7.0 Sampling

7.1 The Sampling Theorem

A link between Continuous-time/Discrete-time Systems
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Motivation: handling continuous-time signals/systems

digitally using computing environment

— accurate, programmable, flexible,
reproducible, powerful

— compatible to digital networks and relevant
technologies

— all signals look the same when digitized,
except at different rates, thus can be
supported by a single network

Question: under what kind of conditions can a
continuous-time signal be uniquely specified
by its discrete-time samples?

See Fig. 7.1, p.515 of text
— Sampling Theorem



Recovery from Samples ?
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Figure 7.1 Three continuous-time signals with identical values at integer
multiples of T.
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0 t  Figure 7.2 Impulse-train sampling
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Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.
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Figure 7.3 Effect in the frequency
domain of sampling in the time do-
main: (a) spectrum of original signal;
(b) spectrum of sampling function;



Figure 7.3  Continued (c) spectru~

of sampled signal with ws > 2ewy;
(d) spectrum of sampled signal with
W < ZU)M




Impulse Train Sampling

X, (jo)= i[x(jw)* P(jo)]

P(jo) = 2% Z&a) ke, )
T

®, = ZT—” :sampling frequency

See Fig. 4.14, p.300 of text

X, (jo) = ZX( (0 — ke, ))

kK=—o0

— periodic spectrum, superposition of scaled, shifted
replicas of X(jw)
See Fig. 7.3, p.517 of text



Impulse Train Sampling

e Sampling Theorem (1/2)
X(jw) =0, o> o,

— X(t) uniquely specified by its samples x(nT), n=0, 1,
+2......

Y/ 2w, : Nyquist rate
T

— precisely reconstructed by an ideal lowpass filter
with Gain T and cutoff frequency oy, < o, < v @),

applied on the impulse train of sample values
See Fig. 7.4, p.519 of text
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Figure 7.4 Exact recovery of a
X. (j) continuous-time signal from its sam-

ples using an ideal lowpass filter;

1 (a) system for sampling and recon-

struction; (b) representative spectrum

for x(1); (c) corresponding spectrum

for x,(f); (d) ideal lowpass filter to re-

M Om o cover X(jw) from X,(jw); (e) spectrum
©) of x,(t).




Impulse Train Sampling
e Sampling Theorem (2/2)

X(jw)=0, o> o,

spectrum overlapped, frequency components
confused --- aliasing effect

can’t be reconstructed by lowpass filtering

See Fig. 7.3, p.518 of text



Aliasing Effect

x(t) =Acoswyt x(nT) = AcoswynT
_ __ 2w 21T
y(t) = bcos(wo + wyt, ws =~ y(nT) =bcos(w0+k?)nT
= b cos wynT
A A A A
W ==
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@y Wy + 05 000 Wy ~ ¢
7
Ws = T

: : 2

After sampling with w, = ?n , any two frequency components wq, w,

become indistinguishable, or sharing identical samples, or should be
: : : : 2

considered as identical frequency components if |w; — w,| = k?n

e](w0+k—)nT e]wonT

I
wS

(T = 1 for discrete-time signals )




Continuous/Discrete Sinusoidals (p.36 of 1.0)
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Aliasing Effect

z(t) =x(t) + y(t) = Acoswyt + bcos(wy + w,)t
z(nT) = x(nT) + y(nT) = (A + b)coswynT

we < 20
. M Aliasing Effect
0 Wg g
f T
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Recovery from Samples ? (p.30f 7.0)




Practical Sampling

(any other pulse shape)
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Practical Sampling
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Impulse Train Sampling

e Practical Issues

— nonideal lowpass filters accurate enough for
practical purposes determined by acceptable level of
distortion

oversampling w, = 2 oy, + A w
— sampled by pulse train with other pulse shapes
— signals practically not bandlimited : pre-filtering



Oversampling with Non-ideal
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Signals not Bandlimited
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Sampling with A Zero-order Hold

e Zero-order Hold:

— holding the sampled value until the next sample taken

— modeled by an impulse train sampler followed by a
system with rectangular impulse response

e Reconstructed by a lowpass filter H (jw)
H, (jo) = )

H,(jo)
H, (jo) = em/{zsin(m /2)}

0,

H(jw) = ideal lowpass filter in impulse train sampling

See Fig. 7.6, 7.7, 7.8, p.521, 522 of text



x(t)

Figure 7.6 Zero-order hold as
impulse-train sampling followed by an
LTI system with a rectangular impulse
response.
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Figure 7.7 Cascade of the representation of a zero-order hold (Figure 7.6)
with a reconstruction filter.
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Figure 7.8 Magnitude and phase
AN for the reconstruction filter for a zero-
order hold.




Interpolation

e Impulse train sampling/ideal lowpass filtering

x(t) = X, (t)* h(t) = > x(nT)h(t - nT)

N=—o0

h(t) _ G)CT Sin(a)ct)
7Tt

anT a)T sin(e,(t —nT))

n=—oo T ( — nT)

See Fig. 7.10, p.524 of text



x(t)

Figure 7.10 Ideal band-limited in-
terpolation using the sinc function:
(a) band-limited signal x(t); (b) im-
pulse train of samples of x(); (c) ideza
band-limited interpolation in which the
impulse train is replaced by a superpo-
sition of sinc functions [eq. (7.11)].






Interpolation

e Zero-order hold can be viewed as a “coarse”
Interpolation

See Fig. 7.11, p.524 of text

e Sometimes additional lowpass filtering naturally
applied

e.g. viewed at a distance by human eyes, mosaic
smoothed naturally

See Fig. 7.12, p.525 of text
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hold
Figure 7.11 Transfer function for
g g 0 g s the zero-order hold and for the ideal

2 2 interpolating filter.
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Figure 7.12 (a) The original pictures of Figures 6.2(a) and (g) with impulse sam-
pling; (b) zero-order hold applied to the pictures in (a). The visual system naturally
introduces lowpass filtering with a cutoff frequency that decreases with distance.
Thus, when viewed at a distance, the discontinuities in the mosaic in Figure 7.12(b)
are smoothed; (¢) result of applving a zero-order hold after impuise sampling with
one-fourth the horizontal and vertical spacing used in (a) and (b).



Interpolation

e Higher order holds
— zero-order : output discontinuous

— first-order : output continuous, discontinuous
derivatives

See Fig. 7.13, p.526, 527 of text

— second-order : continuous up to first derivative
discontinuous second derivative



Xp(t) h(t)
() =t (SO i

(a)
X (t)
4 i :
T 2T
(b)
h(t)
;
~T T

Figure 7.13 Linear interpolation
(first-order hold) as impulse-train sam-
pling followed by convolution with a
triangular impulse response: (a) sys-
tem for sampling and reconstruction;
(b) impulse train of samples; (c) im-
pulse response representing a first-
order hold;
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First-order : ;
hold Figure 7.13  Continued (d) first-
o - order hold applied to the sampled sig-
— W, g 0 T o w, © nal; (e) comparison of transfer function
] 2 of ideal interpolating filter and first-

(e) order hold.



Aliasing

e Consider a signal x(t)=cos wt

— sampled at sampling frequency @s = Z_I__ﬂ

reconstructed by an ideal lowpass filter

S

with o, = —
2

X,(t) : reconstructed signal

fixed w,, varying w,
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Figure 7.15 Effect in the frequency
domain of oversampling and under-
sampling: (a) spectrum of original si-
nusoidal signal; (b), (c) spectrum of
sampled signal with ws > 2ayg; (d),

(e) spectrum of sampled signal with
wg < 2wy. AS We increase wg in mov-
ing from (b) through (d), the impulses
drawn with solid lines move to the
right, while the impulses drawn with
dashed lines move to the left. In (d)
and (e), these impulses have moved
sufficiently that there is a change in the
ones falling within the passhand of the
ideal lowpass filter.



/ Original signal

A A
Samples

Y

F{econstructed signal

4 \
\\ 4 \\ 7z N
N\ < N £ L
\\ s \\ > ¥
N~ & ~ 7 ta
X ¥ i ~ - ~
o (e, (a) s
3
2033
P i~ —~ 3o
s gt e N s N ’ N
/ ¥ ’ \ ‘ \ / \
/ ) ’ A 4 \ ’/ \
/ ) ’ \ 4 \ 4 \
’ A / \ Y \ / \
’ \ ! \ # \ ' \ ’
4 A L kY ! \ 73 Y / t
¢ \ / A , \ ? 1 7
b ' § ’ \ 4 \ ; \ ’
\ /] \ [, A ’ A ] \ 7
\ ’ \ 7 A 7 \ / \ /
\ 2 \ 7 A / \ / N /
\ , \ ) \ ’ \ ’ N 4
NLo N s N_ 7 ~N_~ S
(b)

Figure 7.16 Effect of aliasing on a sinusoidal signal. For each of four values of
wyp, the original sinuscidal signal (solid curve), its samples, and the reconstructed sig-
nal (dashed curve) are illustrated: (a) wy = ws/B; (b) wy = 2ws/6; (€} wy = 4ws/6;
(d) wo = 5ws/B. In (&) and (b) no aliasing occurs, whereas in (c) and (d) there is
atiasing.
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Aliasing

e Consider a signal x(t)=cos w,t

_(a)(b) », < % x.(t) = cos mt = x(t)

(c) (d)% <w, <o, x(t)=cos(o, —a,)t = x(t)

when aliasing occurs, the original frequency w, takes
on the identity of a lower frequency, o, — o,

— W, confused with not only o, + ®,, but w, — o,

See Fig. 7.15, 7.16, p.529-531 of text



Aliasing

e Consider a signal x(t)=cos w,t

— many x(t) exist such that
x,(nNT)=x(nT), n=0,+1, +2,...
the problem is how to get the right one

— 1f X(t) = cos(wyt + ¢)
the impulses have extra phases el?, eJ¢

_COSX = l(ejX + e‘jx)

2

COS((()Ot 4+ ¢) — l (ej(a)ot+¢) n e—j(a)ot+¢))
2



Sinusoidals (p.25 of 4.0)

F . .
cos wot @ T[6(w — wp) + §(w + wg)], L[e/¥ot + eI @ol]

F . .
sin wyt <—>? [6(w — wo) — 8(w + w)], L[ef@ot — e~J@ot)

™y
n Im cos wq(t — tp)

\ / sin wgt
Re //m

Wo v COS Wyt

/

N x(t_to) (—)e_ijt.X(]'a))



Aliasing

e Consider a signal x(t)=cos (ot + ¢)

a)S
— (@) (b) @ < Ey

X (t) = cos(m,t + ¢) = x(t)

() (d)% <, < o

X (t) = cosl(w, — w, )t — @] = x(t)

phase also changed



Example 7.1 of Text

x(t) =cos(wot+ @), ws = 2w,
x,-(t) = (cos ) cos(wyt), t =nT

Sampling is “time-varying”

N AN
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S e

« Wg->
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() =0
(b)p #0



Example 7.1 of Text

() = 0 b)p#0 R, (=1




Example 7.1 of Text

i 7"
a) 1 7 wS 3 ws
x(t) = cos(7st + @) = E[31( 5 t+¢) +e J(—2 t+¢)]

=, 01 = (22) () = e

1 . . . .
x(nT) = > [e/7T . P 4 =N . o= ]P]
/M= e~/ = 11 = (e/T)'= (e ™)'= (—1)"
1 . : : .
x(nT) = Ee]7’t7t(e]§b 1 e‘]¢) — e,],nn) . (cos ¢)

—1)n
¢ =0 1) ¢ # 0
n = Tl=0,2,4,---

L35 CoS @
n=135,-" 02=4 I E §n=0,2,4,---




Examples
* Example 7.1, p.532 of text
(Problem 7.39, p.571 of text)

X(t) = cos(% t + ¢)
= (cos ¢)cos(&t)— (sin ¢)Si”(%t)
t=nT, 3 ("T)=7-n-22=n

x(nT) = (cos¢)cos(nz) = (-1)"(cos @)

sampled and low-pass filtered

X, (t) = (cos ¢)cos(%t)

N



7.2 Discrete-time Processing of

Continuous-time Signals

e Processing continuous-time signals digitally

Xd[n]:Xc(nT)

Yd [n]:yc(nT)

%0 | CID Discrete-time D/C yC(t):
Conversion System Conversion
A/D Converter D/A Converter
h(t)
X o X ]| ppg L] Recovery YOy

ISt

Al

i




Formal Formulation/Analysis

e C/D Conversion
(1) impulse train sampling with sampling period T
(2) mapping the impulse train to a sequence with unity
spacing
— normalization (or scaling) in time

T = 2T,
C/D conversion 4 e 1\\4 / //l“
p(Y L 1 f

|

| 2T t 0 T 2T %
| (b)
|
[

Conversion of

xp(t) impulse train o) - Xgln] . xgl] ) =
b= e i raani]
sequence - |

|
|

| 4 =3-5=10 4 2 34 & Tt ep =t 0 1 & @ 4 0
I | (©)
|

Figure 7.21 Sampling with a periodic impulse train followed by conversion
to a discrete-time sequence: (a) overall system; (b) x,(t) for two sampiing

(a) rates. The dashed envelope represents x;(f); (c) the output sequence for the
two different sampling rates.



Formal Formulation/Analysis

e Frequency Domain Representation

« for continuous-time, Q for discrete-time, only In this
section

X(t), Y.(t)«—F— X (jo), Y. (jo)
X[, ya[n]«—— X, ("), v,(e)




Formal Formulation/Analysis

e Frequency Domain Relationships

— continuous-time

X, (t) = kiwxc (nT)S(t = nT)

0.8)

X, (jo)= D x(nT)e (4.9)

k=—o0

— discrete-time
Xd [ﬂ] — Xc (nT )

Xd(ejQ)z ixc(nT)e“'Qn (5.9)

K=—o0



Formal Formulation/Analysis

e Frequency Domain Relationships

— relationship

X, ()= X (JQ/T) o= %

X,(jo) =LY X (i(0-ke,)  (7.6)

See Fig. 7.22, p.537 of text



C/D Conversion

Xp (1) X.(jw) X,(jw)
xc(t)
A<= AKA
Sl e —Ws
o e e

S /1111 s D N .
/11 AR,
2 314

—  X,(e!9) is a frequency-scaled (by T) version of X (Jw)
xqln] Isatime-scaled (by 1/T) version of x(t)
— X4(elY)  periodic with period 2z

Xy(Jw) periodic with period 27/ T=w,



Sampling (.15 of 7.0)
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X, (jo) Xc (jo)
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Figure 7.22 Relationship between X.(jo), X,(jw), and Xy(e/*) for two dif-
ferent sampling rates.



Formal Formulation/Analysis

e D/C Conversion
(1) mapping a sequence to an impulse train

(2) lowpass filtering

___________ Ok tomerson
: —
| i
- [Conversionof T '
y'[n]—-il-r discrete-time ﬂ I'-’_l : i
1| sequence to - | fo
- | impulse train R S | .
| 72 | Figure 7.23  Conversion of a
|
|
|

(discrete-time sequence 0 a continuous-
------------------------------- | time signal.



Formal Formulation/Analysis

e Complete System

See Fig. 7.24, 7.25, 7.26, p.538, 539, 540 of text

Y. (jo)= X (jo)H, (e ) (7.24)

equivalent to a continuous-time system

Hc(ja)) = Hol(eja)T )’
0,

)

< w,/2

®|>w,/2 (7.25)

If the sampling theorem is satisfied



l X, () Conversion of} x4 [n] ' Y4 [N |[Conversion of Yp (1) L3
X (t)—1—> impulse train -  H, () ——{ sequence to __[: l —r— VY (1)

to sequence impulse train o

Figure 7.24  Qverall system for filtering a continuous-time signal using a discrete-
time filter.
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Figure 7.25 Frequency-domain illustration of the system of Figure 7.24: (a) continuous-
time spectrum X,(jw); (b) spectrum after impulse-train sampling; (c) spectrum of
discrete-time sequence x[n]; (d) Hq(e"*) and X,(¢’!) that are multiplied to form

Y,(e/): (e) spectra that are multiplied to form Y,(jw); (f) spectra that are multiplied

to form Y,(jw).
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Figure 7.26 Discrete-time fre-
quency response and the equivalent
continuous-time frequency response
for the system of Figure 7.24.



Discrete-time Processing of

Continuous-time Signals

e Note

— the complete system is linear and time-invariant if
the sampling theorem is satisfied

— sampling process itself is NOT time-invariant



Examples

e Digital Differentiator

— band-limited differentiator

w|< o, =aw,/2

(iw) = jo.
0,

a)‘Za)C

— discrete-time equivalent

H,(e)= j(o/T)

See Fig. 7.27, 7.28, p.541, 542 of text

Q‘<7z
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Figure 7.27  Frequency response Figure 7.28 Frequency response
of a continuous-time ideal band-limited of discrete-time filter used to imple-
differentiator H.(jw) = jo, |o| < w,. ment a continuous-time band-limited

differentiator.



Examples

e Delay
= Ye(t)=X(t-A)
H.(jw)=e7™,
0 ,

<o, =w)2

a)‘Za)C

— discrete-time equivalent

Hd(ejQ) _ e—jQA/T,

Q‘<7z

See Fig. 7.29, p.543 of text
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Figure 7.29 (a) Magnitude and phase of the frequency respense for a
continuous-time delay; (b) magnitude and phase of the frequency response
for the corresponding discrete-time delay.



Examples

e Delay
— A/T an integer

Ya [n]: X [n_A/T]
— A/T not an integer
X, [n —A/T] undefined in principle

but makes sense in terms of sampling if the
sampling theorem is satisfied

e.g. A/T=1/2, half-sample delay

1
Yq [n]: yc(nT): x{nT __T)
2 See Fig. 7.30, p.544 of text
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Figure 7.30 (a) Sequence of sam-
ples of a continuous-time signal x(1);
(b) sequence in (a) with a half-sample
delay.



7.3 Change of Sampling Frequency
Up/Down Sampling
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(P.5 of 7.0) p(Y p(t) = i&(t —nT) T :sampling period

W 5l) g = ZT—”:sampIing frequency

x,(t)=x(t)p(t)= i x(nT)s(t—nT)

N=—0

0 t
1<—T—> p(t)
RREEEN
0 1
L - [ —> X(O) x(‘[’)
AT A A B w
ahuiss
Y %

0 U Figure 7.2 Impulse-train sampling
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Figure 7.3 Effect in the frequency
domain of sampling in the time do-
main: (a) spectrum of original signal;
(b) spectrum of sampling function;



(P.8 of 7.0)

Figure 7.3  Continued (c) spectru~
of sampled signal with ws > 2ewy;
(d) spectrum of sampled signal with
W < ZwM.



Aliasing Effect (p.13 of 7.0)

x(t) =Acoswyt x(nT) = AcoswynT
_ __ 2w 21T
y(t) = bcos(wo + wyt, ws =~ y(nT) =bcos(w0+k?)nT
= b cos wynT
A A A A
W ==
N , b hb jb
@y Wy + 05 000 Wy ~ ¢
7
Ws = T

: : 2

After sampling with w, = ?n , any two frequency components wq, w,

become indistinguishable, or sharing identical samples, or should be
: : : : 2

considered as identical frequency components if |w; — w,| = k?n

e](w0+k—)nT e]wonT

I
wS

(T = 1 for discrete-time signals )




Sampling (.15 of 7.0)
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Aliasing Effect (p.16 of 7.0)

z(t) =x(t) + y(t) = Acoswyt + bcos(wy + w,)t
z(nT) = x(nT) + y(nT) = (A + b)bcoswynT

we < 2w
. M Aliasing Effect
0 Wg g
/ 1



Sampling Thm (.17 of 7.0)

ws > 2wy
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Aliasing for Discrete-time Signals

kN
x|n| = Ae/@o™
21T /W
y[n] = be’ (@t )"

z|n| = x|n]+ y[n]
z[kN] = (A + b)eJ@okN




Impulse Train Sampling of Discrete-time

Signals

e Completely in parallel with impulse train sampling
of continuous-time signals

p[n]: ié(n—kN ) N :sampling period
k=—o0

0 lnl-

X

n-

Q0

nlp[n]= " x[kN J5[n - kN]

N

k=—o0

If nis aninteger multiple of N

else See Fig. 7.31, p.546 of text



[n] ——»@———» xo[n] p|n]= kiwé(n—kN), N :sampling period
T b=l 5okl

k=—00

p[n] = 28 [N = kN] = x:n: If nisan integer multiple of N

0 else
See Fig. 7.31, p.546 of text

x[n]
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n

_H_I_‘_‘_ PPN o e Figure 7.31 Discrete-time

n  sampling.




Impulse Train Sampling of Discrete-time

Signals

e Completely in parallel with impulse train sampling
of continuous-time signals

X Io(e"”) — iLE P(e"é’)x (e"(‘“‘@))dﬁ

27
P(ej”) 2 25(0) ke, )
N k=00
©, = 2I\I7Z sampling frequency
X, (e)= L3 x(erese)
N k=0

See Fig. 7.32, p.547 of text
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Figure 7.32 Effect in the frequency domain of impulse-train sampling of a
discrete-time signal: (a) spectrum of original signal; (b) spectrum of sampling
sequence; (c) spectrum of sampled signal with @s > 2wy; (d) spectrum of
sampled signal with ws << 2wy. Note that aliasing occurs.



Impulse Train Sampling of Discrete-time

Signals

e Completely in parallel with impulse train sampling
of continuous-time signals

— s> 2wy, no aliasing, o ===

x[n] can be exactly recovered from x,[n] by a
lowpass filter

With Gain N and cutoff frequency wy, < @, < o wy
See Fig. 7.33, p.548 of text

— w, < 2wy, aliasing occurs
filter output  x.[n] # x[n]
but x[KN] = x[kN], k=0, £1, +2, ......
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Figure 7.33 Exact recovery of a discrete-time signal from its samples us-
ing an ideal lowpass filter: (a) block diagram for sampling and reconstruction
of a band-limited signal from its samples; (b) spectrum of the signal x[n];

(c) spectrum of x,[n]; (d) frequency response of an ideal lowpass filter with
cutoff frequency ws/2; (e) spectrum of the reconstructed signal x,[n]. For the
example depicted here ws = 2wy so that no aliasing occurs and consequently
x[n] = x[n].



Impulse Train Sampling of Discrete-time

Signals

e Interpolation

— h[n] : impulse response of the lowpass filter
N, sin w.n
h[n]= — c

T @n

X, [n] = x,[n]* h[n]

_ iXkN] NC!)C sin G)C(n — kN)
k=—o0 7T C()C(n — kN)
— In general a practical filter h [n] Is used
] = x,[n]+h [

= ' x[kN b [n - kN]




x(t)

Figure 7.10 Ideal band-limited in-
terpolation using the sinc function:
(a) band-limited signal x(t); (b) im-
pulse train of samples of x(); (c) ideza
band-limited interpolation in which the
impulse train is replaced by a superpo-
sition of sinc functions [eq. (7.11)].



Decimation/Interpolation

e Decimation: reducing the sampling frequency by a
factor of N, downsampling : two reversible steps

— taking every N-th sample, leaving zeros in between

o0

x,[n]= > x[kN]|5[n — kN |

K=—00

— deleting all zero’s between non-zero samples to produce

a new sequence (inverse of time expansion property of
discrete-time Fourier transform)

X,[n] = x,[NN]= x[nN ]
— both steps reversible in both time/frequency domains
See Fig. 7.34, p.550 of text
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T T l I I ] l s Figure 7.34 Relationship between
Xp[n1] corresponding to sampling and
0 n X[ 1] corresponding to decimation.
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Figure 5.13 The signal xz[n] ob-
tained from x[n] by inserting two zeros
between successive values of the
original signal.



x[n] X(') (p 39 Of 5 O)

0 n o
XN} Xz e’ )= x(e‘lzm)
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Figure 5.14 Inverse relationship between the time and frequency domains: As & in-
creases, X [n] spreads out while its transform is compressed.



x[n]< = >X(ej”) (p.37 of 5.0)

e Time Expansion

define X,,[n]= x[n/k], I1f n/k is an integer.
K: positive integer

=0, else

See Fig. 5.13, p.377 of text

x(k)[n]< SN 4 (ejk‘”)

See Fig. 5.14, p.378 of text



Decimation/Interpolation

e Decimation:

o0

(o) Enble - Enfoer

k: =

= > x,[n]e”™ (k =n/N)

n=integer
multiple of N

i X, [n]e i
(x,[n] = 0 if nnotinteger multiple of N)
= X p(ejw/N )

See Figs. 7.34, 7.35, p. 550, 551 of text
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T T l I I ] l s Figure 7.34 Relationship between
Xp[n1] corresponding to sampling and
0 n X[ 1] corresponding to decimation.
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Figure 7.35 Frequency-domain illustration of the relationship between
sampling and decimation.



Decimation/Interpolation

e Decimation

— decimation without introducing aliasing requires
oversampling situation

See an example in Fig. 7.36, p. 552 of text



C/D X4[n) Discrete time
—>| lowpass filter ===y ,[n]
Hy(e!)

conversion

Figure 7.36 Continuous-time sig-
nal that was originally sampled at the
Nyquist rate. After discrete-time fil-

1 ' tering, the resulting sequence can be
—2m2 W g 2m @ further downsampled. Here X, (jw)

is the continuous-time Fourier trans-

form of x,(t), Xy(€*) and Yy(e) are
the discrete-time Fourier transforms

of xy[n] and y4[n] respectively, and
Hq{e) is the frequency response of
. : the discrete-time lowpass filter de-

—2m -0, 2m @ picted in the block diagram.




Decimation/Interpolation

e Interpolation: increasing the sampling frequency by
a factor of N, upsampling

— reverse the two-step process in decimation

from x,[n] construct x,[n] by inserting N-1 zero’s

from x,[n] construct x[n] by lowpass filtering

See Fig. 7.37, p. 553 of text

e Change of sampling frequency by a factor of N/M:
first interpolating by N, then decimating by M



Conversion of Ideal lowpass
%o [N ) decimated sequence N filterp > x[n]
o to sampled H(eiw)
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Figure 7.37 Upsampling: (a) overall system; (b) associated sequences and spectra
for upsampling by a factor of 2.



Decimation/Interpolation

X xgqln] = x.(nT) = x[n]

ol ﬂﬁzm > ieat,,
xc (1) » T O 012
\/ Interpolahor})
> xal

n| = x.(nT') = xp|n]

t - Decimation
i >§___) = x.(nNT)
T' = NT I IR 11
st e 012

NT



Decimation/Interpolation
X(jw), X(e/™)

S SN A A,

Aoy p 0 T
‘ ¢ Q
el Xp(), Xp (/) Xy (/)
o= I ANANA
, L i —> W
T°=NT 0 R 2n_2nm
&) TT-NT for x, [n]
5 2m B
for xb[n]>Q




Examples
« Example 7.4/7.5, p.548, p.554 of text

X[n] < X(e?), X(e')=0 for %’ <lwl <7

sampling x[n] without aliasing

o, = 2% > 20, _2(2—”), ~N<9/2

> N 9)
27T 27T T
N :4 p— j— p—
mx = QTN T4 T D
AN /\ .
0 AT

/\/\/\/\/\/\,w

4. A«




Examples
* Example 7.4/7.5, p.548, p.554 of text

X[n] YA X(ej‘”), X(ej‘”): 0 for %T < ‘a)‘ <

maximum possible downsampling: using full band [-=&, 7]

X[n]———— x,[n_ (N__ =4)

max

| > X, [n]———> X, [n] (N/M = 9/2)

1:2 uL "



Examples

« Example 7.4/7.5, p.548, p.554 of text
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Figure 7.38 Spectra associated with Example 7.5. (a) Spectrum of x[n];

(b) spectrum after downsampling by 4; (c)
a factor of 2; (d) spectrum after upsamplin
by 9.

spectrum after upsampling x[n] by
g x[n] by 2 and then downsampling



Problem 7.6, p.557 of text

Wy, (t)
Xa(t)
X4(jw) Xo(jw)
— W ®; W W2 iz ) Figure P7.6




Problem 7.20, p.560 of text

S, :Inserting one zero after each sample
Sg : decimation 2:1, extracting every second sample

] | 47| x[n] x;[n]
— | Sa . e Sg EEEEE——

x[n] y[n]

-m/8 0 w/8

(a)

—w/2 0 T/2 —1/2 0 /2

(b)

Which of (a)(b) corresponds fo low-pass filtering
with o, = 7/4 7



Problem 7.20, p.560 of text

(a) yes Xced™y xTn)
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)
w

3
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s, : Inserting one zero after each sample

Sg : decimation 2:1, extracting every second sample

x[n] HHE™ | x[n] X[n]

R S .

—ar/8 O ar/8

(@)



Problem 7.20, p.560 of text

(b) no
_./[\/]\ W i ;I @ -} ) &— n
- T 0 m 2T ¢o !+ 3 4 &
: W v ‘
T o w om . T
; + ' W
0 2W 4T
s, : Inserting one zero after each sample
Sg : decimation 2:1, extracting every second sample
] | "
—| Sg - — Sa o e
x[n] y[n]
—1/2 0 w/2 —m/2 0 w/2




Problem 7.23, p.562

of text

p(t)
x(t) ;é xp(t) 3

Figure P7.23



Problem 7.23, p.562 of text

p(t) = p.(t) - p.(t - A)
25 — 2kA)

Z” (a)—k%)

P(jow) = Fa(Jc;)—e"“’Aa(jw)

for o = (2m)%, m : integer

e 1% =1 etc.



Problem 7.23, p.562 of text

L. 1. 1.1

wll A 0 T A gn
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/'n m : m . lé‘l;\ oW
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Problem 7.24, p.562 of text

X(t) ———->®—> w(t)

I Ax)

s(t) e
£ s(t) " ¢ o A
P s s -T v

[ 1
T t
il Figure P7.24




Problem 7.41, p.572 of text

IS I

/\/' Nt To)
Receiver output
s(t) = x(t) + a x(t-Tp)

Ideal lowpass

filter
t) +ax(t TD H(jw)
Conversion of Conversion of (t A
Y | impulse train s[n] i yInl | sequence | Yot
() ’ toa i N to g
I seguence impulse train - -
T T

-+

p(t) = X 8(t—kT)

(b)

Figure P7.41



Problem 7.41, p.572 of text

s.(t)=x.(t)+ax({t-T,) T=T,
s[n]=s.(nT) = x|n]+ a x|n —1]
i

Sle™)= 1+ e Jx(e)

H(ejg) T 1+ olae“'Q

differenceequation : y[n]+ ay[n — 1] = s|n]




Problem 7.52, p.580 of text

0 u>o 20 ® Figure P7.52

dual problem for frequency domain sampling



