3.0 Fourier Series Representation of Periodic Signals

3.1 Exponential/Sinusoidal Signals as

> Building Blocks for Many Signals

Time／Frequency Domain Basis Sets

－Time Domain

$$
\{\delta(t-\tau),-\infty<\tau<\infty\}
$$

$$
\{\delta[n-k], k=0, \pm 1, \pm 2, \cdots\}
$$

－Frequency Domain

$$
\begin{array}{ll}
\left\{e^{j \omega t},-\infty<\omega<\infty\right\} & \left\{e^{j \omega n}, \omega \in[0,2 \pi]\right\} \\
t, n & \vec{A}=\sum_{k} a_{k} \hat{v}_{k} \text { (合成) } \\
a_{j}=\vec{A} \cdot \hat{v}_{j} \text { (分析) }
\end{array}
$$

Signal Analysis (P. 32 of 1.0)

$$
\begin{aligned}
& x(t)=\sum_{k} a_{k} x_{k}(t) \\
& x_{k}(t)=\operatorname{Re}\left\{e^{j \omega_{k} t}\right\}=\cos \omega_{k} t^{t=n} \\
& a_{k}=A_{k} e^{j \phi_{k}} \\
& \operatorname{Re}\left\{\left(A_{k} e^{j \phi_{k}}\right)\left(e^{j \omega_{k} t}\right)\right\}=A_{k} \cos \left(\omega_{k} t+\underline{Q}_{t=n}^{\left.\phi_{k}\right)}\right.
\end{aligned}
$$

Response of A Linear Time-invariant

System to An Exponential Signal

- Initial Observation

$$
\begin{array}{lll}
e^{j \omega_{0} t}=x(t) & \rightarrow y(t) & \\
e^{j \omega_{0}(t+\tau)}=x(t+\tau) & \rightarrow y(t+\tau) & \text { time-invariant } \\
e^{j \omega_{0} \tau} \cdot x(t) & \rightarrow e^{j \omega_{0} \tau} \cdot y(t) & \text { scaling property } \\
\therefore y(t+\tau)=e^{j \omega_{0} \tau} \cdot y(t) & \\
\begin{array}{c}
\uparrow \\
0
\end{array} & & \\
& y(t)=y(0) e^{j \omega_{0} t} &
\end{array}
$$

- if the input has a single frequency component, the output will be exactly the same single frequency component, except scaled by a constant

Input/Output Relationship $x(t)$ W^{\sim}

- Time Domain

$$
\frac{\uparrow}{0}^{\delta(t)} t
$$

- Frequency Domain

Response of A Linear Time-invariant

System to An Exponential Signal

- More Complete Analysis
- continuous-time

$$
\begin{aligned}
x(t) & =e^{s t}, s=r+j \omega_{0} \\
y(t) & =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d \tau=\int_{-\infty}^{\infty} e^{s t} h(\tau) e^{-s \tau} d \tau \\
& =e^{s t} \int_{-\infty}^{\infty} h(\tau) e^{-s \tau} d \tau=H(s) e^{s t}
\end{aligned}
$$

matrix

Response of A Linear Time-invariant

System to An Exponential Signal

- More Complete Analysis
- continuous-time

$$
H(s)=\int_{-\infty}^{\infty} h(\tau) e^{-s \tau} d \tau \quad \begin{aligned}
& \text { Transfer Function } \\
& \text { Frequency Response }
\end{aligned}
$$

$x(t)=e^{s t} \quad$: eigenfunction of any linear time-invariant system
$H(s) \quad$: eigenvalue associated with the eigenfunction $e^{s t}$

Response of A Linear Time-invariant

System to An Exponential Signal

- More Complete Analysis
- discrete-time

$$
\begin{aligned}
& x[n]=z^{n}, \quad z=c e^{j \omega_{0}} \\
& \begin{aligned}
y[n] & =\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=-\infty}^{\infty} h[k] z^{n-k} \\
& =z^{n} \sum_{k=-\infty}^{\infty} h[k] z^{-k}=H(z) z^{n}
\end{aligned}
\end{aligned}
$$

$$
H[z]=\sum_{k=-\infty}^{\infty} h[k] z^{-k} \quad \begin{aligned}
& \text { Transfer Function } \\
& \text { Frequency Response }
\end{aligned}
$$

eigenfunction, eigenvalue

System Characterization

- Superposition Property
- continuous-time

$$
x(t)=\sum_{k} a_{k} e^{s_{k} t} \rightarrow y(t)=\sum_{k} a_{k} H\left(s_{k}\right) e^{s_{k} t}
$$

- discrete-time

$$
x[n]=\sum_{k} a_{k}\left(z_{k}\right)^{n} \rightarrow y[n]=\sum_{k} a_{k} H\left(z_{k}\right)\left(z_{k}\right)^{n}
$$

- each frequency component never split to other frequency components, no convolution involved
- desirable to decompose signals in terms of such eigenfunctions

3.2 Fourier Series Representation of

Continuous-time Periodic Signals

Fourier Series Representation
 $x(t)=x(t+T), \quad \mathrm{T}$: fundamental period

- Harmonically related complex exponentials

$$
\left\{\phi_{k}(t)=e^{j k \omega_{o} t}, \mathrm{k}=0, \pm 1, \pm 2, \ldots \ldots\right\}, \omega_{o}=\frac{2 \pi}{T}
$$

$\phi_{k}(t)$ with period $\frac{T}{|k|}$
all with period T

Harmonically Related Exponentials for Periodic Signals

Fourier Series Representation

- Fourier Series

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}=\sum_{k=-\infty}^{\infty} a_{k} \phi_{k}(t) \\
& a_{j} \phi_{j}(t): \mathrm{j} \text {-th harmonic components } \\
& -x(t) \quad \text { real } \\
& \quad a_{k}^{*}=a_{-k} \\
& x(t)= \\
& =a_{0}+2 \sum_{k=1}^{\infty} A_{k} \cos \left(k \omega_{0} t+\theta_{k}\right), a_{k}=A_{k} e^{j_{k}} \\
& =a_{0}+2 \sum_{k=1}^{\infty}\left[B_{k} \cos k \omega_{0} t-C_{k} \sin k \omega_{0} t\right], a_{k}=B_{k}+j C_{k}
\end{aligned}
$$

Real Signals

$$
[\cdots \underbrace{a_{-2}}_{\|} e^{-j 2 \omega_{0} t}+a_{-1} e^{-j \omega_{0} t}+a_{0}+a_{1} e^{j \omega_{0} t}+a_{2} e^{j 2 \omega_{0} t} \cdots]^{*}
$$

For orthogonal basis:
$\sum_{k} a_{k} \hat{v}_{k}=\sum_{k} b_{k} \hat{v}_{k}$
$\sum_{k}\left(a_{k}-b_{k}\right) \hat{v}_{k}=0 \quad \Rightarrow \quad a_{k}=b_{k}$

Fourier Series Representation

－Determination of a_{k}

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
& \int_{T} x(t) e^{-j n \omega_{0} t} d t=\int_{T} \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} e^{-j n \omega_{0} t} d t \\
& \begin{aligned}
\int_{T} e^{j(k-n) \omega_{0} t} d t & =T, k=n \\
& =0, k \neq n
\end{aligned}
\end{aligned}
$$

$$
a_{n}=\frac{1}{T} \int_{T} x(t) e^{-j n \omega_{0} t} d t, \text { Fourier series coefficients (分析) }
$$

$$
a_{0}=\frac{1}{T} \int_{T} x(t) d t, \text { dc component }
$$

Determination of $\boldsymbol{a}_{\boldsymbol{k}}$

$$
\begin{aligned}
& \vec{A} \cdot \hat{v}_{n}=\left(\sum_{k} a_{k} \hat{v}_{k}\right) \cdot \hat{v}_{n} \\
& \hat{v}_{k} \cdot \hat{v}_{n}= \begin{cases}T, k=n & \text { Not unit vector } \\
0, k \neq n & \text { orthogonal }\end{cases} \\
& \vec{A} \cdot \hat{v}_{n}=T a_{n} \\
& \left.a_{n}=\frac{1}{T}\left(\vec{A} \cdot \hat{v}_{n}\right) \quad \text { (分析 }\right)
\end{aligned}
$$

Fourier Series Representation

- Vector Space Interpretation
- vector space
$\{x(t): x(t)$ is periodic with period $T\}$ could be a vector space
some special signals (not concerned here) may need to be excluded

$$
\left[x_{1}(t)\right] \cdot\left[x_{2}(t)\right]=\int_{T} x_{1}(t) x_{2}^{*}(t) d t
$$

Fourier Series Representation

- Vector Space Interpretation
- orthonormal basis

$$
\begin{aligned}
{\left[\phi_{i}(t)\right] \cdot\left[\phi_{j}(t)\right] } & =0, \quad i \neq j \\
& =T, \quad i=j \\
\left\{\left(\frac{1}{T}\right)^{1 / 2} \phi_{k}(t)\right. & \left.=\phi_{k}^{\prime}(t), k=0, \pm 1, \pm 2, \ldots \ldots\right\}
\end{aligned}
$$

is a set of orthonormal basis expanding a vector space of periodic signals with period T

Fourier Series Representation

- Vector Space Interpretation
- Fourier Series

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} \phi_{k}(t) \\
& \left(\frac{1}{T}\right)^{1 / 2} x(t)=\sum_{k=-\infty}^{\infty} a_{k} \phi_{k}(t) \\
& \begin{aligned}
\therefore a_{n} & =\left[\left(\frac{1}{T}\right)^{1 / 2} x(t)\right] \cdot\left[\phi_{n}^{\prime}(t)\right] \\
& =\left[\left(\frac{1}{T}\right)^{1 / 2} x(t)\right] \cdot\left[\left(\frac{1}{T}\right)^{1 / 2} \phi_{n}(t)\right] \\
& =\frac{1}{T} \int_{T} x(t) e^{-j n \omega_{0} t} d t
\end{aligned}
\end{aligned}
$$

Fourier Series Representation

- Completeness Issue
- Question: Can all signals with period T be represented this way?

Almost all signals concerned here can, with exceptions very often not important

Fourier Series Representation

- Convergence Issue
- consider a finite series

$$
\begin{aligned}
& x_{N}(t)=\sum_{k=-N}^{N} a_{k} e^{j k \omega_{0} t}, e_{N}(t)=x(t)-x_{N}(t) \\
& E_{N}=\int_{T}\left|e_{N}(t)\right|^{2} d t=\left\|e_{N}(t)\right\|^{2}
\end{aligned}
$$

It can be shown
$E_{N}=\min$ if $a_{k}=\frac{1}{T} \int_{T} x(t) e^{-j k \omega_{0} t} d t, k=0, \pm 1, \ldots \pm N$
a_{k} obtained above is exactly the value needed even for a finite series

Truncated Dimensions

$$
\begin{aligned}
& x(t)=\overbrace{a_{1} \hat{i}+a_{2} \hat{j}}^{x_{N}(t)}+\overbrace{a_{3} \hat{k}}^{e_{N}(t)} \\
& x_{N}(t)=a_{1}^{\prime} \hat{i}+\left.a_{2}^{\prime} \hat{j}\right|_{N=2} \\
& \square \\
& a_{1}^{\prime}=a_{1}, a_{2}^{\prime}=a_{2}, \\
& \text { for orthogonal } \widehat{i}, \widehat{j}, \widehat{k} \\
& \text { (} a_{1}^{\prime}, a_{2}^{\prime} \text {) }
\end{aligned}
$$

- All truncated dimensions are orthogonal to the subspace of dimensions kept.

Fourier Series Representation

- Convergence Issue
- It can be shown
if $\int_{T}|x(t)|^{2} d t<\infty$
then all a_{k} defined above are obtainable (finite), and as $N \rightarrow \infty, E_{N} \rightarrow 0$, or no energy for $e_{N}(t)$, but $e_{N}(t)$ may be nonzero for some values

Fourier Series Representation

- Gibbs Phenomenon
- the partial sum in the vicinity of the discontinuity exhibit ripples whose amplitude does not seem to decrease with increasing N

See Fig. 3.9, p. 201 of text

(a)

(b)

(c)

(d)

(e)

Figure 3.9 Convergence of the Fourier series representation of a square wave: an illustration of the Gibbs phenomenon. Here, we have depicted the finite series approximation $x_{N}(t)=\sum_{k=-N}^{N} a_{k} e^{j k \omega_{0} t}$ for several values of N.

Fourier Series Representation

- Convergence Issue
- $x(t)$ has no discontinuities

Fourier series converges to $x(t)$ at every t
$x(t)$ has finite number of discontinuities in each period
Fourier series converges to $x(t)$ at every t except at the discontinuity points, at which the series converges to the average value for both sides

Fourier Series Representation

- Convergence Issue
- Dirichlet's condition for Fourier series expansion (1) absolutely integrable, $\int_{T}|x(t)| d t<\infty$
(2) finite number of maxima \& minima in a period
(3) finite number of discontinuities in a period

3.3 Properties of Fourier Series

$$
x(t) \stackrel{F S}{\longleftrightarrow} a_{k}
$$

- Linearity

$$
\begin{aligned}
& x(t) \stackrel{F S}{\longleftrightarrow} a_{k}, y(t) \stackrel{F S}{\longleftrightarrow} b_{k} \\
& A x(t)+B y(t) \stackrel{F S}{\longleftrightarrow} A a_{k}+B b_{k} \\
& \vec{x}=\left(a_{1}, a_{2}, a_{3}, \cdots\right) \\
& \vec{y}=\left(b_{1}, b_{2}, b_{3}, \cdots\right)
\end{aligned}
$$

$$
A \vec{x}+B \vec{y}=\left(A a_{1}+B b_{1}, A a_{2}+B b_{2}, \cdots\right)
$$

- Time Shift

$$
x\left(t-t_{0}\right) \stackrel{F S}{\longleftrightarrow} e^{-j k \omega_{0} t_{0}} a_{k}
$$

phase shift linear in frequency with amplitude unchanged

$$
a_{k} e^{j k \omega_{0}\left(t-t_{0}\right)}=e^{-j \underline{\underline{k}} \omega_{0} t_{0}} a_{k} e^{j k \omega_{0} t}
$$

(t)
$k \omega_{0} t_{0}$

- Time Reversal
$x(-t) \stackrel{F S}{\longleftrightarrow} a_{-k}$
the effect of sign change for $x(t)$ and a_{k} are identical

unique representation for orthogonal basis
- Time Scaling
α : positive real number
$x(\alpha t)$: periodic with period T / α and fundamental frequency $\alpha \omega_{0}$
$x(\alpha t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\alpha \omega_{0}\right) t}$
a_{k} unchanged, but $x(\alpha t)$ and each harmonic component are different

- Multiplication

$$
\begin{aligned}
& x(t) \longleftrightarrow{ }_{k S} a_{k}, y(t) \longleftrightarrow{ }^{F S} b_{k} \\
& x(t) y(t) \longleftrightarrow{ }^{E S} d_{k}=\sum_{j=-\infty}^{\infty} a_{j} b_{k-j}=a_{k} * b_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\cdots b_{-1} e^{-j \omega_{0} \pi}+\left(b_{0}\right)^{-b_{1}} e^{j \omega_{0} t}\right)+b_{2} e^{j 2 \omega_{0} t}+b_{2} e^{j 3 \omega_{0} t} \cdots\right] \\
& \underbrace{\left(\cdots a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0} \cdots\right)} e^{j 3 \omega_{0} t} \\
& d_{3}=\sum_{j} a_{j} b_{3-j}
\end{aligned}
$$

- Conjugation

$$
\begin{aligned}
& x^{*}(t) \stackrel{F S}{\longleftrightarrow} a_{-k}^{*} \\
& a_{-k}=a_{k}^{*}, \text { if } x(t) \text { real }
\end{aligned}
$$

$$
\left[\cdots a_{-1} e^{-j \omega_{0} t}+a_{0}+a_{1} e^{j \omega_{0} t}+\cdots\right]^{*}
$$

unique representation

- Differentiation

$$
\begin{aligned}
& \frac{d x(t)}{d t} \stackrel{F S}{\longleftrightarrow} j k \omega_{0} a_{k} \\
& \frac{d}{d t}\left(a_{k} e^{j k \omega_{0} t}\right)=\underset{\underline{j} k \omega_{0} a_{k}}{ } e^{j k \omega_{0} t}
\end{aligned}
$$

- Parseval's Relation

$$
\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|a_{k}\right|^{2}
$$

$$
\begin{aligned}
& \|\vec{A}\|^{2}=\sum_{k}\left|a_{k}\right|^{2} \\
& \text { but } \hat{v}_{i} \cdot \hat{v}_{j}=T \delta_{i j}
\end{aligned}
$$

total average power in a period T

$$
\frac{1}{T} \int_{T}\left|a_{k} e^{j k \omega_{0} t}\right|^{2} d t=\left|a_{k}\right|^{2}
$$

average power in the k-th harmonic component in a period T

3.4 Fourier Series Representation of
 Discrete-time Periodic Signals

Fourier Series Representation

$x[n]=x[n+N]$, periodic with fundamental period N

- Harmonically related signal sets

$$
\begin{aligned}
& \left\{\phi_{k}[n]=e^{j k\left(\frac{2 \pi}{N}\right)^{n}}, \mathrm{k}=0, \pm 1, \pm 2, \ldots . .\right\} \\
& \text { all with period } N, \omega_{0}=\frac{2 \pi}{N}
\end{aligned}
$$

$$
\phi_{k+r \mathrm{~N}}[n]=\phi_{k}[n] \text {, only } \mathrm{N} \text { distinct signals in the set }
$$

Harmonically Related Exponentials for Periodic Signals (P. 11 of 3.0)

$V=\{x(t) \mid x(t)$ periodic, fundamental period

$$
[n] \quad=T(N)\}
$$

- All with period T: integer multiples of ω_{0} (N)
- Discrete in frequency domain

Continuous/Discrete Sinusoidals (P. 36 of 1.0)

Im

Exponential/Sinusoidal Signals (P. 42 of 1.0)

- Harmonically related discrete-time signal sets
$\left\{\phi_{k}[n]=e^{j k\left(\frac{2 \pi}{N}\right) n}, \quad \mathrm{k}=0, \pm 1, \pm 2, \ldots \ldots ..\right\}$
all with common period N

$$
\phi_{k+N}[n]=\phi_{k}[n]
$$

This is different from continuous case. Only N distinct signals in this set.

Fourier Series Representation (P. 14 of 3.0)

- Determination of a_{k}

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \\
& \int_{T} x(t) e^{-j n \omega_{0} t} d t=\int_{T} \sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} e^{-j n \omega_{0} t} d t \\
& \int_{T} e^{j(k-n) \omega_{0} t} d t=T, k=n \\
& \quad=0, k \neq n
\end{aligned}
$$

$$
a_{n}=\frac{1}{T} \int_{T} x(t) e^{-j n \omega_{0} t} d t, \text { Fourier series coefficients }
$$

$$
a_{0}=\frac{1}{T} \int_{T} x(t) d t, \text { dc component }
$$

Determination of $\boldsymbol{a}_{\boldsymbol{k}}$ (P. 15 of 3.0)

$$
\vec{A} \cdot \hat{v}_{n}=\left(\sum_{k} a_{k} \hat{v}_{k}\right) \cdot \hat{v}_{n}
$$

$$
\hat{v}_{k} \cdot \hat{v}_{n}= \begin{cases}T, k=n & \text { Not unit vector } \\ 0, k \neq n & \text { orthogonal }\end{cases}
$$

$$
\vec{A} \cdot \hat{v}_{n}=T a_{n}
$$

$$
a_{n}=\frac{1}{T}\left(\vec{A} \cdot \hat{v}_{n}\right) \quad \text { (分析) }
$$

Fourier Series Representation

－Fourier Series

$$
\begin{align*}
& x[n]=\sum_{k=<N>} a_{k} e^{j k \omega_{0} n}=\sum_{k=<N>} a_{k} e^{j k\left(\frac{2 \pi}{N}\right)^{n}} \tag{合成}\\
& a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k \omega_{0} n}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \tag{分析}
\end{align*}
$$

$a_{k+r N}=a_{k}$ ，repeat with period N
Note：both $x[n]$ and a_{k} are discrete，and periodic with period N ， therefore summed over a period of N

$$
\begin{aligned}
-\vec{A} & =\sum_{k} a_{k} \hat{v}_{k} \quad \text { (合成) } \\
a_{k} & =\vec{A} \cdot \hat{v}_{k}
\end{aligned} \quad \text { (分析) }
$$

－ N different values in $x[n]$
N －dimensional vector space

Orthogonal Basis

$$
\begin{aligned}
\sum_{n=\Lambda N>}^{e^{j k\left(\frac{2 \pi}{N}\right)^{n}}} & =N, k=0, \pm N, \pm 2 N, \ldots . . \\
& =0, \text { else }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=<N>} e^{j(k-l)\left(\frac{2 \pi}{N}\right) n} & =N, & & k-l=0, \pm N, \pm 2 N, \cdots \\
& =0, & & \text { else }
\end{aligned}
$$

$$
\left[e^{j k(2 \pi / N) n}\right] \cdot\left[e^{j l(2 \pi / N) n}\right]=\hat{v}_{k} \cdot \hat{v}_{l}
$$

Fourier Series Representation

- Vector Space Interpretation
$\{x[n], x[n]$ is periodic with period $N\}$ is a vector space

$$
\begin{aligned}
\left(x_{1}[n]\right) \cdot\left(x_{2}[n]\right) & =\sum_{k=<N>} x_{1}[k] x_{2}^{*}[k] \\
\left(\phi_{i}[n]\right) \cdot\left(\phi_{j}[n]\right)= & N, i=j+r N \\
& =0, \text { else }
\end{aligned}
$$

Fourier Series Representation

- Vector Space Interpretation

$$
\left\{\left(\frac{1}{N}\right)^{1 / 2} \phi_{k}[n]=\phi_{k}^{\prime}[n], k=<N>\right\}
$$

a set of orthonormal bases

$$
\begin{aligned}
x[n] & =\sum_{k=<N>} a_{k} \phi_{k}[n] \\
a_{k} & =\left(\left(\frac{1}{N}\right)^{1 / 2} x[n]\right) \cdot\left(\left(\frac{1}{N}\right)^{1 / 2} \phi_{k}[n]\right) \\
& =\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k \omega_{0} n}
\end{aligned}
$$

Fourier Series Representation

- No Convergence Issue, No Gibbs Phenomenon, No Discontinuity Issue
- $\quad x[n]$ has only N parameters, represented by N coefficients sum of N terms gives the exact value
- N odd
- N even
$x[n]_{M}=\sum_{k=-M}^{M} a_{k} e^{j k\left(\frac{2 \pi}{N}\right)^{n}}$
$x[n]_{M}=\sum_{k=-M+1}^{M} a_{i} e^{j k\left(\frac{2 \pi}{N}\right)^{n}}$
$x[n]_{M}=x[n]$, if $\quad M=\frac{(N-1)}{2}$
$x[n]_{M}=x[n]$, if $M=\frac{N}{2}$
See Fig. 3.18, P. 220 of text

Figure 3.18 Partial sums of eqs.
(3.106) and (3.107) for the periodic square wave of Figure 3.16 with $N=9$ and $2 N_{1}+1=5$: (a) $M=1$ (b) $M=2$; (c) $M=3$; (d) $M=4$.

Properties

- Primarily Parallel with those for continuous-time

$$
x[n] \stackrel{r S}{\longleftrightarrow} a_{k}
$$

- Multiplication

$$
\begin{aligned}
& x[n] \longleftrightarrow{ }_{E S}^{\longleftrightarrow} a_{k}, y[n] \longleftrightarrow E S \\
& x[n] y[n] \longleftrightarrow b_{k} \\
& C_{k}=\sum_{j=N\rangle} a_{j} b_{k-j}
\end{aligned}
$$

periodic convolution

Time Shift

$$
\begin{aligned}
& x\left(t-t_{0}\right) \leftrightarrow e^{-j k \omega_{0} t_{0}} a_{k} \\
& x\left[n-n_{0}\right] \leftrightarrow e^{-j k \omega_{0} n_{0}} a_{k} \\
& x[n-1] \leftrightarrow e^{-j k\left(\frac{2 \pi}{N}\right)} a_{k}
\end{aligned}
$$

First Difference

$$
x[n]-x[n-1] \stackrel{F S}{\longleftrightarrow}\left(1-e^{-j k\left(\frac{2 \pi}{N}\right)}\right) a_{k}
$$

Properties

- Parseval's Relation

$$
\frac{1}{N} \sum_{k=<N>}|x[n]|^{2}=\sum_{k=<N>}\left|a_{k}\right|^{2}
$$

average power in a period
average power in a period for each harmonic component

3.5 Application Example

System Characterization

$$
\left.\begin{array}{l}
x[n], x(t) \\
\delta[n], \delta(t)
\end{array} \longrightarrow \begin{array}{l}
y[n], y(t) \\
h[n], h(t)
\end{array}\right] \begin{aligned}
& \square(z) z^{n}, H(s) e^{s t}, z=e^{j \omega}, s=j \omega \\
& z^{n}, e^{s t} \\
& e^{j \omega n}, e^{j \omega t} \\
& H\left(e^{j \omega}\right) e^{j \omega n}, H(j \omega) e^{j \omega t}
\end{aligned}
$$

Superposition Property

- Continuous-time

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t} \rightarrow y(t)=\sum_{k=-\infty}^{\infty} a_{k} H\left(j k \omega_{0}\right) e^{j k \omega_{0} t} \\
& a_{k} \rightarrow a_{k} H\left(j k \omega_{0}\right)
\end{aligned}
$$

- Discrete-time

$$
\begin{aligned}
& x[n]=\sum_{k=<N>} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \rightarrow y[n]=\sum_{k=<N>} a_{k} H\left(e^{j k\left(\frac{2 \pi}{N}\right)}\right) e^{j k\left(\frac{2 \pi}{N}\right) n} \\
& a_{k} \rightarrow a_{k} H\left(e^{j k\left(\frac{2 \pi}{N}\right)}\right)
\end{aligned}
$$

- $H(j \omega), H\left(e^{j \omega}\right)$ frequency response, or transfer function

Filtering

modifying the amplitude/ phase of the different frequency components in a signal, including eliminating some frequency components entirely

- frequency shaping, frequency selective
- Example 1

$$
\begin{aligned}
& y[n]-a y[n-1]=x[n] \\
& H\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}
\end{aligned}
$$

See Fig. 3.34, P. 246 of text

Figure 3.34 Frequency respons of the first-order recursive discrete time filter of eq. (3.151): (a) $a=0$ (b) $a=-0.6$.

Filtering

- Example 2

$$
\begin{aligned}
y[n] & =\frac{1}{N+M+1} \sum_{k=-N}^{M} x[n-k] \\
h[n] & =1 /(N+M+1),-N \leq n \leq M \\
& =0, \quad, \text { else }
\end{aligned}
$$

See Fig. 3.36, P. 248 of text

Figure 3.36 Magnitude of the frequency response for the lowpass movingaverage filter of eq. (3.162): (a) $M=N=16$; (b) $M=N=32$.

Examples

- Example 3.5, p. 193 of text

Figure 3.6 Periodic square wave.

Examples

- Example 3.5, p. 193 of text

$$
\begin{aligned}
a_{0} & =\frac{1}{T} \int_{T_{1}}^{T_{1}} d t=\frac{2 T_{1}}{T} \\
a_{k} & =\frac{1}{T} \int_{-T_{1}}^{T_{1}} e^{-j k \omega_{0} t} d t \\
& =\frac{\sin \left(k \omega_{0} T_{1}\right)}{k \pi}, k \neq 0
\end{aligned}
$$

Examples

- Example 3.5, p. 193 of text

(a)

(a)
(b)

(b)
(c)

(c)

Figure 3.7 Plots of the scaled Fourier series coefficients $T a_{k}$ for the periodic square wave with T_{1} fixed and for several values of T : (a) $T=4 T_{1}$; (b) $T=8 T_{1}$; (c) $T=16 T_{1}$. The coefficients are regularly spaced samples of the envelope $\left(2 \sin \omega T_{1}\right) / \omega$, where the spacing between samples, $2 \pi / T$, decreases as T increases.

Examples

- Example 3.8, p. 208 of text

Figure 3.12 (a) Periodic train of impulses; (b) periodic square wave; (c) derivative of the periodic square wave in (b).

Examples

- Example 3.8, p. 208 of text

$$
\begin{aligned}
& x(t) \rightarrow a_{k}, q(t) \rightarrow b_{k}, g(t) \rightarrow c_{k}, \\
& q(t)=x\left(t+T_{1}\right)-x\left(t-T_{1}\right), \quad b_{k}=e^{j k \omega_{0} T_{1}} a_{k}-e^{-j k k_{0} T_{1}} a_{k} \\
& q(t)=\frac{d}{d t} g(t), \quad b_{k}=j k \omega_{0} c_{k} \\
& a_{k}=\frac{1}{T} \\
& c_{0}=\frac{2 T_{1}}{T}, k=0, \quad c_{k}=\frac{\sin \left(k \omega_{0} T_{1}\right)}{k \pi}, k \neq 0
\end{aligned}
$$

Examples

- Example 3.17, p. 230 of text

$h[n]=\alpha^{n} u[n],|\alpha|<1$
$x[n]=\cos \left(\frac{2 \pi n}{N}\right)=\frac{1}{2} e^{j\left(\frac{2 \pi}{N}\right) n}+\frac{1}{2} e^{-j\left(\frac{2 \pi}{N}\right) n}$
$H\left(e^{j \omega}\right)=\sum_{n=0}^{\infty} \alpha^{n} e^{-j \omega n}=\frac{1}{1-\alpha e^{-j \omega}}$
$y[n]=\frac{1}{2} H\left(e^{j \frac{2 \pi}{N}}\right) e^{j\left(\frac{2 \pi}{N}\right) n}+\frac{1}{2} H\left(e^{-j \frac{2 \pi}{N}}\right) e^{-j\left(\frac{2 \pi}{N}\right) n}$
$=r \cos \left(\frac{2 \pi n}{N}+\theta\right)$
where $\quad r e^{j \theta}=\frac{1}{1-\alpha e^{-j \frac{2 \pi}{N}}}$

Problem 3.66, p. 275 of text

- $\left\{\phi_{i}(t), i=0, \pm 1, \pm 2, \ldots\right\}$ a set of orthonormal functions over $[a, b]$ $\int_{a}^{b} \phi_{i}(t) \phi_{j}^{*}(t) d t=\delta_{i j}$
for a signal $x(t) \operatorname{over}[a, b], \hat{x}_{N}(t)=\sum_{i=-N}^{N} a_{i} \phi_{i}(t), e_{N}(t)=x(t)-\hat{x}_{N}(t)$

$$
E_{N}=\int_{a}^{b}\left|e_{N}(t)\right|^{2} d t
$$

- It can be shown $E_{N}=\min$ when $a_{i}=\int_{a}^{b} x(t) \phi_{i}^{*}(t) d t$

$$
\begin{aligned}
& a_{i}=b_{i}+\mathrm{j} c_{i} \\
& \frac{\partial E_{N}}{\partial b_{i}}=0, \frac{\partial E_{N}}{\partial c_{i}}=0, i=0, \pm 1, \pm 2 \ldots
\end{aligned}
$$

- For basis functions not normalized

$$
\begin{aligned}
& \int_{a}^{b} \phi_{i}(t) \phi_{j}^{*}(t) d t=A \delta_{i j} \\
& a_{i}=\frac{1}{A} \int_{a}^{b} x(t) \phi_{i}^{*}(t) d t
\end{aligned}
$$

Problem 3.70, p. 281 of text

- 2-dimensional signals

$$
\begin{aligned}
& x\left(t_{1}, t_{2}\right)=x\left(t_{1}+T_{1}, t_{2}+T_{2}\right), \text { all } t_{1}, t_{2} \\
& x\left(t_{1}, t_{2}\right)=\sum_{n=-\infty m=-\infty}^{\infty} \sum_{m n}^{\infty} a_{m n} n^{j\left(m \omega_{10} t_{1}+n \omega_{20} t_{2}\right)} \\
& \omega_{10}=\frac{2 \pi}{T_{1}}, \omega_{20}=\frac{2 \pi}{T_{2}} \\
& a_{m n}=\frac{1}{T_{1} T_{2}} \int_{T_{1}} \int_{T_{2}} x\left(t_{1}, t_{2}\right) e^{-j m \omega_{10} t_{1}} e^{-j n \omega_{20} t_{2}} d t_{1} d t_{2} \\
& \quad=\frac{1}{T_{2}} \int_{T_{2}}\left[\frac{1}{T_{1}} \int_{T_{1}} x\left(t_{1}, t_{2}\right) e^{-j m \omega_{01} t_{1}} d t_{1}\right] e^{-j n \omega_{20} t_{2}} d t_{2}
\end{aligned}
$$

Problem 3.70, p. 281 of text

- 2-dimensional signals

Problem 3.70, p. 281 of text

- 2-dimensional signals

