
3.0 Fourier Series Representation of 

Periodic Signals

3.1 Exponential/Sinusoidal Signals as 

Building Blocks for Many Signals



Time/Frequency Domain Basis Sets

⚫ Time Domain

⚫ Frequency Domain
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Signal Analysis

𝑥 𝑡 =

𝑘

𝑎𝑘 𝑥𝑘(𝑡)

𝑥𝑘 𝑡 = 𝑅𝑒 𝑒𝑗𝜔𝑘𝑡 = cos𝜔𝑘𝑡

𝑡 = 𝑛 𝑡 = 𝑛

𝑎𝑘 = 𝐴𝑘𝑒
𝑗𝜙𝑘

𝑅𝑒 𝐴𝑘𝑒
𝑗𝜙𝑘 𝑒𝑗𝜔𝑘𝑡 = 𝐴𝑘 cos(𝜔𝑘𝑡 + 𝜙𝑘)

𝑡 = 𝑛

𝜔𝑘 = 𝑘𝜔0

0
𝑡

𝑛

𝑛

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝜔𝑘

𝐴𝑘

𝐼𝑚

𝜙𝑘

𝑅𝑒

𝑡

𝑡
𝑡

𝑡
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Response of A Linear Time-invariant 

System to An Exponential Signal

⚫ Initial Observation

– if the input has a single frequency component, the output 
will be exactly the same single frequency component, 
except scaled by a constant

time-invariant

scaling property
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Input/Output Relationship

𝑦(𝑡)𝑥(𝑡)

⚫ Time Domain

⚫ Frequency Domain

𝛿(𝑡) ℎ(𝑡)

0 0
𝑡 𝑡

𝜔𝜔
𝜔1 𝜔1𝜔3 𝜔5 𝜔5𝜔3



Response of A Linear Time-invariant 

System to An Exponential Signal

⚫ More Complete Analysis

– continuous-time
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𝐴 𝑥 = 𝑦
𝐴 𝜈 = 𝜆𝜈

matrix
vectors

eigenvalue

eigenvector



Response of A Linear Time-invariant 

System to An Exponential Signal

⚫ More Complete Analysis

– continuous-time
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Transfer Function

Frequency Response

: eigenfunction of any linear time-invariant 

system

: eigenvalue associated with the eigenfunction est



Response of A Linear Time-invariant 

System to An Exponential Signal

⚫ More Complete Analysis

– discrete-time
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System Characterization

⚫ Superposition Property

– continuous-time

( ) ( ) ( ) =→=
k k

ts

kk

ts

k
kk esHatyeatx

  ( )   ( )( ) =→=
k

n

kkk

k

n

kk zzHanyzanx

– discrete-time

– each frequency component never split to other frequency 

components, no convolution involved

– desirable to decompose signals in terms of such 

eigenfunctions



3.2 Fourier Series Representation of 

Continuous-time Periodic Signals

Fourier Series Representation

⚫ Harmonically related complex exponentials
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all with period T

T: fundamental period



Harmonically Related Exponentials for 

Periodic Signals

• All with period T: integer multiples of ω0

• Discrete in frequency domain

T
(𝑁)

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑡, 𝑛

𝑡, 𝑛

𝑡, 𝑛

𝑡, 𝑛

𝑉 = {𝑥(𝑡)ȁ𝑥(𝑡) periodic, fundamental period
[𝑛]

[𝑛]

= 𝑇(𝑁)}
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Fourier Series Representation

⚫ Fourier Series
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Real Signals

For orthogonal basis: 



𝑘

𝑎𝑘 ො𝑣𝑘 =

𝑘

𝑏𝑘 ො𝑣𝑘



𝑘

(𝑎𝑘 − 𝑏𝑘) ො𝑣𝑘 = 0 ⇒ 𝑎𝑘 = 𝑏𝑘
(unique representation)

⋯𝑎−2 𝑒
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Fourier Series Representation

⚫ Determination of ak
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−  Fourier series coefficients (分析)

dc component
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റ𝐴 ⋅ ො𝑣𝑛 = (

𝑘

𝑎𝑘 ො𝑣𝑘) ⋅ ො𝑣𝑛

ො𝑣𝑘 ⋅ ො𝑣𝑛 = ቊ
𝑇, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

Not unit vector

orthogonal  

റ𝐴 ⋅ ො𝑣𝑛 = 𝑇𝑎𝑛

𝑎𝑛 =
1

𝑇
( റ𝐴 ⋅ ො𝑣𝑛) (分析)



Fourier Series Representation

⚫ Vector Space Interpretation

– vector space

( ) ( ) Ttxtx  period with periodic is :

could be a vector space

some special signals (not concerned here) 

may need to be excluded

( )  ( )  ( ) ( )dttxtxtxtx
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Fourier Series Representation

⚫ Vector Space Interpretation

– orthonormal basis
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is a set of orthonormal basis expanding a vector space 

of periodic signals with period T



Fourier Series Representation

⚫ Vector Space Interpretation

– Fourier Series

( ) ( )

( ) ( )

( ) ( ) 

( ) ( )

( ) dtetx
T

t
T

tx
T

ttx
T

a

tatx
T

tatx

tjn

T

n

nn

k

kk

k

kk

0 1        

11        

1

1

2
1

2
1

'2
1

'2
1











−



−=



−=







=




























=














=

=






=



Fourier Series Representation

⚫ Completeness Issue

– Question: Can all signals with period T be represented 

this way? 

Almost all signals concerned here can, with exceptions 

very often not important



Fourier Series Representation

⚫ Convergence Issue

– consider a finite series
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It can be shown
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aE
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 ,...1,0 , 1 if  min 0

ak obtained above is exactly the value needed even 

for a finite series



• All truncated dimensions are orthogonal to the subspace of dimensions 

kept.

Truncated Dimensions

𝑎1
′ = 𝑎1, 𝑎2

′ = 𝑎2, 

for orthogonal  𝑖 , 𝑗 , 𝑘



Fourier Series Representation

⚫ Convergence Issue

– It can be shown

( )  dttx
T

2

 if



Fourier Series Representation

⚫ Gibbs Phenomenon

– the partial sum in the vicinity of the discontinuity 

exhibit ripples whose amplitude does not seem to 

decrease with increasing N

See Fig. 3.9, p.201 of text





Fourier Series Representation

⚫ Convergence Issue

– x(t) has no discontinuities

Fourier series converges to x(t) at every t

x(t) has finite number of discontinuities in each period

Fourier series converges to x(t) at every t except at 

the discontinuity points, at which the series 

converges to the average value for both sides

All basis signals are 

continuous, so converge to 

average values



Fourier Series Representation

⚫ Convergence Issue

– Dirichlet’s condition for Fourier series expansion

(1) absolutely integrable, 

(2) finite number of maxima & minima in a period

(3) finite number of discontinuities in a period

( )  dttx
T

 



3.3 Properties of Fourier Series
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⚫ Linearity
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Ԧ𝑥 = (𝑎1, 𝑎2, 𝑎3, ⋯ )

Ԧ𝑦 = (𝑏1, 𝑏2, 𝑏3, ⋯ )

𝐴 Ԧ𝑥 + 𝐵 Ԧ𝑦 = (𝐴𝑎1 + 𝐵𝑏1, 𝐴𝑎2 + 𝐵𝑏2, ⋯ )



⚫ Time Shift

( ) k

tjkFS aettx 00

0

−
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phase shift linear in frequency with amplitude unchanged

𝑎𝑘 𝑒
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⚫ Time Reversal

( ) k
FS atx −⎯⎯ →−

the effect of sign change for x(t) and ak are identical

unique representation for orthogonal basis

⋯𝑎−1 𝑒
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𝑗𝜔0𝑡 +⋯ = 𝑥(𝑡)
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⚫ Time Scaling
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:
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periodic with period T/α and fundamental 

frequency αω0

ak unchanged, but x(αt) and each harmonic component are 

different
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unique representation

⚫ Conjugation
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⚫ Differentiation
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⚫ Parseval’s Relation
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component in a period T
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3.4 Fourier Series Representation of 

Discrete-time Periodic Signals

Fourier Series Representation

⚫ Harmonically related signal sets
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all with period 
N

N  2 , 0 =

   ,nn krNk  =+ only N distinct signals in the set

, periodic with fundamental period N



Harmonically Related Exponentials for 

Periodic Signals

• All with period T: integer multiples of ω0

• Discrete in frequency domain

T
(𝑁)

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑡, 𝑛

𝑡, 𝑛

𝑡, 𝑛

𝑡, 𝑛

𝑉 = {𝑥(𝑡)ȁ𝑥(𝑡) periodic, fundamental period
[𝑛]

[𝑛]

= 𝑇(𝑁)}
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(P. 11 of 3.0)



Continuous/Discrete Sinusoidals

ቈ
cos𝜔0𝑡 ≠ cos 𝜔0 + 2𝜋 𝑡

cos𝜔0𝑛 = cos 𝜔0 + 2𝜋 𝑛

ቈ 𝑒
𝑗𝜔0𝑡 ≠ 𝑒𝑗(𝜔0+2𝜋)𝑡

𝑒𝑗𝜔0𝑛 = 𝑒𝑗(𝜔0+2𝜋)𝑛

cos[⋅]

𝑡, 𝑛
2 3

54
0 1

𝑒𝑗[⋅]

𝑛 = 0

𝑛 = 1

𝑛 = 2
𝑛 = 3𝑛 = 4

𝜔0𝑡(𝜔0+2𝜋)𝑡

𝑅𝑒

(P.36 of 1.0)

cos[ 𝜔0 + 2𝜋 𝑡](𝑡 = 𝑛)

cos[𝜔0𝑡] (𝑡 = 𝑛)
𝐼𝑚



Exponential/Sinusoidal Signals

⚫ Harmonically related discrete-time signal sets

all with common period N

This is different from continuous case. Only N

distinct signals in this set.
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(P.42 of 1.0)



Fourier Series Representation

⚫ Determination of ak
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dc component

( )

( )

nk

nkTdte

dteeadtetx

T

tnkj

T
k

tjntjk

k

tjn

T

=

==

=



 
−



−=

−−

  0,                    

  ,

  

0

000





( ) 


−=

=
k

tjk

keatx 0

(P.14 of 3.0)



റ𝐴 ⋅ ො𝑣𝑛 = (

𝑘

𝑎𝑘 ො𝑣𝑘) ⋅ ො𝑣𝑛

ො𝑣𝑘 ⋅ ො𝑣𝑛 = ቊ
𝑇, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

Not unit vector

orthogonal  

റ𝐴 ⋅ ො𝑣𝑛 = 𝑇𝑎𝑛

𝑎𝑛 =
1

𝑇
( റ𝐴 ⋅ ො𝑣𝑛) (分析)

(P.15 of 3.0)



 

   



=






−

=

−

=








=

==

==

Nn

n
N

jk

Nn

njk

k

Nk

n
N

jk

k

Nk

njk

k

enx
N

enx
N

a

eaeanx







2

2

 1 1 0

0
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repeat with period N

Note: both x[n] and ak are discrete, and periodic with period N, 
therefore summed over a period of N

Fourier Series Representation

⚫ Fourier Series

‒ N different values in 𝑥[𝑛]

N-dimensional vector space

‒

𝑎𝑘 = Ԧ𝐴 ⋅ ො𝑣𝑘

Ԧ𝐴 =

𝑘

𝑎𝑘 ො𝑣𝑘 (合成)

(分析)

(合成)

(分析)



Orthogonal Basis
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= 0 , else



Fourier Series Representation

⚫ Vector Space Interpretation

     Nnxnx  period with periodic is   ,

is a vector space
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Fourier Series Representation

⚫ Vector Space Interpretation
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Fourier Series Representation

⚫ No Convergence Issue, No Gibbs Phenomenon, 

No Discontinuity Issue

– x[n] has only N parameters, represented by N

coefficients

sum of N terms gives the exact value

– N odd – N even
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See Fig. 3.18, P.220 of text





Properties

⚫ Primarily Parallel with those for continuous-time

⚫ Multiplication

  k
FS anx ⎯⎯ →
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Time Shift
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Properties

⚫ Parseval’s Relation
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3.5 Application Example

System Characterization

y[n], y(t)
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Superposition Property

– Continuous-time

– Discrete-time
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– H(j), H(ejω)  frequency response, or transfer function



Filtering

modifying the amplitude/ phase of the different frequency 

components in a signal, including eliminating some 

frequency components entirely

– frequency shaping, frequency selective

⚫ Example 1
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See Fig. 3.34, P.246 of text





⚫ Example 2

Filtering

See Fig. 3.36, P.248 of text
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Examples

• Example 3.5, p.193 of text
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• Example 3.5, p.193 of text
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sin 10 = k
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Tk







Examples

• Example 3.5, p.193 of text

(a)

(b)

(c)



Examples

• Example 3.8, p.208 of text

(a)

(b)

(c)

𝑥(𝑡) ⟶ 𝑎𝑘

𝑔(𝑡) ⟶ 𝑐𝑘

𝑞(𝑡) ⟶ 𝑏𝑘
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• Example 3.8, p.208 of text
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• Example 3.17, p.230 of text
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Problem 3.66, p.275 of text
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Problem 3.70, p.281 of text

• 2-dimensional signals
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Problem 3.70, p.281 of text

• 2-dimensional signals

𝑡1

𝑡2
𝑇1

𝑡1

𝑡2𝜔2

𝜔1

𝑡2

𝐹𝑆(𝑡2)
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𝜔20
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Problem 3.70, p.281 of text

• 2-dimensional signals

𝑡1 𝑡1

𝑡1

𝑡2 𝑡2

𝑡2

𝑒𝑗𝜔1𝑡1
𝑒𝑗𝜔2𝑡2

𝑒𝑗(𝜔1𝑡1+𝜔2𝑡2)


