
2.0 Linear Time-invariant Systems

2.1 Discrete-time Systems: the Convolution Sum

⚫ Representing an arbitrary signal as a sequence of 

unit impulses

an unit impulse located at n = k on the index n

See Fig. 2.1, p.76 of text

a special case




−=

−=
k

knkxnx ][][][ 




=

−=
0

][][
k

knnu 





Vector Space Representation of Discrete-

time Signals (P.47 of 1.0)

⚫ n-dim

Ԧ𝑎 = (𝑎1, 𝑎2, ⋯ 𝑎𝑛)

𝑏 = (𝑏1, 𝑏2, ⋯ 𝑏𝑛)

ෞ𝑣1 = (1, 0, 0, ⋯ 0)

ෞ𝑣2 = (0,1, 0, ⋯ 0)

⋮

Ԧ𝑎 ⋅ 𝑏 = ෍

𝑖

𝑎𝑖 𝑏𝑖

Ԧ𝑥 = (𝑥1, 𝑥2, ⋯ 𝑥𝑛)

Ԧ𝑥 = ෍

𝑖

𝑥𝑖 ෝ𝑣𝑖 合成

𝑥𝑗 = Ԧ𝑥 ⋅ ෝ𝑣𝑗 分析



Ԧ𝑥 = (⋯ , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, ⋯ )

ෞ𝑣0 = (⋯,      0,     0,   1,   0,   0,   0, ⋯ )=δ [ 𝑛 ]

ෞ𝑣1 = (⋯,      0,     0,   0,   1,   0,   0, ⋯ )=δ [ 𝑛 – 1 ]

ෞ𝑣𝑘 = (⋯,      0,     0,   0, ⋯,   0,   1, ⋯ )=δ [ 𝑛 – k ]

{𝛿 𝑛 − 𝑘 , 𝑘: inter} Ԧ𝑥 = ෍

𝑖

𝑥𝑖 ෝ𝑣𝑖 合成

𝑥𝑗 = Ԧ𝑥 ⋅ ෝ𝑣𝑗 分析

Vector Space Representation of Discrete-

time Signals (P.48 of 1.0)

⚫ n extended to ± ∞



Vector Space Interpretation

ො𝑣0 = (⋯ , 0, 1, 0, 0, 0, ⋯ )

ො𝑣1 = (⋯ , 0, 0, 1, 0, 0, ⋯ )

⋮

ො𝑣𝑘 = (⋯ ⋯ , 0, 0, 0, 1, ⋯ )

δ [ 𝑛 ]

δ [ 𝑛 – 1 ]

δ [ 𝑛 – k ]

{𝛿 𝑛 − 𝑘 , 𝑘 = ⋯ , −1, 0, 1, 2, ⋯ }
𝑘

0

1

𝑘



Vector Space (P.30 of 1.0)

3-dim Vector Space

𝑉 = 𝑣 ⋯
𝑎𝑣
𝑣1 + 𝑣2

𝑏
𝜃

෠𝑘

෡𝑖 ෡𝑗

Ԧ𝐴
Ԧ𝐴 ⋅ ෡𝑗 = (𝑎෡𝑖 + 𝑏෡𝑗 + 𝑐 ෠𝑘) ⋅ ෡𝑗 (合成)

𝑏 = Ԧ𝐴 ⋅ ෡𝑗 (分析)



N-dim Vector Space (P.31 of 1.0)

(合成)

(分析)

റ𝐴 = ෍

𝑘=1

𝑁

𝑎𝑗 = റ𝐴 ∙ ෝ𝑣𝑗

ෝ𝑣𝑖 ∙ ෝ𝑣𝑗 = 𝛿𝑖𝑗

ො𝑣𝑘𝑎𝑘



Vector Space Interpretation

𝑥[𝑘]
𝑥[𝑛]

𝑥[𝑘]

𝛿[𝑘 − 𝑛]
𝑘

𝑛

𝛿[𝑛 − 𝑘]
𝑛

𝑘

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿 [𝑛 − 𝑘] (是合成也是分析)

𝑛

𝑛 𝑘

𝑘

Ԧ𝐴 = ෍

𝑘

𝑎𝑘 ො𝑣𝑘 (合成) 𝑎𝑗 = Ԧ𝐴 ⋅ ො𝑣𝑗 分析

𝑎𝑛 = Ԧ𝐴 ⋅ ො𝑣𝑛 ( Ԧ𝐴 ⋅ 𝐵 = ෍

𝑘

𝑎𝑘 𝑏𝑘)



⚫ Representing an arbitrary signal as a sequence of 

unit impulses

(合成)

an unit impulse located at n = k on the index n

⚫ Sifting property of the unit impulse:looked at on the 

index k, δ[n-k] is nonzero only at k = n, which “sifts” the 

value x[n] out of the function x[k]. (分析)
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⚫ Defining the output for an unit impulse input as the 

Unit Impulse Response

S

0 n n0

x[n]=[n] y[n]=h[n]:unit impulse response



⚫ By Linearity (Superposition Property)

– The output for an arbitrary input signal is the 

superposition of a series of “shifted, scaled unit impulse 

response”

 →
k k

kkkk nyanxa ][][

x[k] [n-k] x[k] h[n-k]
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Convolution Sum

See Fig2.3,p.80 of text



Input/Output Relation in Every Dimension

𝛿[𝑛]

𝑥[𝑛]

𝑥[1]

𝑦[𝑛]

𝑥 1 ℎ[𝑛 − 1]

ℎ[𝑛]

𝑥[0]

𝑥[2]

𝑥 0 ℎ[𝑛]

𝑥 2 ℎ[𝑛 − 2]





⚫ A Different Way to visualize the convolution sum

– looked at on the index k

– on the dummy index k, h[k] is reflected over and shifted to 
k=n, weighted by x[k] and summed to produce an output 
sample y[n] at time n

See Figs 2.5, 2.6, 2.7, pp. 83-85 of text
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Contribution to the 

output signal at time 

n

input signal

reflected-over version of h[k] 

located at k = n





Fig. 2.6
𝑥[𝑘]

𝑘

ℎ[𝑘]
𝑘

𝑘

𝑘

𝑘

ℎ −𝑘 , 𝑛 = 0

ℎ 𝑛 − 𝑘 , 𝑛 = 2 > 0

ℎ 𝑛 − 𝑘 , 𝑛 < 0







⚫ A linear time-invariant system is completely 

characterized by its unit impulse response
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Vector Space Concept

⚫ Definition of Inner-product

– Example

– Simple Definition
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Inner Product

𝐴 ⋅ 𝐵 = 𝐴 𝐵 cos 𝜃

magnitude similarity

𝐴 = (𝐴 ⋅ 𝐴) ൗ1
2: magnitude, ෍

𝑖

𝑎𝑖
2

ൗ1
2

cos 𝜃 =
𝐴⋅𝐵

𝐴 𝐵
: similarity,   −1 ≤ cos 𝜃 ≤1

𝐴 ⋅ 𝐵 = 0 : orthogonal

𝐴

𝐵

𝐴:

𝐵1:

𝐵2:

𝐴 ⋅ 𝐵2 > 𝐴 ⋅ 𝐵1



Linearity in Inner Product

Commutative, Non-degeneracy

𝑥 ⋅ 𝑎𝑦 = 𝑎 𝑥 ⋅ 𝑦

𝑥 ⋅ 𝑦1 + 𝑦2 = 𝑥 ⋅ 𝑦1 + 𝑥 ⋅ 𝑦2

ൽ
magnitude
similarity

ൽ
magnitude
similarity



Vector Space Concept

⚫ Definition of Inner-product

– Physical Properties: magnitude, similarity

– For the vector space of signals defined in (N1, N2)

– Inner-product Space

– (N1, N2) extended to (-∞, ∞)

 ( )  ( ) )or (: CRVVnynx →
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Vector Space Concept

⚫ Magnitude/Similarity

   ( )  ( ) 2
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Vector Space Concept

⚫ Orthonormal bases

– orthogonal

– orthonormal

– orthonormal basis

any vector (signal) in the vector space can be expanded by

the set of orthonormal signals
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System Characterization

⚫ Vector Space

– Orthonormal bases

time-shifted unit impulses, dim = ∞

– A signal expanded by this set of orthonormal basis
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(合成)



System Characterization

⚫ A Different View of the Sifting Property

– 3-dim vector space

– Sifting property
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(分析)



System Characterization

⚫ Transformation of Vectors

– A System is a Transformation which maps one vector x[n] 

to another vector y[n] (linear, time-invariant)

H [  ]
][
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][
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ny



⚫ Defining the output for an unit impulse input as the 

Unit Impulse Response (P.10 of 2.0)

S

0 n n0

x[n]=[n] y[n]=h[n]:unit impulse response



⚫ Rotation as a vector transformation

Rotation as a

vector transformation

(1,0,0)

(a, b, c) 

(𝛼𝑎, 𝛼𝑏, 𝛼𝑐)

x

y
𝑦′

𝑥′

Rotation plus

vector scaling

(1, 0, 0) → (0.9, 0.3, 0.3)

(0, 1, 0) → (0.3, 0.9, 0.3)

(0, 0, 1) → (0.3, 0.3, 0.9)

(1, 0, 0, 0,⋯) → (0.9, 0.3, 0.2,⋯)

(0, 1, 0, 0,⋯) → (   0, 0.9, 0.3, 0.2,⋯)

(0, 0, 1, 0,⋯) → (   0,    0, 0.9, 0.3,02,⋯)



Splitting a single basis vector into a few 

more basis vectors

– transforming a single basis vector enough to describe the 

transformation of any vectors

(1,0,0) (𝑎, 𝑏, 𝑐)
(1,0,0) = ෡𝑖

a

b
c

(a,b,c) 

෡𝑖

෡𝑗

෠𝑘
𝛿 𝑛 → ℎ 𝑛

𝛿 𝑛 − 𝑘 → ℎ 𝑛 − 𝑘

෍

𝑘

𝑥[𝑘] 𝛿[𝑛 − 𝑘] → ෍

𝑘

𝑥[𝑘] ℎ[𝑛 − 𝑘]



System Characterization

⚫ Transformation of Vectors

– unit impulse response is the transformation of δ[n]. A basis 

vector is transformed to a set of other bases

– superposition property for convolution sum

    →
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System Characterization

⚫ Linear, Time-invariant Transformation of vectors can 

be expressed by a matrix

 nkhH =x y

   ==
k

knknknkn xhyxhy    ,][

Hxy =

 knhhnk −= Convolution Sum



System Characterization

⚫ Matrix Representation of Convolution Sum
example: x[n]=…0,0,x0,x1,x2,0,0,…

h[n]=…0,0,h0,h1,h2,0,0,…
y[n]=…0,0,y0,y1,y2,y3,y4,0,0,…
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Matrix Representation

ℎ0𝑥2

⋮
𝑦2

⋮
= ℎ2 ℎ1 ℎ0

𝑥0

𝑥1

𝑥2

𝛿[𝑛]
ℎ[𝑛]

01 2

ℎ0ℎ1ℎ2

0  1 2

0  1 2

0  1 2

ℎ1𝑥1

0  1   2 
ℎ2𝑥0

ℎ0𝑥1

ℎ1𝑥1
1  2  3 

2  3  4 

⋅ ⋅ ⋅
⋅ ℎ11 ℎ12 ℎ13 ⋅
⋅ ℎ21 ℎ22 ℎ23 ⋅
⋅ ℎ31 ℎ32 ℎ33 ⋅

⋅ ⋅ ⋅
⋅ ℎ0 0 0 ⋅
⋅ ℎ1 ℎ0 0 ⋅
⋅ ℎ2 ℎ1 ℎ0 ⋅

⋅ ⋅ ⋅

⋮
𝑦1

𝑦2

𝑦3

⋮

=

⋅ ℎ0 ⋅ ⋅ ⋅

⋅ ℎ1 ℎ0 ⋅
⋅ ℎ2 ℎ1 ℎ0 ⋅

⋅ ℎ2 ℎ1 ⋅

⋅ ⋅ ℎ2 ⋅

=

𝑥0

𝑥1

𝑥2

⋮

𝑦1

𝑦2

𝑦3

=

⋅ ℎ0 ⋅
⋅ ℎ1 ⋅
⋅ ℎ2 ⋅

𝑥1

⋮
⋮



System Characterization

⚫ Matrix Representation of Convolution Sum

– each component of the input vector is transformed to a set 

of other components of the output vector, and all these are 

superpositioned (superposition property)

– each component of the output vector is contributed 

respectively by the transformed component of each input 

vector component (reflected, shifted, weighted sum)



2.3 Continuous-time System : 

the Convolution Integral
⚫ Representing an arbitrary signal as an integral of 

impulses

−= 


−=


→

)()(lim)(
0

ktkxtx
k






−
−=  dtxtx )()()(

See Fig 2.12 , p.91 of text

an impulse located at t = τ whose value is x(τ)




−=
0

)()(  dttu a special case

(合成)







Ԧ𝑥 = (⋯ , 𝑥−2, 𝑥−1, 𝑥0, 𝑥1, 𝑥2, 𝑥3, ⋯ )

ෞ𝑣0 = (⋯,      0,     0,   1,   0,   0,   0, ⋯ )=δ [ 𝑛 ]

ෞ𝑣1 = (⋯,      0,     0,   0,   1,   0,   0, ⋯ )=δ [ 𝑛 – 1 ]

ෞ𝑣𝑘 = (⋯,      0,     0,   0, ⋯,   0,   1, ⋯ )=δ [ 𝑛 – k ]

{𝛿 𝑛 − 𝑘 , 𝑘: inter} Ԧ𝑥 = ෍

𝑖

𝑥𝑖 ෝ𝑣𝑖 合成

𝑥𝑗 = Ԧ𝑥 ⋅ ෝ𝑣𝑗 分析

Vector Space Representation of Discrete-

time Signals (P.48 of 1.0)

⚫ n extended to ± ∞



Vector Space Interpretation (P.8 of 2.0)

𝑥[𝑘]
𝑥[𝑛]

𝑥[𝑘]

𝛿[𝑘 − 𝑛]
𝑘

𝑛

𝛿[𝑘 − 𝑛]
𝑛

𝑘

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿 [𝑛 − 𝑘] (是合成也是分析)

𝑛

𝑛 𝑘

𝑘

Ԧ𝐴 = ෍

𝑘

𝑎𝑘 ෞ𝑣𝑘 (合成) 𝑎𝑗 = Ԧ𝐴 ⋅ ෝ𝑣𝑗 分析

𝑎𝑛 = Ԧ𝐴 ⋅ ෞ𝑣𝑛 ( Ԧ𝐴 ⋅ 𝐵 = ෍

𝑘

𝑎𝑘 𝑏𝑘)



Vector Space Representation

𝑥 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏(是合成也是分析)

𝑥 𝜏

𝑥 𝑡

𝛿 𝑡 − 𝜏

𝑡

𝑡

𝜏

𝜏

𝑥 𝜏

𝛿 𝜏 − 𝑡

𝑡

𝑡

𝜏

𝜏

Ԧ𝐴 = ෍

𝑘

𝑎𝑘 ෞ𝑣𝑘 (合成) 𝑎𝑗 = Ԧ𝐴 ⋅ ෝ𝑣𝑗 (分析)

discrete-time:

continuous-time:

റ𝐴 ⋅ 𝐵 = σ𝑛 𝑎 𝑛 𝑏∗ 𝑛

റ𝐴 ⋅ 𝐵 = ∞−׬

∞
𝑎 𝑡 𝑏∗ 𝑡 𝑑𝑡



Continuous-time Vector Space

𝑥(𝑡) 𝜏2 ≤ 𝑡 ≤ 𝜏1 or    𝑥(𝑡) −∞ < 𝑡 < ∞

𝑎𝑥(𝑡), 𝑥1 𝑡 + 𝑥2 𝑡

{ 𝛿(𝑡 − 𝜏), −∞ < 𝜏 < ∞ } is a set of basis

𝑥 𝑡 ⋅ 𝑦 𝑡 = න
−∞

∞

𝑥 𝑡 𝑦∗ 𝑡 𝑑𝑡

𝑥(𝑡) = න
−∞

∞

𝑥(𝑡) 2 𝑑𝑡

ൗ1
2

𝑡
𝑡
𝑡

𝛿(𝑡 − 𝜏1)

𝛿(𝑡 − 𝜏2)

𝛿(𝑡 − 𝜏3)



Unit Step

𝑢 𝑡 = න
0

∞

𝛿 𝑡 − 𝜏 𝑑𝜏

1

t
0

𝛿 𝜏 − 𝑡

𝜏
0

0

t

t

𝛿 𝜏 − 𝑡

𝑡 > 0

𝑡 < 0𝜏

– running integral

𝑢 𝑡 = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏, 𝜏 = 𝑡 − 𝜏′



⚫ Representing an arbitrary signal as an integral of 

impulses

– Sifting Property :           (分析)

Looked at on the index τ, δ(t-τ) located at τ = t shifts the 

value x(t) out of the function x(τ)

See Fig 2.14 ,p.94 of text





⚫ Defining the output for an unit impulse input as the 

unit impulse response

)()( ttx =

0
t

S
)()( thty =

Unit Impulse Response

0
t



⚫ By Linearity (Superposition Property)

– The output for an arbitrary input signal is the 

superposition of a series of “shifted, scaled unit impulse 

response”

 →
k k

kkkk tyatxa )()(

)()()()()(

)()()(                      

)()()(

thtxdthxty

dthxty

dtxtx

−=

−=

−=









−



−



−







Convolution Integral



⚫ Defining the output for an unit impulse input as the 

Unit Impulse Response (P.10 of 2.0)

S

0 n n0

x[n]=[n] y[n]=h[n]:unit impulse response



⚫ By Linearity (Superposition Property) (P.11 of 2.0)

– The output for an arbitrary input signal is the 

superposition of a series of “shifted, scaled unit impulse 

response”

 →
k k

kkkk nyanxa ][][

x[k] [n-k] x[k] h[n-k]




−=

−=
k

nhnxknhkxny ][][][][][

Convolution Sum

See Fig2.3,p.80 of text



Input/Output Relation in Every Dimension
(P.12 of 2.0)

𝛿[𝑛]

𝑥[𝑛]

𝑥[1]

𝑦[𝑛]

𝑥 1 ℎ[𝑛 − 1]

ℎ[𝑛]

𝑥[0]

𝑥[2]

𝑥 0 ℎ[𝑛]

𝑥 2 ℎ[𝑛 − 2]



Input/Output Relation in Every Dimension

𝛿(𝑡)

𝑥(𝑡)

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

𝑡

0

00

0

0

𝜏2

𝜏1 𝜏2

𝜏2

𝜏1𝜏1

𝑦(𝑡)

ℎ(𝑡)



⚫ A Different Way to visualize the convolution integral

– Look on the index τ




−
−= dthxty )()()(

output signal at time t

input signal

reflected-over version of h(t)located at  =t

– On the dummy index τ, h(t) is reflected over and shifted to 

τ = t, weighted by x(t) and integrated to produce the output 

value at time t, y(t) 

see Figs.2.19,2.20,2.21,pp.100-101 of text

⚫ A linear time-invariant system is completely 

characterized by its unit impulse response



0−2𝑇

ℎ(−𝑡)







2.4 Properties of Linear 

Time-invariant Systems

⚫ Commutative Property

– the role of input signal and unit impulse response is 

interchangeable, giving the same output signal

– In evaluating the convolution sum or integral, the input 

signal can be reflected over and weighted by the unit 

impulse response

)()()()(

][][][][

txththtx

nxnhnhnx

=

=



⚫ Distributive Property

additive (linear) property

)()()()()]()([)(

][][][][])[][(][

2121

2121

thtxthtxththtx

nhnxnhnxnhnhnx

+=+

+=+

][nx ][ny
1h

2h

][nx ][ny
21 hh +

][][][][][])[][( 2121 nhnxnhnxnhnxnx +=+



⚫ Associative Property

– Cascade of two systems gives an unit impulse response 

which is the convolution of the unit impulse responses of 

the two individual systems

– The behavior of a cascade of two systems is independent 

of the order in which the two systems are cascaded

][])[][(])[][(][ 2121 nhnhnxnhnhnx =

21 hh 
1h 2h

2h 1h
12 hh 



⚫ Causality

– causal if y[n] dose not depend on x[k] for k > n

– Causal iff h[n]=0, n < 0




=−=

−=−=
0

][][][][][
k

n

k

knxkhknhkxny




−=

−=
k

knhkxny ][][][



⚫ Causality

– continuous-time

– Causal iff h(t)=0,t<0




−
−= dthxty )()()(




−
−=−=

0
)()()()()(  dtxhdthxty

t



Causality (P.56 of 1.0)

𝑥[𝑛]

𝑛 𝑛

𝑦[𝑛]

𝑦 𝑛 = ෍

𝑘=−∞

𝑛+𝑚

𝑥[𝑘]



Causality & Memory

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]
(for future)

non-causal

non-causal

memory
(for past)

memory

𝑛

𝑘

𝑘

𝑛

𝑛

ℎ[𝑛]

ℎ[𝑛 − 𝑘]

𝑥[𝑘]

( ℎ 𝑛 = 0, 𝑛 < 0 ) ⇔ ( ℎ 𝑛 − 𝑘 = 0, 𝑘 > 𝑛 ): Causality



⚫ Memoryless / with Memory

– A linear, time-invariant, causal system is memoryless only 

if

if k=1 further, they are identity systems

– identity for convolution , i.e., convolution sum (or integral) 

with an unit impulse function gives the original signal

][][ nKnh =

][][ nKxny =

   nnxknkxnxny
k

 =−== 


−=

][][][][

( ) ( )ttxdtxtxty  =−== 


−

)()()()(

( ) ( )tKth =

( ) ( )tKxty =



⚫ Invertibility / Inverse system

][][][ 1 nnhnh = )()()( 1 tthth =

][nx
][nh ][1 nh

][nx][ny



⚫ Stability

stable if bounded input gives bounded output

|x[n]| < B, all n

– Stable iff the impulse response is absolutely summable,

or absolutely integrable,

the necessary condition can be proved




−=



−=



−=

−−=
kkk

khBknxkhknxkhny ][][][][][][




−=


k

kh |][|




−
dtth |)(|



dt

tds
th

dhts
t

)(
)(

)()(

=

=  −
 Running integral

First derivative

⚫ Unit step response

output for an unit step function input

similarly

]1[][][

][][*][][

−−=

== 
−=

nsnsnh

khnhnuns
n

k

Running sum

First difference



2.5 Systems Described by 

Differential/Difference Equations

Continuous-time

⚫ Differential Equation Specification for Input/Output 

Relationships

– derived by physical phenomena and relationships

– very often auxiliary conditions are needed to completely 

specify the system

k

kN

k

M

k

kk

k

k
td

txd
b

td

tyd
a

)()(

0 0

 
= =

=



Continuous-time

⚫ Differential Equation Specification for Input/Output 

Relationships

– the response y(t) to an input x(t) in general consists of two 

parts:

(1) homogeneous solution (natural response): a solution for

(2) particular solution: to the complete differential equation


=

=
N

k
k

k

k
td

tyd
a

0

0
)(



Continuous-time

⚫ Initial Rest Condition for Causal Systems

– initial conditions

00 ,0)(,0)( tttytttx =→=

0
)(

.......
)()(

)( 0

2

0

2

0

0 =====
N

N

td

tyd

td

tyd

td

tdy
ty



Discrete-time

⚫ Difference Equation Specification

– derived by sequential behavior of different processes

– auxiliary conditions needed

– response y(t) consists of two parts

(1)  homogeneous solution (natural response) for 

(2)  particular solution

 
= =

−=−
N

k

M

k

kk knxbknya
0 0

][][


=

=−
N

k

k knya
0

0][



Discrete-time

⚫ Initial Rest Condition for Causal Systems

⚫ Recursive Equation

– output at time n expressed in terms of previous values of 

input/output

00 ,0][,0][ nnnynnnx =→=









−−−= 
==

N

k

k

M

k

k knyaknxb
a

ny
100

][][
1

][



Discrete-time

⚫ Recursive Equation

– N=0, reduced to a convolution sum

Finite Impulse Response (FIR) systems

– Infinite Impulse Response(IIR) Systems









−−−= 
==

N

k

k

M

k

k knyaknxb
a

ny
100

][][
1

][

𝑦 𝑛 = ෍

𝑘=0

𝑀

(
𝑏𝑘

𝑎0
) 𝑥 [𝑛 − 𝑘]

ℎ 𝑛 = ቊ
𝑏𝑛/𝑎0, 0 ≤ 𝑛 ≤ 𝑀
0 , else



Block Diagram Representation

⚫ Elementary Operations

x1[n]

x1(t)

x1[n]+ x2[n]

x1(t)+ x2(t)

x2[n]

x2(t)

ax[n]

x(t)

ax[n]

ax(t)



Block Diagram Representation

⚫ Elementary Operations

x[n-1]Dx[n]

dt

tdx )(

dt

d
x(t)

 −

t

dx  )(x(t)



Block Diagram Representation

⚫ An Example

][]1[][ nbxnayny =−+

D

x[n] y[n]

y[n-1]

b

-a

– Feedback, with memory, initial value of the memory 

element as the initial condition

– Initial rest condition: initial value in the memory element 

is zero



Block Diagram Representation

⚫ Continuous-time Example

)()(
)(

tbxtay
dt

tdy
=+

x(t) y(t)
a

b

dt

d

dt

tdy )(a

1
−



Block Diagram Representation

⚫ Continuous-time Example

)()(
)(

tbxtay
dt

tdy
=+

– Expressed by integrator, assuming initially at rest

 daybxty
t

)]()([)( −=  −

 daybxtyty
t

t
)]()([)()(

0
0 −+= 

– The integrator represents the memory element

x(t) y(t)
b

-a





2.6 The Unit Impulse for 

Continuous-time Cases

Many Different Functions 

Approaching δ(t) in the Limit

⚫ ( ) ( ) 0  as  →→ tt 

⚫ Identity for convolution
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )tttt

ttt

ttxttxtx







=

=

==    ,)(



Unit Impulse

ℎ(𝑡)
ℎ(𝑡)𝛿(𝑡)

𝑥(𝑡) 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡

𝑥 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑥 𝑡 ∗ 𝛿(𝑡)

(是分析, 是合成, 是單位元素)

𝑥(𝑡)𝑥(𝑡)

𝑦 𝑡 = 𝑥 𝑡 ∗ 𝛿 𝑡 = 𝑥(𝑡)
𝛿(𝑡)

𝛿 𝑡 = 𝛿 𝑡 ∗ 𝛿 𝑡 ∗ 𝛿(𝑡)

𝛿(𝑡)

𝑥(𝑡)

𝛿(𝑡)𝛿(𝑡) 𝛿(𝑡)

𝑥(𝑡)



Many Different Functions 

Approaching δ(t) in the Limit

⚫ Let ( ) ( )tttr  = )(

See Fig. 2.33, p. 128 of text

)()]()([ lim

)()]()([  lim

)()(  lim

0

0

0

ttrtr

tttr

ttr







=

=

=


→


→


→then

.

.

.

.





Many Different Functions 

Approaching δ(t) in the Limit

⚫ Let ( ) ( )tttr  = )(







Operational Definition of Unit Impulse

⚫ A Function can be defined by

– what it is at each value of the independent variable

– what it does under some mathematical operation such as 

an integral or a convolution, or some mathematical 

constraints: Singularity Function



)0()()(

1)(

gdg

d

=

=






−



−





( ) ( ) ( ) ( ),any for  txttxtx =

( ) ( ) ( )tthth =

𝑥 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏



⚫ {𝛿 𝑡 − 𝜏 , −∞ < 𝜏 < ∞} is a set of basis

⚫

⚫ All are operational definitions

Operational Definition of δ(t)

是合成也是分析

是單位元素

𝑥 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑥 𝑡 ∗ 𝛿(𝑡)

𝑡
𝑡
𝑡

𝜏1

𝜏2

𝜏3



Differentiator, Integrator and 

Singularity Functions

⚫ Differentiator

( )
dt

tdx
ty

)(
=

dt

dx(t)

unit impulse response

)()(
)(

)(
)(

)(

1

1

tutx
dt

tdx

tu
dt

td
th

=

==




)]()([
1)(

−−


= tt
dt

td




( )
( )

dt

tdx
txtx

dt

td
tx →−−


=  )]()([

1)(

See Fig. 2.36, p. 134 of text





Differentiator, Integrator and 

Singularity Functions

⚫ Cascade of Differentiators

( )
( ) ( ) ( ) ( ) ( )tutxtututx

dt

txd
2112

2

==

( )
( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( ) 0   all  ,........ 111

112

2

2

2

==

=

=

ktutututu
dt

td

tututu

dt

td
tu

kk

k



k times



Differentiator, Integrator and 

Singularity Functions

⚫ Integrator

( ) ( ) −
=

t

dxty 

unit impulse response

( )

( ) ( ) ( ) ( )txtutxdx

tudth

t

t

any for  

function stepunit  )()(





−

−

=

==





( )tx



Differentiator, Integrator and 

Singularity Functions

⚫ Cascade of Integrators

( ) ( ) ( ) ( ) ( )ttudutututu
t

===  −
− 2

unit ramp function

( ) ( ) ( ) ( ) ( )  − −
− ==

t

ddxtututxtutx


 ))((2



Differentiator, Integrator and 

Singularity Functions

⚫ Cascade of Integrators

( ) ( ) ( ) ( )  −
−−− ==

t

kk dututututu  )(........ )1(

k times
)(

)!1(
   

1

tu
k

t k

−
=

−



Differentiator, Integrator and 

Singularity Functions

⚫ Unified Definition

 ),(,),(),(),(),(),(,),(,

)()(

)()(

21012

1

0

tututututututu

tutu

tut

kk −−−

−



||

δ(t)

)()(*)(

)()(*)(

systems inverse     )()(*)(

22

11

tututu

ttutu

ttutu

rkrk +

−

−

=

=

=





integrators differentiators



Differentiator, Integrator and 

Singularity Functions

⚫ Unified Definition

– operational definitions with singularity functions

– manipulate operations efficiently and easily

 ),(,),(),(),(),(),(,),(, 21012 tututututututu kk −−−

||

δ(t)
integrators differentiators



2.7 Vector Space Interpretation for 

Continuous-time Systems

Vector Space Concept

⚫ The Set of All Continuous-time Signals Defined in   

(t1, t2) Forms A Vector Space

{x(t), x(t) is a continuous-time signal defined in   

(t1,t2)}=V

– definitions and properties

( ) ( ) ( )taxtytx  ,+



Vector Space Concept

⚫ Definition of Inner-product

( )  ( ) 

( )  ( )  ( ) ( )dttytxtytx

CRVVtytx

t

t





→

1

2

:

or  :

– similar to

 ( )  ( )    





=



=

=



N

n

ii

N

Nn

baBA

nynxnynx

1

2

1

:



Vector Space Concept

⚫ Magnitude/Similarity

( ) ( )  ( ) ( )2

1

 txtxtx =

( ) ( ) 
( )  ( ) 
( ) ( )tytx

tytx
tytxS

  
 ,


=



Inner Product for Continuous-time Signals

𝑥 𝑡 ⋅ 𝑦 𝑡 = න
−∞

∞

𝑥 𝑡 𝑦∗ 𝑡 𝑑𝑡

𝑥 𝑡

𝑦1 𝑡

𝑦2 𝑡

𝑥 𝑡 ⋅ 𝑦1 𝑡 > 𝑥 𝑡 ⋅ 𝑦2 𝑡



– orthonormal

( ) 

( )  ( ) 
ji   1,                    

ji   ,0

M1,2,3,...k ,

==

=

=

tt

t

ji

k





Vector Space Concept

⚫ Orthonormal Bases

– orthogonal

( )  ( )  ( ) ( ) 0
2

1

== 

 dttttt j

t

t
iji 



Vector Space Concept

– a typical example of orthonormal signal set

( ) ( ) 211 1 , k, ..., kkkktbtk +=−= 

b: scaling factor

( ) 2211 1   , tktk =+=

– orthonormal basis

any vector in the vector space can be expanded by the set 

of orthonormal signals

( ) ( )txtx
M

k

kk
=

=
1







Vector Space for Continuous-time 

Signals

⚫ Vector Space

( ) ( ) ( ) Vtxtx =−  ,in  defined  ,

⚫ Orthonormal Bases(?)

( ) ( ) ( )−−=  ,   ,  tt

time-shifted unit impulses, dim=∞

– Inner-product



Vector Space for Continuous-time 

Signals

⚫ Orthonormal Bases(?)

– Inner-product

– Not really orthonormal (but are orthogonal), but makes 

sense under the operational definition

( ) ( ) ( )−−=  ,   ,  tt



System Characterization

⚫ A Signal expanded by unit impulse bases

(分析)

(合成)

− sifting property of 𝛿(𝑡)
extracting the component of 𝑥(𝑡) at 𝜏 = 𝑡



System Characterization

⚫ A System is a Transformation

Hx(t) y(t)

h(t)(t)

( ) ( ) →
k

kk

k

kk tyatxa

( ) ( ) ( )  dtxtx −= 


−
 

( ) ( ) ( )  dthxty −= 


−
 

⚫ Can’t be represented by a matrix due to the discrete 

property of the matrices, but the concept is the same



Data Transmission

ℎ2 𝑡 ℎ1 𝑡

ℎ1,2[𝑛]

ℎ𝑐 𝑡

“1” “0”

1     1  0    1 

…1101 …

…1101 …

Transmitter

channel distortion

𝑛 𝑡
noise

Decision

ℎ1,2[𝑡]

equalizer front-end
filter

ℎ2[𝑡] ≈ ℎ𝑐
−1[𝑡]



Examples

• Example 2.11, p.110 of text

− time shift of signals

− convolution of a signal with a shifted impulse is 

the signal itself but shifted

h(t)
x(t) y(t)=x(t-t0)

h(t)= (t-t0)(t)

( )00 t-tδx(t))x(t-t =



Examples

• Example 2.12, p.111 of text

− running sum or accumulation

− first difference is the inverse

y [n ]=x [n ] -x [n -1 ]

h 1[n ]= [n ] - [n -1 ]

− u[n]*{[n]-[n-1]}=u[n]-u[n-1]=[n]

h[n]
x[n]

h[n]=u[n][n]

][]1[][]}1[][{][ nδnununδnδnu =−−=−−



…

Examples



Problem 2.51(a), p.154 of text

• System A is linear, time-invariant with

ℎ 𝑛 = (
1

2
)𝑛 𝑢[𝑛]

• System B is linear but time-varying with 

𝑦 𝑛 = 𝑛𝑥[𝑛]

Show that the commutativity property does not hold for 

𝐴 − 𝐵 and 𝐵 − 𝐴 cascade structure 

• For 𝐴 − 𝐵

𝑥1 𝑛 = 𝛿 𝑛 , 𝑦1 𝑛 = (
1

2
)𝑛 𝑢 𝑛 , 𝑧1 𝑛 = 𝑛(

1

2
)𝑛 𝑢 𝑛

• For 𝐵 − 𝐴

𝑥1 𝑛 = 𝛿 𝑛 , 𝑦1 𝑛 = 0, 𝑧1 𝑛 = 0



Problem 2.64, p.166 of text

• A simplified echo system and its inverse

…… x(t)

T
(-½ )

y(t)

g(t)

x(t)

T
½

y(t)

h(t)



Problem 2.64, p.166 of text

• A more realistic model

−stability analysis

0<α<1,                        , stable

α>1,                not integrable, “NOT” stable

……x(t)

T
α

y(t)

h(t)

x(t)

T

y(t)

g(t)
(-α)




=



−
=

0

)(
k

kdtth 

dtth


−
)(


