 of 1.0)
e N extended to + oo

X = (”',x_z,x_l,x(),X1, X2,X3, )

o=+ 0, 0,1, 0,0, 0,---)=5[n]

Zr=(= 0, 0 0,1 0, 0,--)=6[n-1
r=(- 0, 0, 0, 0, 1,-)=6[n- k]
{6[n — k], k:inter} C) % = inffi =y

i

Xj=f°7’7}' TIHT



Vector Space Interpretation

1 L
—*—o-l—er—I-H-*— 5:71_1{
D = (oor o ,0,0,0,1,-+) k
T {6[n—kl,k=--,-1,0,1,2,-}



Vector Space (P.30 of 1.0)

V={v|} ~
av ’ 0

vy T+ Uy

3-dim Vector Space

i
EII\/Z_/E (4) -] = (af +b] +ck) - J (&)
= b=A4-7T (%
?/i /JA> j  (th)

e



N-dim Vector Space (P.31 of 1.0)

Y@E (B
aj = A7 (67\1()?)



Vector Space Interpretation

xfn] = ) x[k] 8 [n - k] (RERHREHT)

A= 2 a O (B ap = A 9,(55H)

k - e
an=A-ﬁn(A-B=Zakbk)
k



e Representing an arbitrary signal as a sequence of
unit impulses

xnl= Y x[k]5[nl— K] .

an unit impulse located at n = k on the index n

e Sifting property of the unit impulse:looked at on the
Index k, 6[n-k] is nonzero only at k = n, which “sifts” the
value x[n] out of the function x[K]. (47#7T)



e Defining the output for an unit impulse input as the
Unit Impulse Response

X[n]=dn] y[n]=h[n]:unit impulse response

L | Mh

n 0 n




e By Linearity (Superposition Property)

— The output for an arbitrary input signal is the
superposition of a series of “shifted, scaled unit impulse
response’

Zak X [N] — Zak Y. [Nn]
B S

x[K] o[n-k] x[k]  h[n-k]

oo

y[nl= > x[k]h[n —k] = x[n]* h[n]

K=—o0

Convolution Sum

See Fig2.3,p.80 of text



Input/Output Relation in Every Dimension
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Figure 2.3 (a) The impulse response h[n] of an LTI system and an input
x[n] to the system; (b) the responses or “echoes,” 0.5h[n] and 2h[n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (¢) the
overall response y[n], which is the sum of the echos in (b).



e A Different Way to visualize the convolution sum
— looked at on the index k

yn] = ix[<]h[n—k]

Input signal
Contribution to the _
output signal at time reflected-over version of h[k]
n located atk = n

— on the dummy index Kk, h[k] is reflected over and shifted to
k=n, weighted by x[k] and summed to produce an output
sample y[n] at time n

See Figs 2.5, 2.6, 2.7, pp. 83-85 of text
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Figure 2.7 QOutput for Example 2.3.



e A linear time-invariant system is completely
characterized by its unit impulse response

yn] = ix[k]h[n—k]



2.2 Vector Space Interpretation for
Discrete-time Systems

Vector Space Concept

e The Set of All Discrete-time Signals Defined in (V,
N,) Forms A Vector Space, with Each Signal Being A
Vector

{x[n], x[n] 1s a discrete-time signal defined in (N, N,)}=V

— definitions and properties

x[n] + y[n], ax[n]



Vector Space Concept

e Definition of Inner-product

— Example

— Simple Definition

v,V, €V, Vv;-V,:VxV > R(orC)



Vector Space Concept

e Definition of Inner-product
— Physical Properties: magnitude, similarity
A-B = |A||B| cos @

- Mathematical Properties

(i) Commutative

(x[n]) - ([nD = [[nD) - (x[nD]
(ii) Linearity
(x[n]) - (ayy1[n] + azy,[n])
= a,(x[n]) - G1[n]) + a,(x[n]) - (y2[n])

(iii) Non-degeneracy
(x[n]) - (x[n]) = 0“=" if x[n]=0,alln



Inner Product

A-B = |A||B| cos@
magnitude similarity

1/,
Al = (A -A)1/2: magnitude, (Z af)

cosf = % similarity, —1 < cosf <1

A-B = 0 :orthogonal

. lelll sl

A: a, l'If' a,
Bl: l'l""“hl'l ABZ >AB]_

bl l’n

BZ: Llnll(l "-]J_

b: l bh




Linearity in Inner Product

x-(ay) =a(x-y)
x- 1 +y)=x-y1+x-y,

magnitude
similarity

Commutative, Non-degeneracy

magnitude
similarity



Vector Space Concept

e Definition of Inner-product
- Physical Properties: magnitude, similarity

— For the vector space of signals defined in (N,, N,)
(x[n])- (y[n]):V xV — R(or C)

N,

(X[n)-(yn])= > xIn]y*[n]

— Inner-product Space

- (N4, N,) extended to (-0, o0)



Vector Space Concept

e Magnitude/Similarity

xIn]] = [(x[nD- (x[n D
s(x[n], y[n]) = XIn)-(in)

[x[n ]| yln]]



Vector Space Concept

e Orthonormal bases

— orthogonal N
(©;[n]) - (@;[n]) = _ZCDi[n]-CD”}[n]=0
— orthonormal |

{®,(n)k=12,.M}

(@;[n])-(@,[n])=o. # ]

— orthonormal basis
any vector (signal) in the vector space can be expanded by
the set of orthonormal signals

X[n] = Z X, @, [n] (&)



System Characterization

e \/ector Space
{x[n], X[n] defined for-co<n<oo}=V

— Orthonormal bases
{® [n]=6[n-K], k=0,+1,%2,.....}
time-shifted unit impulses, dim = o
— Asignal expe;?ded by this set of orthonormal basis
x[n]= > x[k] & [n—K]
A I

Xy D, [n] (57 EK)



System Characterization

e A Different View of the Sifting Property

— 3-dim vector space
A=a,i+a,]+ak
a,=A-j=(l+a,]+ak)j

— Sifting property
x[n]= > x[k] & [n—K]
k;x» ' ‘ (72747)

(XKD - (@, [k])



System Characterization

e Transformation of Vectors

— A System Is a Transformation which maps one vector x|[n]
to another vector y[n] (linear, time-invariant)

n ™ N
s L hin




e Defining the output for an unit impulse input as the
Unit Impulse Response (P.10 of 2.0)

X[n]=dn] y[n]=h[n]:unit impulse response

L | Mh

n 0 n




e Rotation as a vector transformation

T

 Rotation as a
vector transformation

(1,0,0) — (0.9, 0.3,0.3) (1,
(0, 1, 0) — (0.3, 0.9,0.3) (0,
(0,0, 1) — (0.3,0.3,0.9) (0,

(1,0,0)

/T/i_(i’ b, C)

Rotation plus
vector scaling

(@a, ab, ac)

2,)
3,02,
9,0.3,02,-)

o O o



Splitting a single basis vector into a few
more basis vectors

f ™
o
~—(ab.c) (1,0,0)—’:1{?1,,6)
] ]eh[]

— transforming a single basis vector enough to describe the
transformation of any vectors



System Characterization

e Transformation of Vectors

— unit impulse response is the transformation of 6[n]. A basis
vector Is transformed to a set of other bases

— superposition property for convolution sum
DA% [n]— h- [n]
VA P

X[k]  S[n—k] X[k]  h[n—k]

o0

yln]= > x[k]h[n—K]

K=—o0



System Characterization

e Linear, Time-invariant Transformation of vectors can
be expressed by a matrix

X : H:[hnk] Y

y = HX
[y.]= [hnk ][Xk ]’ Yn= Z N X

h,, =h[n—k] — convolution Sum



System Characterization

e Matrix Representatlon of Convolutlon Sum

example: x[n]=---0,0,X4,X{,X5,0,0,-
h_n: -0,0,hy,h4,h,,0,0,--
Y-n-:"'0’013’0’)’113’213’3’3’4’0’01"'
0 .--h, 00O 0 0OFfO0 O---|| O
0] ---hyhgt O O OO0 O -- 0]
Yo ~-h, hjthy 0 0F 0 O ---| Xq
Y1 -+ 0 hyfh;hg OF 0 O ---| X4
Yo |=|--0 O0fth,h;hgf 0O 0 - x,
Y3 .0 00 hy,h fhy, O---| O
Ya .0 0(0 O hyfhyhy---|| O
0] -0 00 O Ofh,hy- 0]
0] -0 0t0 O OfO h,- 0]




Matrix Representation

Y1
Y2

§[n] hohih,

012 Y1 hg X1
1 hyx, - k23 < [ﬂ: Z; [ ]
012 % e
234
e 1R y
7 ! ho 00 . hyy hyy R
= hy, |hq ho. =[x, h, hy O | 11 M1z Nag
2 S




System Characterization

e Matrix Representation of Convolution Sum

— each component of the input vector is transformed to a set
of other components of the output vector, and all these are
superpositioned (superposition property)

— each component of the output vector is contributed
respectively by the transformed component of each input
vector component (reflected, shifted, weighted sum)



2.3 Continuous-time System :

the Convolution Integral

e Representing an arbitrary signal as an integral of
Impulses

x(t) = lim 3 x(kA)SA(t — KA)A

K=—o0

See Fig 2.12 , p.91 of text

X(t) = [ “x(z)S(t—7)dz
an impulse located att =7 whose value is x(z) (&%)

u(t) = I: O(t —z7)dz  aspecial case
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Figure 1.33 Continuous approximation to Figure 1.34 Derivative of
the unit step, ua(f). s (1).
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Figure 2.12 Staircase approxima-
(e) tion to a continuous-time signal.



Vector Space Representation of Discrete-

time Signals (P.48 of 1.0)
e N extended to + oo

X = (”',x_z,x_l,x(),X1, X2,X3, )

o=+ 0, 0,1, 0,0, 0,---)=5[n]

Zr=(= 0, 0 0,1 0, 0,--)=6[n-1
r=(- 0, 0, 0, 0, 1,-)=6[n- k]
{6[n — k], k:inter} C) % = inffi =y

i

Xj=f°7’7}' TIHT



Vector Space Interpretation (P.8 of 2.0)

xfn] = ) x[k] 8 [n - k] (RERHREHT)




Vector Space Representation

x(t) = f x (1) 8(t — D) de(E AR
x(7)

/L(T)}?/ | }x(t) f\/t]/j

T

6(t —1) 5(t—t)
T

A=) ao; (G @ = A5 (537

k

discrete-time: A-B = Yna|n] b*[n]
B

continuous-time: 4 .



Continuous-time Vector Space

{x(O|t, <t <11} or {x(t)|—0o<t <00}

ax(t), x;(t) + x,(t)
{6(t —1), —0 <71 < o0 }isaset of basis

:I; t 5(t_7,-1)
8t —12)
5t 6(t—13)

S

(0] - y(©)] = f x(6) y*(t) dt

1/2
[x(®)| =

foo |x(t)]% dt



Unit Step

u(t) = joo5(t—r) dt - l(;
0
5(t—1t)

' T t>0

0 t

1 6(t—1t)

- . T

t 0 t<O0

— running integral

u(t) = jt S(odr,t=t—1



e Representing an arbitrary signal as an integral of
Impulses

— Sifting Property : Cagid)
Looked at on the index z, o(t-7) located at 7 = t shifts the
value x(t) out of the function x(z)

See Fig 2.14 ,p.94 of text



(@
d(t—m)
y
t T
(b)
x(t)o(t—1) = x(t)d(t—1) (0
A

Figure 2.14 (a) Arbitrary signa
x(7): (b) impulse &(f— ) as a func

4 t +  of = with t fixed; (c) product of the:
©) two signals.



e Defining the output for an unit impulse input as the
unit impulse response

x(t) =45(t) y(t) =h(t)
" S ~ Unit Impulse Response

I~

0 0




e By Linearity (Superposition Property)

— The output for an arbitrary input signal is the
superposition of a series of “shifted, scaled unit impulse
response’

zak Xk (t) — Zak Y« (t)

X(t) = j X(r)§(t—r) dr \\

y(t) = X(r)h(t —7r)dr

y(©) = [ “x(2)h(t—7)dz = x(t) * h(t)

Convolution Integral




e Defining the output for an unit impulse input as the
Unit Impulse Response (P.10 of 2.0)

X[n]=dn] y[n]=h[n]:unit impulse response

L | Mh

n 0 n




e By Linearity (Superposition Property) (P.11 of 2.0)

— The output for an arbitrary input signal is the
superposition of a series of “shifted, scaled unit impulse

response’
Z ak Xk [n] —> Z ak Y« [n]
I o
X[k] d[n-k] X[K]  h[n-k]

oo

y[nl= > x[k]h[n —k] = x[n]* h[n]

K=—o0

Convolution Sum

See Fig2.3,p.80 of text



Input/Output Relation in Every Dimension

(P.12 of 2.0)
o[n] h|n]
-*—T—H;— | | ﬂ*’ i
-] U 1 - .)__
e ,/Y[n]

o

+ ’/L;_ x[1] (h,,\t x[1] A[n — 1]
(/4

L x2] D4 x[2] h[n - 2]
[/



Input/Output Relation in Every Dimension

A >
5(t) h(t)
T t [\1 t
0 0
x(t) S y()
k ._M t
- t 071 7y
i t O/X L
Oﬁ\ Vo t
v t 11
Tl e
T t To



e A Different Way to visualize the convolution integral

— Look on the index ¢
y(t) = [ x()h(t-7)dz

|

Input signal

output signal at time t
reflected-over version of h(t)located at 7 =t

— On the dummy index z, h(t) is reflected over and shifted to
T =1, weighted by x(t) and integrated to produce the output
value at time t, y(t)

see Figs.2.19,2.20,2.21,pp.100-101 of text

e A linear time-invariant system is completely
characterized by its unit impulse response
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l\ S | L-BF
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’\ t
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l\ t = 3T
/ t

— 2T
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Figure 2.19 Signals x(+) and #f(f — 7) for different values of t for
Example 2.7.



x(t)h{t—1)

O<tsT
t
0 t T
(@)
x(7)h{t—7)
t T<t=<2T
t—-T
G I T
(b)
X(t)h{t—1)
2T
t—T h OTENEET
pr "
t—2T

(c)

Figure 2.20 Product x(7)A(t — 7) for Example 2.7 for the three ranges of
values of t for which this product is not identically zero. (See Figure 2.19.)



y(t)

! |
0 T 2T 3T t

Figure 2.21 Signal y(t) = x(f) = h(f) for Example 2.7.



2.4 Properties of Linear
Time-Invariant Systems

e Commutative Property
X[n]=h[n] = h[n] = X[n]
X(t) * h(t) = h(t) = x(t)

— the role of input signal and unit impulse response is
Interchangeable, giving the same output signal

— In evaluating the convolution sum or integral, the input
signal can be reflected over and weighted by the unit
Impulse response



e Distributive Property
x[n]* (h,[n]+ h,[n]) = x[n]* hy[n] + X[n] = h, [n]
X(t) =[h, (t) + h, (©)] = x(t) = hy (€) + x(t) = h, ()

X[ n]

X[ n]

_ hl
5 _yin]

L h2
n
h,+h, =y[ ]

(%,[n]+ X, [n]) * h[n] = X, [n] * h[n] + X, [n] * h[n]
additive (linear) property



e Associative Property
x[n]=(h[n]*h,[n]) = (x[n]*h,[n]) *=h,[n]

— h, 1 h, : | hyxh, —o

— Cascade of two systems gives an unit impulse response
which 1s the convolution of the unit impulse responses of
the two individual systems

— The behavior of a cascade of two systems is independent
of the order in which the two systems are cascaded



e Causality

— causal If y[n] dose not depend on Xx[k] for k > n

yIn]= > x[kIh[n — k]

K=—o0

— Causal iff h[n]=0,n<0

n

y[n]= > x{kIh[n — k] = i h[KIX[N — K]

k=—c0



e Causality

— continuous-time

y(@t) = [ x(z)h(t—z)dz
— Causal iff h(t)=0,t<0
y(©) = [ x(0)h(t-7)dz = [ “h(r)x(t-7)dz



Causality (P.56 of 1.0)




Causality & Memory

yln] = x[k] hfn— k]
e (for future)
non-causal - r{}gg‘;;:t)
h|n] - @c{@ n
memory
non-causal
= k] @@—
y :Tl.‘ y k
x[K] T &
n

(hin] =0, n<0) © (hin—k] =0, k > n): Causality



e Memoryless / with Memory

— A linear, time-invariant, causal system is memoryless only
if  h[n]=Kd[n] h(t)= Ks(t)
yInl=Kx[n]  y(t)= Kx(t)

If k=1 further, they are identity systems

o0

y[n]=x[n]= > x[kls[n—k]=x[n]*5[n]

K=—0o0

y(t) = x(t) = j x(2)S(t —7)dz = x(t)=5(t)

— Identity for convolution , I.e., convolution sum (or integral)
with an unit impulse function gives the original signal



e Invertibility / Inverse system

X[n] | hfn

y[n]

h{n]*h[n]=do[n]

x[n]

] hl[n]

h(t) *hy(t) = 5(t)




e Stability

stable if bounded input gives bounded output
IX[n]| < B, all n

il =| > h[KIxn — K]

— Stable iff the impulse response is absolutely summable,

< ' |hik][xn K] < B+ 3 Jhik]

K=—o0 K=—o0

S| h[K] |< o0

kK=—00

or absolutely integrable,

Lj h(t) | dt < oo

the necessary condition can be proved



e Unit step response

output for an unit step function input

s[n] =u[n]*h[n] = > hlk] Running sum
k=—o0
h[n] = s[n]-s[n-1] First difference
similarly
s(t) = _f_t h(z)dz Running integral
ds(t
h(t) = () First derivative

dt



2.5 Systems Described by
Differential/Difference Equations

Continuous-time

e Differential Equation Specification for Input/Output
Relationships

i a, d* Y(t) ib d X(t)

— derived by physical phenomena and relationships

— very often auxiliary conditions are needed to completely
specify the system



Continuous-time

e Differential Equation Specification for Input/Output
Relationships

— the response y(t) to an input x(t) in general consists of two
parts:
(1) homogeneous solution (natural response): a solution for

(2) particular solution: to the complete differential equation



Continuous-time

e Initial Rest Condition for Causal Systems
X(t)=0,t<t, > y()=0,t<t,

— Initial conditions

dy(t,) _d°y(,) _ _dy(t,) _
dt dt®

Y(to) —



Discrete-time

e Difference Equation Specification

> a,yin—Kl= b, xn K]

— derived by sequential behavior of different processes
— auxiliary conditions needed

— response y(t) consists of two parts

(1) homogeneous solution (natural response) for
N
k=0

(2) particular solution



Discrete-time

e Initial Rest Condition for Causal Systems
X[nN]=0,n<n, - y[n]=0,n<n,

e Recursive Equation

yinl =213 b,xtn — k1 Zaky[n k]>

a'O k=0

— output at time n expressed in terms of previous values of
Input/output



Discrete-time

e Recursive Equation

1
y[n] = Zb X[n—k] - Zak y[n— k]
0 (k=0
— N=0, reduced to a convolution sum

Finite Impulse Response (FIR) systems

— Infinite Impulse Response(lIR) Systems




Block Diagram Representation

e Elementary Operations

Xo[N]
X,(t)
x[n] yah Xy [n]+ X, [n]
X1(t) N X1(0)+ X,(1)
x[n] a  ax|n]

X(t) ax(t)



Block Diagram Representation

e Elementary Operations

x[n] | D > X[n-1]
X(t) : i dx(t)
dt dt

X(t) : J‘ : J'_; x(z)d




Block Diagram Representation

e An Example
y[n]+ay[n —1] = bx[n]

X[n] —2 D -y[n]

y[n-1]

— Feedback, with memory, initial value of the memory
element as the initial condition

— Initial rest condition: initial value in the memory element
IS Zero



Block Diagram Representation

e Continuous-time Example

dy (t) _
" + ay(t) = bx(t)

b

a
X(t) -

U

- y(t)

a dy(t)
dt




Block Diagram Representation

e Continuous-time Example

dy(t)
dt
— EXxpressed by integrator, assuming initially at rest

y(©) = [ [bx(r) - ay(s)ldz
y(t) = Y(t)+ [, bx(r) ~ay(2)ld=

+ ay(t) = bx(t)

x(t) —2—P— | - y(t)

N

-d

— The Integrator represents the memory element



2.6 The Unit Impulse for
Continuous-time Cases

Many Different Functions
Approaching 4(t) in the Limit

e 5,(t)>5(t)as A—0
e Identity for convolution

X(t) = x(t)* o(t), x(t)=o(t)
> 5(t) = o(t) = 5(t)

o(t) = o(t) = 5@) * o(t)




Unit Impulse

5 h(t)
© h(o) )

*(6) y(£) = x(t) * h(t)

x(t) = foox(r) 5(t —t)dt = x(t) * 6(¢t)
(&1, T il B TTER)

x () x(t)
> 6(t)> >
y(t) = x(t) * 6(t) = x(¢)
5(t)
x(t) x(t)
5(t) 5(t)

0 §(t) = 8(t) * 8(t) * 5(t)



Many Different Functions
Approaching 4(t) in the Limit

o Let (1) =06,(t)*5,(t)
See Fig. 2.33, p. 128 of text

then M 1, (t)=0o(t)

A—0

im [r, (t) 6, (0)]= 5

A—0

im {1, (t) *r, (O] =o(t)

A—0



B =

2A

Figure 2.33 The signal ry(f)
defined in eq. (2.135).



Many Different Functions
Approaching 4(t) in the Limit

o Let r,(t)=5,(t)*5,(t)

— All of them (1, (t), ra(t) * 6o (L), 1p(t) * 1 (2)...... ) do
“behave like a unit impulse” in the limait, 1.e., produce the
unit impulse response of a system when entered as the
input, 1f A 1s small enough.

See Fig. 2.34, p. 128-129 of text

— “A1s small enough” may mean differently in different
cases

See Fig. 2.35, pp. 130-131



TN A=0.0025
A=0.1
A=0.25
0.5+
L Y [s] 1 —
(8] 1 2 (o] 1 2
Responses to x(t) = §.(t) Responses to x(t) = ry(t)

(a) (b)

1 i
o] 1 2 (8] 1 2
Responses to x(t) = 3.t ~ra(H Responses to x(t) = ry(t)-r\(t)

©) (d)

ht)y =e ?u@®

)

Figure 2.34 Interpretation of a unit impulse as the idealization of a pulse
whose duration is “short enough” so that, as far as the response of an LTI
system to this pulse is concerned, the pulse can be thought of as having
been applied instantaneously: (a) responses of the causal LTI system de-
scribed by eq. (2.138) to the input 8.(f) for A = 0.25, 0.1, and 0.0025;

(b) responses of the same system to 7, (f) for the same values of A; (c) re-
sponses to 8a(f)=ra(f); (d) responses to ri(?)*ra(f); (e) the impulse response
h(t) = e 2'y(t) for the system. Note that, for A = (.25, there are noticeable
differences among the responses to these different signals; however, as A
becomes smaller, the differences diminish, and all of the responses converge
to the impulse response shown in (e).



fge

A=0.00025

1

1

(v} 0.1
Responses to x{t}) = &.(1)

(@)

A=0.00025

0.2 o} 0.1 0.2

Responses to k(t) = ry(t)
(s)}
1K A—0.00025

]

0 0.1
Responses to x(t) = &(t)~ ry(t)

(c)

0.2 (0] 0.1 0.2

Responses to x(t) = r(t)~ry(t)
(d)
h{t) = e 2%u (1)

Figure 2.35 Finding a value of A that is “smalil enough” depends upon

the system to which we are applying inputs: (a) responses of the causal LTI
system described by eq. (2.137) to the input 5.(f) for A = 0.025, 0.01, and
0.00025; (b) responses to ra(f); (c) responses to 3. () *ra(?); (d) responses to
ra(2) = ra(t); (e) the impulse response h(t} = e 2% u(t) for the system. Com-
paring these responses to those in Figure 2.34, we see that we need to use a
smaller value of A in this case before the duration and shape of the pulse are

of no consequence.



Operational Definition of Unit Impulse

e A Function can be defined by
— what it Is at each value of the independent variable
— what it does under some mathematical operation such as

an integral or a convolution, or some mathematical
constraints: Singularity Function



Operational Definition of Unit Impulse

e 0(?) can be defined as ~
— x(t) = x(t)* 5(t)for any x(t), x(t) = f x (7) 8(t — 1) dr

— asignal which, when applied to a syst_eol?n, yields the

impulse response h(t) = h(t)* 5(t)

— such definition leads to, or is equivalent to, other
properties of 6 (t), [ oo5(r)d2' _q

[ “a(r)s(r)dz = g(0)

they are also “operational definition” of §(t)

— Such definition also leads to the sampling property

f(t)5(t) = £f(0)56(¢t)



Operational Definition of o(t)

o {6(t —1),—0 < 1T < oo}isaset of basis

® x(t) = Joox(r) S(t —t)dt = x(t) * 6(t)

S B ARt B
21 ¢ REfTE

e All are operational definitions



Differentiator, Integrator and
Singularity Functions

e Differentiator

d dx(t)
| O -v(t) =
X(t) - y(t)=——
unit impulse response
h(t) = % = u, (1) unit doublet
dx(t
% = X(t) = u,(t) for any x(t)

operational definition of u, (t)



Differentiator, Integrator and

Singularity Functions

e Differentiator in terms of §,(t) in the limit

45 (1) 1
o —[5(0 o(t—A)]
X(t) dgd t(t) i[x(t) X(t — A)] > Et)

See Fig. 2.36, p. 134 of text



L=

Figure 2.36 The derivative
d8,(t)/dt of the short rectangular
pulse &5 (f) of Figure 1.34.



Differentiator, Integrator and

Singularity Functions

e Cascade of Differentiators

X _ ) )+, 0)= x(0) 0, 0

dt
operational definition of u,(t)
0, (0= 200
U, (t) = () (1)
ddfk():uk(t) gl(t)*ul(t) -------- (Z allk >0

k times



Differentiator, Integrator and

Singularity Functions

e |ntegrator

x(t)—— | y(©) = [ x(z)dz

unit impulse response

h(t) = I_; S(r)dz = u(t) unit step function

j_too x(z)dz = x(t)=*u(t)for any x(t)

operational definition of u(t), but u(t) well defined for each t



Differentiator, Integrator and

Singularity Functions

e Cascade of Integrators

u_,(t)=u(t)*u(t)= I_toou(r)dr = tu(t)

unit ramp function

X(t)*u_,(t)=x(t)*u(t)*u(t)= j_; (j_; X(o)do)dz

operational definition of u_,(t)



Differentiator, Integrator and

Singularity Functions

e Cascade of Integrators

0 (1) =) U)o rult)= [ 0 ()
— _/
YT
k times kL

They are all well defined for each value of t



Differentiator, Integrator and
Singularity Functions

e Unified Definition

5(t) = Uy (1)
u(t) =u_(t)
Uy (), u_, (t), U—1(t)v Uy (t), ul(t)’ U, (), Uy (£,
\ ]
Integrators o) differentiators

u,(t)*u_ (t) =5(t) Inversesystems
U, (£) *u_, (t) = 5(t)
uk (t) *ur (t) — uk+r (t)



Differentiator, Integrator and

Singularity Functions

e Unified Definition

ey Uy (t),"°,U_Z(t),u_l(t),Uo(t),ul(t),uz(t),°",Uk (t)’

\_ /”R/_/
N

. o(t . .
integrators (1) differentiators

— operational definitions with singularity functions

— manipulate operations efficiently and easily



2.7 Vector Space Interpretation for
Continuous-time Systems

Vector Space Concept

e The Set of All Continuous-time Signals Defined in
(t,, t,) Forms A Vector Space

{x(1), x(t) Is a continuous-time signal defined In
(t,6) =V

— definitions and properties

x(t)+ y(t), ax(t)



Vector Space Concept

e Definition of Inner-product
[x(t)]-[y(t)]:V xV > RorC

X [y®)]: [ x)y" (t)ot

t,

— similar to
N2

(x[n])-(ylnD: >_xIn]y*[n]

A-B= ZN:aibi
n=1

— (tq,t;) extendable to (—oo, o)



Vector Space Concept

e Magnitude/Similarity

x() | = ([x(®)]- [x(®)]>

- (1




Inner Product for Continuous-time Signals

x(®)] - y(©)] = f x () y*(¢) dt

[x(O] - [y1 (O] > [x ()] - [y2(8)]



Vector Space Concept

e Orthonormal Bases

— orthogonal
6, (t)|= j (t)dt =0

— orthonormal

{6 (t), k=1,2,3,.M}
6]l 0)=0. i#]
=1, i=]



Vector Space Concept

— atypical example of orthonormal signal set

(B (t)=bs, (t—kA), k =k, k, +1, ..k, |

n: scaling factor

(A=t, (k,+1)A=t,

— orthonormal basis

any vector in the vector space can be expanded by the set
of orthonormal signals

()= 2%k (0



x(t)

—A 0 A2A kA t
(CY

x(—2A)54(t + 2A)A

]

X{(—2A)

2A —A t
(b)

x(—A)BA(t + A)A

xX(— A)
—A O t
(<)
x{0)d (A
x(0)
o A t
(d)
X(A)B At —A)A
x{A)
A 2A t

Figure 2.12 Staircase approxima-
(e) tion to a continuous-time signal.



Vector Space for Continuous-time
Signals

e \ector Space
{x(t), x(t) defined in (— 0, o)} =V

e Orthonormal Bases(?)
.(t)=6(t-7) 7e(-0m,0)

time-shifted unit impulses, dim=c0
— Inner-product

5(t)*8(t)=35(r)= j_:(S(r)&(z—r)dr 5(r)5(r 1dr

the distance between two & (t) S 7



Vector Space for Continuous-time
Signals

e Orthonormal Bases(?)
#.(t)=5(t-7) 7e(-o0,x)
— Inner-product
(4., 0114, (O] =[5(t-7,)]- [5( —,))
—I (t—7)0(t—1,)dt =6(r, —1,)
=0, 7, # 7,
=5(0)=1, 7, =1,

— Not really orthonormal (but are orthogonal), but makes
sense under the operational definition



System Characterization

e A Signal expanded by unit impulse bases

x(r) = lim i x(kA)S , (t — kA ) A

x(t): j_:x(r)§(t— Z')dZ'

R (5
Y x40
— sifting property of 6(t)

extracting the component of x(t) att =t

x(t)=[x(z)] ¢, ()] (5377)



System Characterization

e A System Is a Transformation

X(t)
At)

{ H

> y(1)
h(t)

— unit impulse response is the transformation of & (t)
— a basis vector is transformed to a set of other bases
— superposition property for convolution integral

Zakxk(t)_)zakyk(t)
VAR
X(t) = j_w x(z)S(t—7)dz

y(t)= .Eo x(z)h(t—7)dz

Kk

e Can’t be represented by a matrix due to the discrete
property of the matrices, but the concept is the same



Data Transmission

o 1” Iloll
..

Transmitter

..1101 ... =
5 I ]
1
_/\.J\—VJ\-— he(t) | channel distortion

% ha (D)[< hy (€) t—-r

Decision equalizer front-end
filter

halt] = hi'[t] a2l




Examples

* Example 2.11, p.110 of text
— time shift of signals

X(t) y(1)=xX(t-t;)
+ h )

5 T h)= aet)

X(t-t, ) = X(t) *6(t-t, )

— convolution of a signal with a shifted impulse is
the signal itself but shifted




Examples

* Example 2.12, p.111 of text
— running sum or accumulation

X ynl= ), x[k]
on] hin] h[n]=u[n] “~~

a0

ylnl= ) x[klu[n —k)

k=—0

— first difference Is the inverse

y[n]=x[n]-x[n-1]
hi[n]=6[n]-o[n-1]

— u[n]*{o[n]-o[n-1]}=u[n]-u[n-1] =d[n]



Examples

. Example 2.15, p.123 of text
y[n ]—-y[n 1] x [n]
yln] = x[n]+3 ~y[n-1]
— 1nitial rest condltlon
x[n] =0, n<-1 1mples y[n]=0, n<-1

'x- -

y[0] =x[0J+3y[-1] =1
yI]=x[1}+»[0] =
yi2] =x[2Hp[1] =

1.2
)

yn] = (2)* ufn] =hln]

— 1nfinite impulse response (IIR)




Problem 2.51(a), p.154 of text
« System A is linear, time-invariant with
hln] = (O™ u[n]

» System B is linear but time-varying with
y[n] = nx[n]
Show that the commutativity property does not hold for
|A — B] and |B — A] cascade structure

* For |[A — B]
x1[n] = 8[nl, y1[n] = Q" uln], z1[n] = ()" uln]
* For |[B — A]

xl[n] — 5[”]’ yl[n] — O’ Zl[n] =0



Problem 2.64, p.166 of text
« Asimplified echo system and its inverse

OHENATO N O (U
i
—h(t)— ot

h(t)=58(t)+Lo(t-T)
g()=5(1)+ Z(— o -kr) Z( Yo —-kr)

h(t)* g(H) =[5(t) + L5(t—T)]* Z( s —kr)]
5(t—a)* (1 —b) = 8(t—(a+b))

h(t)* g (1) = i (s -kr)+ (> L 8-k +1)7) = 501

k=0

—i(—iY”é(r—(ml)ﬂ =N (- sk

k=1



Problem 2.64, p.166 of text
* A more realistic model

XOLg YO X0l oy
| g
—h— —gH)—

h(t) = iaké(t —kT)
2() = 5(t)—aS(t—T)

h(t)*g(t) = [Zak5(f—kT)]*[5(l) —ao(t=T)]=06(1)

—stability analysis )
0<0<1, [ Ih®ft=> a" stable
a>1, [.Ih®dt not integrable, “NOT” stable




