6.0 Time/Frequency Characterization

of Signals/Systems

6.1 Magnitude and Phase for Signals
and Systems




Signals

X(jo)= X (joo) | gl (i)
‘ X (J a)) ‘ . magnitude of each frequency component

X (ja)) . phase of each frequency component



Time Shift (P.23 of 4.0)
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Sinusoidals (p.25 of 4.0)
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Signals

e Example

X (t) =1+ : COS(27zt + ¢1)+ cos(47zt + @, )+ ‘ cos(67zt + ¢3)
2 3

See Fig. 3.4, p.188 and Fig. 6.1, p.425 of text

— change in phase leads to change in time-domain
characteristics

— human auditory system is relatively insensitive to
phase of sound signals
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Figure 3.4 Construction of the signal x(t) in Example 3.2 as a linear com-
bination of harmonically related sinusoidal signals.



(@)
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Figure 6.1 The signal x({) given in
eq. (6.3) for several different choices
of the phase angles ¢1, ¢, and ¢x:
@) ¢1 = &2 = ¢ = 0, (b)

& = 4rad, ¢ = 8rad, p3 = 12 rad,
(c) ¢y = Brad, ¢ = —2.7 rad, 3 =
0.93 rad; (d) ¢y = 1.2 rad, ¢, = 4.1
rad, ¢z = —7.02 rad.



Signals

e Example : pictures as 2-dim signals
x(tl, tz): 2 -dim signals

X(ja)l’ Ja)z) = _[_OO X(tl’tz)e_j(wltl+w2t2)dt1dt2

(@00

= [ f x(tl,tz)e‘j‘“ltldtl} e et (it

th(ja)l)

— most important visual information in edges and
regions of high contrast

— regions of max/min intensity are where different
frequency components are in phase

See Fig. 6.2, p.426~427 of text



Two-dim Fourier Transform
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Problem 3.70, p.281 of text (P.65 of 3.0)

« 2-dimensional signals
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Figure 6.2 (a) The image shown in Figure 1.4;
(b) magnitude of the two-dimensional Fourier
transform of (a); (c) phase of the Fourier trans-
form of (a); (d) picture whose Fourier transform
has magnitude as in (b) and phase equal to zero;
(e) picture whose Fourier transform has magnitude
equal to 1 and phase as in (c); (f) picture whose
Fourier transform has phase as in (c) and magni-
tude equal to that of the transform of the picture
shown in (g).



Systems

Y(jo)| =] X(jo)|| H(jo)|
log| Y (jw)| = log| X (je)|+ log| H(je)]
Y (jo)= 2X(jo)+ ZH(jo)

‘ H (j a)) ‘ . scaling of different frequency components

ZH ( ] a)): phase shift of different frequency
components



Systems

e Linear Phase (phase shift linear In frequency) means
constant delay for all frequency components

y(t) = x(t —t,) > H(jw) = e, ZH(jo) = —at,
y[n]=x[n—n,] > H(e)=e ", /H(jo)=—wn,

— slope of the phase function in frequency is the delay

— anonlinear phase may be decomposed into a linear
part plus a nonlinear part



Linear Phase for Time Delay
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e Time Shift (P.28 of 3.0)
X(t —t, )« e Mg,

phase shift linear in frequency with amplitude unchanged
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Tlme Shlft (P.23 of 4.0)
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Systems

e Group Delay at frequency w
r(0) = -9 [2H(jo)

dw

common delay for frequencies near w

AH(jw)

AH(ja))A \4 i
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Systems

e Examples
— See Fig. 6.5, p.434 of text

Dispersion : different frequency components delayed
by different intervals

later parts of the impulse response oscillates at near
50Hz

— Group delay/magnitude function for Bell System
telephone lines

See Fig. 6.6, p.435 of text
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Figure 6.5 Phase, group delay, and impulse response for the all-pass sys-

tem of Example 6.1: (a) principal phase; (b) unwrapped phase; (c) group delay;
(d) impulse response. Each of these quantities is plotted versus frequency
measured in Hertz.
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Figure 6.6 (a) Non-constant portion of the group delay; and (b) frequency re-
sponse magnitude as functions of frequency for short- and medium-distance toll calls
in switched telecommunications networks [after Duffy and Thatcher]. Each of these
quantities is plotted versus frequency measured in Hertz. Also, as is commonly done
in practice, the magnitudes of the frequency responses are plotted using a logarithmic
scale in units of decibels. That is, what is plotted in (b) is 20l0g,q |H(jw)| for the fre-
quency responses corresponding to short- and medium-distance toli calls. The use of
this logarithmic scale for the frequency-response magnitudes is discussed in detail in

Section 6.2.3.



Systems

e Bode Plots

log| H(jw)|, ZH(j®) vs. log @

e Discrete-time Case
@ not In log scale, finite within [ -7, 7]

e Condition for Distortionless
y(t)=kx(t—t,).  y[n]=kxn—n,]

— Constant magnitude plus linear phase in signal band



Distortionless

x(t)

1 H(jw)

y(t)

Y(jw) = H(jw) X(jw)




6.2 Filtering
|deal Filters

e Low pass Filters as an example

— Continuous-time or Discrete-time
See Figs. 6.10, 6.12, pp.440,442 of text

mainlobe, sidelobe, mainlobe width & =

W



Filtering of Signals (p-59 of 4.0)

A A A H(jo)
p(© y ("“) T

H(jw)

L
0



H (] (x))

AT 1§ ~We We o1 2T

(b)

Figure 6.10 (a) The frequency response of a continuous-time ideal low-
pass filter; (b) the frequency response of a discrete-time ideal lowpass filter.
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Figure 6.12 (a) The impulse response of the continuous-time ideal lowpass filter
of Figure 6.10(a); (b) the impuise response of the discrete-time ideal lowpass filter of
Figure 6.10(b) with w, = /4.



Ideal Filters

e Low pass Filters as an example

— with a linear phase or constant delay
See Figs. 6.11, 6.13, pp.441,442 of text

— causality Issue
— Implementation issues
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Figure 6.11 Continuous-time ideal
lowpass filter with linear phase charac-
teristic.
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Figure 6.13 Impulse response of an ideal lowpass filter with magnitude
and phase shown in Figure 6.11.



Realizable Lowpass Filter (p.620f4.0)
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Ideal Filters

e Low pass Filters as an example

— step response

s(t)z_"_too h(r)dr, s[n]z Zn:h[m]

M=—0o0
See Fig. 6.14, p.443 of text

_ L 1
overshoot, oscillatory behavior, rise time & —

@
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Figure 6.14 (a) Step response of a continuous-time ideal lowpass filter;
(b} step response of a discrete-time ideal lowpass filter.




Nonideal Filters

e Frequency Domain Specification
(Lowpass as an example)

d,(passband ripple), o,(stopband ripple) \

\ magnitude

wy(passband edge), wy(stopband edge) characteristics

wg - wp(transition band) J

phase characteristics
See Fig. 6.16, p.445 of text
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Figure 6.16 Tolerances for the
magnitude characteristic of a lowpass
filter. The allowable passband ripple
Is & and stopband ripple is &,. The
dashed curve illustrates one possible
frequency response that stays within
the tolerable limits.
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Nonideal Filters

e Time Domain Behavior : step response
t.(rise time), o(ripple), A(overshoot)
o (ringing frequency), t(settling time)

See Fig. 6.17, p.446 of text
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Figure 6.17 Step response of a continuous-time lowpass filter, indicating
the rise time ., overshoot A, ringing frequency w,, and settling time {,—i.e.,
the time at which the step response settles to within =8 of its final value.



Nonideal Filters

e Example: tradeoff between transition band width
(frequency domain) and settling time (time domain)

See Fig. 6.18, p.447 of text
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Figure 6.18 Example of a fifth-order Butterworth filter and a fifth-order
elliptic filter designed to have the same passband and stopband ripple and
the same cutoff frequency: (a) magnitudes of the frequency responses plotted

versus frequency measured in Hertz; (b) step responses.



Nonideal Filters

e Examples
)= L 3 xn k]
yin|= X|n — K
N + M -|-1k_ZN
N +M +1 sin(w/ 2)
linear phase

See Figs. 6.35, 6.36, pp.478,479 of text
A narrower passband requires longer impulse response
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Figure 6.36  Effect of lowpass fil-
tering on the Dow Jones weekly stock
market index over a 10-year period
using moving-average filters: (a) weekly
index; (b) 51-day moving average ap-
plied to (a); (c) 201-day moving
average applied to (a). The weekly
stock market index and the two moving
averages are discrete-time sequences.
For clarity in the graphical display,

the three sequences are shown here
with their individual values connected
by straight lines to form a continuous
curve.
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Figure 6.35 Log-magnitude plots for the moving-average filter of egs.
(6.78) and (6.79) for @) M+ N +1 =33 and (b) M+ N+ 1 = 65.



Nonideal Filters

e Examples
— A more general form

yIn]= > b,xn -]

k=—N
k= b, :sm(27zk/33)’ <32
7K
=0 . |k |>32

See Figs. 6.37, 6.38, p.480,481 of text
A truncated impulse response for ideal lowpass filter

gives much sharper transition
See Figs. 6.39, p.482 of text

very sharp transition Is possible
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Figure 6.37 (a) Impulse response for the nonrecursive filter of eq. (6.82);
(b) log magnitude of the frequency response of the filter.
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Figure 6.39 Lowpass nonrecursive filter with 251 coefficients designed to obtain the
sharpest possible cutoff.



Nonideal Filters

e To make a FIR filter causal
[n] =0,|n|>N
[n] =h|n—N]
H,(e7”)= H(e')e I




6.3 First/Second-Order Systems
Described by Differential/Difference
Equations

Higher-order systems can usually be represented as
combinations of 1st/2nd-order systems

e Continuous-time Systems by Differential Equations
— first-order
dylt
L 0=x)
dt
— second-order

d2y(t) dy(t)
= X\t )—kylt)—b——=
" dt* <t)-ky) dt
See Fig. 6.21, p.451 of text




> y(i) (displacement)

Mass

- X(t) (applied force)

Dashpot b

AR
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Figure 6.21 Second-order system
consisting of a spring and dashpot
attached to a moveable mass and a
fixed support.



e Discrete-time Systems by Differential Equations
— first-order

yln|-ay|n-1|=x|n]

See Fig. 6.26, 27, 28, p.462, 463, 464, 465 of text

— second-order

y[n]-2r cosgy[n—1]+ r2y[n—2]= x|n]



e First-order Discrete-time system (P.461 of text)

—P > y[n]
D

Joy _ 1 a
R = yin-1]

y[n]—ay[n —1] = x|n], [a] <1

X[n]

h[n] = a"u[n]

s[n] = h[n] * u[n] = A=2""yu[n]
1—a

H () = 1
: Y2
(1+ a2 — 2acosw)

/H (e1?) = —tan™( asinw )
1— acosw



h(n]

(c) (d)

Figure 6.26 Impulse response A[n] = a’u[n] of a first-order system: (a) a = +1/4;
(b)a = *=1/2; (c) a = x£3/4; (d) a = *7/8.
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Figure 6.27 Step response s[n] of a first-order system: (a) 2 = =1/4; (b) a =
+1/2; (c) a = *=3/4; (d) a = =7/8.
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Figure 6.28 Magnitude and phase of the frequency response of eq. (6.52)
for a first-order system: (a) plots for several values of a > 0; (b) plots for
several values of a < 0.
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Figure 5.5 (a) Signal x[n] = a" of Example 5.2 and (b) its Fourier trans-
form (0 < a < 1).
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Figure 6.28 Continued



Examples (p.114 of 2.0)

. Example 2.15, p.123 of text
y[n ]—-y[n 1] x [n]
yln] = x[n]+3 ~y[n-1]
— 1nitial rest condltlon

x[n] =0, n<-1 1mples y[n]=0, n<-1

'x- -

y[0] =x[0J+3y[-1] =1
yI]=x[1}+»[0] =
yi2] =x[2Hp[1] =

1.2
)

yin] = ()" uln] =hin]
— 1nfinite impulse response (IIR)




e Second-order Discrete-time system (P.465 of text)
y[n]— 2rcos@y[n — 1]+ r’y[n — 2] = x|n]

H(e'”) = 1 .
(&™) 1— 2rcosfe™ ' + r’e 12

_ 1
1 (re’”)e ] [1 - (re)e ]

h[n] = r" sin[(sri\nzl)ﬁ] uln]

0 =0, H(el”) = 1_
(e™) (1—re 1?)?

hin]= (n +1)r"u|n]

1
(1+re=J®)2

hin] = (n+ 1D (—r)" u|n]

0 = m, H(ej“)) =




Problem 5.46, p.415 of text (p.85 of 5.0)

n F 1
a"uln]« > .
[n] 1— e 1?

n ¥ 1
N+1)a ulnj« > :
(n +1)e"u[n] oy’

Foo j dX (e'?)

nx[n] < . example5.13, P.385of text
Y T
S Y] 1) DA —

n!(r —1)! " (A— e )
trueforr =1, 2
whenr = K Is true

show r = k +1 i1s also true



Problem 6.59, p.508 of text

h,[n]<—E— H,(e'”) :a desired ideal system

h[n]«—F— H (e'®) :a practicalcausal FIR with duration N

2 1 7 jo jo ’ — Mmi
g —;_f_”‘Hd(e )—H(e )‘ dew = min ; Hd(ejw)
(a) E(e’”)=H,(e') - H(e')

— n;w(hd[n] - h[n])e " /" h[n] H(eJ®)
_ ie[n] e ion -Cé n

(b) &= Aj_’;\E(eiw)fda) - i\e[n]\

N —

Z‘h [n] - h[n]‘ + Z‘h [n]‘ + Z‘h [n]‘

n=0
g£? = min when h[n] =[ h,[n], n =0,1,...N-1

0, else
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Problem 3.66, p.275 of text (p.62 of 3.0)

o{p(t)i=0,£1,%2..} a setof orthonormal functionsover|a,b]
J‘: ¢i (t)¢1* (t)jt = 5”
for a signal x(t)over[a,b], %, Za¢ = x(t)— %, (t)

Ey = [ ey (t) dt

® |tcanbeshown E, = minwhen a =Lb x(t)g" (t)dt

a =b +jc
OBy =0, OBy =0, i=0,+1+2...
ob. oC,

® [or basis functions not normalized
j 4, (1) (Lt = AS,

j ¢ (t it



Problem 6.64, p.511 of text

HE!”)=H_(e')e ™, —r<w<ux

H_ (e'”) : realand even, M : positive integer
h[n]«<—— H(e'?), h[n]<—F— H, (e'?)
@ H, (e'”)realandeven——— h [n]realandeven
(b) h_[n]:symmetricaboutn =0 (4.3.3 of Table 4.1)
h[n] = h.[n — M ] : symmetricaboutn = M

(c) h[n]is causal, h[n] =0,n <O

S.h[n] =0,n > 2M F
/ \
Al hrlnl [H(e/”)| = |Hr(e/*)]

\ 4H(e/”) TN #Hy () = 0
™M~ 0 M nY 0 /“)

| 1 3

0 M 2M " h[n] = hy[n — M]
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Figure 6.12 (a) The impulse response of the continuous-time ideal lowpass filter
of Figure 6.10(a); (b) the impuise response of the discrete-time ideal lowpass filter of
Figure 6.10(b) with w, = #/4.



