7.0 Sampling

7.1 The Sampling Theorem

A link between Continuous-time/Discrete-time Systems

$x[n]=x(n T), T$: sampling period

Motivation: handling continuous-time signals/systems digitally using computing environment

- accurate, programmable, flexible, reproducible, powerful
- compatible to digital networks and relevant technologies
- all signals look the same when digitized, except at different rates, thus can be supported by a single network

Question: under what kind of conditions can a continuous-time signal be uniquely specified by its discrete-time samples?
See Fig. 7.1, p. 515 of text

- Sampling Theorem

Recovery from Samples?

Figure 7.1 Three continuous-time signals with identical values at integer multiples of T.

Figure 7.2 Impulse-train sampling.

Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.

Figure 7.3 Effect in the frequency domain of sampling in the time domain: (a) spectrum of original signal; (b) spectrum of sampling function;

Figure 7.3 Continued (c) spectruof sampled signal with $\omega_{S}>2 \omega_{M}$;
(d) spectrum of sampled signal with $\omega_{S}<2 \omega_{M}$.

Impulse Train Sampling

$X_{p}(j \omega)=\frac{1}{2 \pi}[X(j \omega) * P(j \omega)]$
$P(j \omega)=\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \omega_{s}\right)$
$\omega_{s}=\frac{2 \pi}{T}$: sampling frequency
See Fig. 4.14, p. 300 of text

$$
X_{p}(j \omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\omega-k \omega_{s}\right)\right)
$$

- periodic spectrum, superposition of scaled, shifted replicas of $X(j \omega)$
See Fig. 7.3, p. 517 of text

Impulse Train Sampling

- Sampling Theorem (1/2)

$$
X(j \omega)=0,|\omega|>\omega_{M}
$$

- $x(t)$ uniquely specified by its samples $x(n T), n=0, \pm 1$, $\pm 2 \ldots .$.
if $\omega_{s}=\frac{2 \pi}{T}>2 \omega_{M}:$ Nyquist rate
- precisely reconstructed by an ideal lowpass filter with Gain T and cutoff frequency $\omega_{M}<\omega_{c}<\omega_{s}-\omega_{M}$ applied on the impulse train of sample values
See Fig. 7.4, p. 519 of text

(a)

(d)

(e)

Figure 7.4 Exact recovery of a continuous-time signal from its samples using an ideal lowpass filter: (a) system for sampling and reconstruction; (b) representative spectrum for $x(t)$; (c) corresponding spectrum for $x_{p}(t)$; (d) ideal lowpass filter to recover $X(j \omega)$ from $X_{p}(j \omega)$; (e) spectrum of $x_{r}(t)$.

Impulse Train Sampling

- Sampling Theorem (2/2)

$$
\begin{aligned}
& X(j \omega)=0,|\omega|>\omega_{M} \\
- & \text { if } \omega_{s} \leq 2 \omega_{M}
\end{aligned}
$$

spectrum overlapped, frequency components confused --- aliasing effect
can't be reconstructed by lowpass filtering
See Fig. 7.3, p. 518 of text

Aliasing Effect

$$
\left.\begin{array}{ll}
x(t)=A \cos \omega_{0} t & x(n T)
\end{array}=A \cos \omega_{0} n T, ~ \begin{array}{rl}
y(t)=b \cos \left(\omega_{0}+\omega_{s}\right) t, \omega_{s}=\frac{2 \pi}{T} & y(n T)
\end{array}=b \cos \left(\omega_{0}+k \frac{2 \pi}{T}\right) n T\right\}
$$

After sampling with $\omega_{s}=\frac{2 \pi}{T}$, any two frequency components ω_{1}, ω_{2} become indistinguishable, or sharing identical samples, or should be considered as identical frequency components if $\left|\omega_{1}-\omega_{2}\right|=k \frac{2 \pi}{T}$

$$
\begin{gathered}
e^{j\left(\omega_{0}+k \frac{2 \pi}{T}\right) n T}=e^{j \omega_{0} n T} \quad(T=1 \text { for discrete-time signals }) \\
\omega_{S}
\end{gathered}
$$

Continuous/Discrete Sinusoidals (p.36 of 1.0)

Sampling

$\xrightarrow{\text { sampling }}$
$x(t) \stackrel{F}{\leftrightarrow} X(j \omega), \quad x_{p}(t) \stackrel{F}{\leftrightarrow} X_{p}(j \omega)$

$$
\begin{aligned}
& X_{p}(j \omega) \\
& x(t)=\sum x[n] \delta(t-n)
\end{aligned}
$$

Aliasing Effect

$z(t)=x(t)+y(t)=A \cos \omega_{0} t+b \cos \left(\omega_{0}+\omega_{s}\right) t$
$z(n T)=x(n T)+y(n T)=(A+b) \cos \omega_{0} n T$
$\omega_{s}<2 \omega_{M}$
Aliasing Effect

Sampling Thm

$\omega_{s}>2 \omega_{M}$

Recovery from Samples ? ${ }_{(p .3 \text { of } 7.0)}$

$\rightarrow T$ K

Practical Sampling

$$
\begin{aligned}
& \text { (any other pulse shape) } \\
& \xrightarrow{x(t)} \searrow \underbrace{x_{p}(t)}_{x_{p}(t)} \\
& \xrightarrow[\rightarrow k]{\tau} \quad \leftarrow T \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& X_{p}(j \omega) \\
& \xrightarrow[\substack{0 \\
\rightarrow 2 \pi}]{\wedge \Lambda \Lambda} \sim \Delta
\end{aligned}
$$

Practical Sampling

Impulse Train Sampling

- Practical Issues
- nonideal lowpass filters accurate enough for practical purposes determined by acceptable level of distortion
oversampling $\omega_{s}=2 \omega_{M}+\Delta \omega$
- sampled by pulse train with other pulse shapes
- signals practically not bandlimited : pre-filtering

Oversampling with Non-ideal Lowpass Filters

Signals not Bandlimited

Sampling with A Zero-order Hold

- Zero-order Hold:
- holding the sampled value until the next sample taken
- modeled by an impulse train sampler followed by a system with rectangular impulse response
- Reconstructed by a lowpass filter $H_{r}(j \omega)$

$$
\begin{aligned}
& H_{r}(j \omega)=\frac{H(j \omega)}{H_{0}(j \omega)} \\
& H_{0}(j \omega)=e^{-j \omega T / 2}\left[\frac{2 \sin (\omega T / 2)}{\omega}\right]
\end{aligned}
$$

$H(j \omega)=$ ideal lowpass filter in impulse train sampling
See Fig. 7.6, 7.7, 7.8, p.521, 522 of text

Figure 7.6 Zero-order hold as impulse-train sampling followed by an LTI system with a rectangular impulse response.

Figure 7.7 Cascade of the representation of a zero-order hold (Figure 7.6) with a reconstruction filter.

Figure 7.8 Magnitude and phase for the reconstruction filter for a zeroorder hold.

Interpolation

- Impulse train sampling/ideal lowpass filtering

$$
\begin{aligned}
& x(t)=x_{p}(t) * h(t)=\sum_{n=-\infty}^{\infty} x(n T) h(t-n T) \\
& h(t)=\frac{\omega_{c} T \sin \left(\omega_{c} t\right)}{\pi \omega_{c} t} \\
& x_{r}(t)=\sum_{n=-\infty}^{\infty} x(n T) \frac{\omega_{c} T}{\pi} \frac{\sin \left(\omega_{c}(t-n T)\right)}{\omega_{c}(t-n T)}
\end{aligned}
$$

See Fig. 7.10, p. 524 of text

Figure 7.10 Ideal band-limited interpolation using the sinc function: (a) band-limited signal $x(t)$; (b) impulse train of samples of $x(t)$; (c) idea band-limited interpolation in which the impulse train is replaced by a superposition of sinc functions [eq. (7.11)].

Ideal Interpolation

Interpolation

- Zero-order hold can be viewed as a "coarse" interpolation

See Fig. 7.11, p. 524 of text

- Sometimes additional lowpass filtering naturally applied
e.g. viewed at a distance by human eyes, mosaic smoothed naturally

See Fig. 7.12, p. 525 of text

Figure 7.11 Transfer function for the zero-order hold and for the ideal interpolating filter.

(a)

(b)

(c)

Figure 7.12 (a) The original pictures of Figures 6.2(a) and (g) with impulse sampling; (b) zero-order hold applied to the pictures in (a). The visual system naturally introduces lowpass filtering with a cutoff frequency that decreases with distance. Thus, when viewed at a distance, the discontinuities in the mosaic in Figure 7.12(b) are smoothed; (c) result of applying a zero-order hold after impuise sampling with one-fourth the horizontal and vertical spacing used in (a) and (b).

Interpolation

- Higher order holds
- zero-order: output discontinuous
- first-order : output continuous, discontinuous derivatives

$$
H(j \omega)=\frac{1}{T}\left[\frac{\sin (\omega T / 2)}{\omega / 2}\right]^{2}
$$

See Fig. 7.13, p.526, 527 of text

- second-order : continuous up to first derivative discontinuous second derivative

Figure 7.13 Linear interpolation (first-order hold) as impulse-train sampling followed by convolution with a triangular impulse response: (a) system for sampling and reconstruction; (b) impulse train of samples; (c) impulse response representing a firstorder hold;

Figure 7.13 Continued (d) firstorder hold applied to the sampled signal; (e) comparison of transfer function of ideal interpolating filter and firstorder hold.

Aliasing

- Consider a signal $x(t)=\cos \omega_{0} t$
- sampled at sampling frequency $\omega_{s}=\frac{2 \pi}{T}$
reconstructed by an ideal lowpass filter
with $\omega_{c}=\frac{\omega_{s}}{2}$
$x_{r}(t)$: reconstructed signal
fixed ω_{s}, varying ω_{0}
$X(j \omega)$

(a)

(d)

(e)

Figure 7.15 Effect in the frequency domain of oversampling and undersampling: (a) spectrum of original sinusoidal signal; (b), (c) spectrum of sampled signal with $\omega_{s}>2 \omega_{0}$; (d), (e) spectrum of sampled signal with $\omega_{s}<2 \omega_{0}$. As we increase ω_{0} in moving from (b) through (d), the impulses drawn with solid lines move to the right, while the impulses drawn with dashed lines move to the left. In (d) and (e), these impulses have moved sufficiently that there is a change in the ones falling within the passband of the ideal lowpass filter.

Figure 7.16 Effect of aliasing on a sinusoidal signal. For each of four values of ω_{0}, the original sinusoidal signal (solid curve), its samples, and the reconstructed signal (dashed curve) are illustrated: (a) $\omega_{0}=\omega_{s} / 6$; (b) $\omega_{0}=2 \omega_{s} / 6$; (c) $\omega_{0}=4 \omega_{s} / 6$; (d) $\omega_{0}=5 \omega_{s} / 6$. In (a) and (b) no aliasing occurs, whereas in (c) and (d) there is aliasing.

Figure 7.16 Continued

Aliasing

- Consider a signal $x(t)=\cos \omega_{0} t$
$-(\mathrm{a})$ (b) $\omega_{0}<\frac{\omega_{s}}{2} \quad x_{r}(t)=\cos \omega_{0} t=x(t)$
(c) (d) $\frac{\omega_{s}}{2}<\omega_{0}<\omega_{s} \quad x_{r}(t)=\cos \left(\omega_{s}-\omega_{0}\right) t \neq x(t)$
when aliasing occurs, the original frequency ω_{0} takes on the identity of a lower frequency, $\omega_{s}-\omega_{0}$
$-w_{0}$ confused with not only $\omega_{s}+\omega_{0}$, but $\omega_{\mathrm{s}}-\omega_{0}$
See Fig. 7.15, 7.16, p.529-531 of text

Aliasing

- Consider a signal $x(t)=\cos \omega_{0} t$
- many $x_{r}(t)$ exist such that

$$
x_{r}(n T)=x(n T), \quad n=0, \pm 1, \pm 2, \ldots
$$

the problem is how to get the right one

- if $x(t)=\cos \left(\omega_{0} t+\phi\right)$
the impulses have extra phases $e^{j \phi}, e^{-j \phi}$
$-\cos x=\frac{1}{2}\left(e^{j x}+e^{-j x}\right)$

$$
\cos \left(\omega_{0} t+\phi\right)=\frac{1}{2}\left(e^{j\left(\omega_{0} t+\phi\right)}+e^{-j\left(\omega_{0} t+\phi\right)}\right)
$$

Sinusoidals (p. 25 of 4.0)

$\cos \omega_{0} t \stackrel{F}{\leftrightarrow} \pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right], \frac{1}{2}\left[e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right]$ $\sin \omega_{0} t \stackrel{F}{\leftrightarrow} \frac{\pi}{j}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right], \frac{1}{2 j}\left[e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right]$

$x\left(t-t_{0}\right) \leftrightarrow e^{-j \omega_{0} t} \cdot X(j \omega)$

Aliasing

- Consider a signal $x(t)=\cos \left(\omega_{0} t+\phi\right)$

$$
\begin{aligned}
& - \text { (a) (b) } \omega_{0}<\frac{\omega_{s}}{2} \\
& x_{r}(t)=\cos \left(\omega_{0} t+\phi\right)=x(t) \\
& \text { (c) (d) } \frac{\omega_{s}}{2}<\omega_{0}<\omega_{s} \\
& x_{r}(t)=\cos \left[\left(\omega_{s}-\omega_{0}\right) t-\phi\right] \neq x(t) \\
& \text { phase also changed }
\end{aligned}
$$

Example 7.1 of Text

$$
x(t)=\cos \left(\omega_{0} t+\phi\right), \omega_{s}=2 \omega_{0}
$$

$$
x_{r}(t)=(\cos \phi) \cos \left(\omega_{0} t\right), t=n T
$$

Sampling is "time-varying"

(a) $\phi=0$

(b) $\phi \neq 0$

(c) $\phi=\frac{\pi}{2}$

Example 7.1 of Text

(a) $\phi=0$

(b) $\phi \neq 0 \quad R_{e}$

(c) $\phi=\frac{\pi}{2}{ }_{\uparrow} R_{e}$

Example 7.1 of Text

$$
\begin{aligned}
& t=n T, \quad \frac{\omega_{s}}{2} \cdot n T=\left(\frac{\omega_{s}}{\not 2}\right) \cdot n\left(\frac{\not 2 \pi}{\omega_{s}}\right)=n \pi \\
& x(n T)=\frac{1}{2}\left[e^{j n \pi} \cdot e^{j \phi}+e^{-j n \pi} \cdot e^{-j \phi}\right] \\
& e^{j n \pi}=e^{-j n \pi}= \pm 1=\left(e^{j \pi}\right)^{n}=\left(e^{-j \pi}\right)^{n}=(-1)^{n} \\
& x(n T)=\frac{1}{2} e^{j n \pi}\left(e^{j \phi}+e^{-j \phi}\right)=\left(\frac{e^{j n \pi}}{\|}\right) \cdot(\cos \phi)
\end{aligned}
$$

Examples

- Example 7.1, p. 532 of text
(Problem 7.39, p. 571 of text)

$$
\begin{aligned}
x(t) & =\cos \left(\frac{\omega_{s}}{2} t+\phi\right) \\
& =(\cos \phi) \cos \left(\frac{\omega_{s}}{2} t\right)-(\sin \phi) \sin \left(\frac{\omega_{s}}{2} t\right) \\
& \mathrm{t}=\mathrm{nT}, \quad \frac{\omega_{s}}{2}(n T)=\frac{\omega_{s}}{2} \cdot n \cdot \frac{2 \pi}{\omega_{s}}=n \pi
\end{aligned}
$$

$$
x(n T)=(\cos \phi) \cos (n \pi)=(-1)^{n}(\cos \phi)
$$

sampled and low-pass filtered

$$
x_{r}(t)=(\cos \phi) \cos \left(\frac{\omega_{s}}{2} t\right)
$$

7.2 Discrete-time Processing of Continuous-time Signals

- Processing continuous-time signals digitally

$$
x_{d}[n]=x_{c}(n T) \quad y_{d}[n]=y_{c}(n T)
$$

A/D Converter
D/A Converter
$h(t)$

Formal Formulation/Analysis

- C/D Conversion
(1) impulse train sampling with sampling period T
(2) mapping the impulse train to a sequence with unity spacing
- normalization (or scaling) in time

Figure 7.21 Sampling with a periodic impulse train followed by conversion to a discrete-time sequence: (a) overall system; (b) $x_{p}(t)$ for two sampling rates. The dashed envelope represents $x_{c}(t) ;$ (c) the output sequence for the two different sampling rates.

Formal Formulation/Analysis

- Frequency Domain Representation
ω for continuous-time, Ω for discrete-time, only in this section

$$
\begin{aligned}
& x_{c}(t), y_{c}(t) \longleftrightarrow{ }_{F} X_{c}(j \omega), Y_{c}(j \omega) \\
& x_{d}[n], y_{d}[n] \longleftrightarrow{ }_{F}\left(e^{j \Omega}\right), Y_{d}\left(e^{j \Omega}\right)
\end{aligned}
$$

Formal Formulation/Analysis

- Frequency Domain Relationships
- continuous-time

$$
\begin{align*}
& x_{p}(t)=\sum_{k=-\infty}^{\infty} x_{c}(n T) \delta(t-n T) \\
& X_{p}(j \omega)=\sum_{k=-\infty}^{\infty} x_{c}(n T) e^{-j \omega n T} \tag{4.9}
\end{align*}
$$

- discrete-time

$$
\begin{align*}
& x_{d}[n]=x_{c}(n T) \\
& X_{d}\left(e^{j \Omega}\right)=\sum_{k=-\infty}^{\infty} x_{c}(n T) e^{-j \Omega n} \tag{5.9}
\end{align*}
$$

Formal Formulation/Analysis

- Frequency Domain Relationships
- relationship

$$
\begin{align*}
& X_{d}\left(e^{j \Omega}\right)=X_{p}(j \Omega / T), \omega=\frac{\Omega}{T} \\
& X_{p}(j \omega)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\omega-k \omega_{s}\right)\right) \tag{7.6}\\
& X_{d}\left(e^{j \Omega}\right)=\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega-2 \pi k) / T)
\end{align*}
$$

See Fig. 7.22, p. 537 of text

C/D Conversion

- $\quad X_{d}\left(e^{j \Omega}\right)$ is a frequency-scaled (by T) version of $X_{p}(j \omega)$
$x_{d}[n]$ is a time-scaled (by $\left.1 / T\right)$ version of $x_{p}(t)$
- $X_{d}\left(e^{j \Omega}\right) \quad$ periodic with period 2π
$X_{p}(j \omega) \quad$ periodic with period $2 \pi / T=\omega_{s}$

Sampling (p. 15 of 7.0)

$\xrightarrow{\text { sampling }}$

$x(t) \stackrel{F}{\leftrightarrow} X(j \omega), \quad x_{p}(t) \stackrel{F}{\leftrightarrow} X_{p}(j \omega)$

$$
\begin{aligned}
& X_{p}(j \omega) \\
& x(t)=\sum x[n] \delta(t-n)
\end{aligned}
$$

Figure 7.22 Relationship between $X_{c}(j \omega), X_{p}(j \omega)$, and $X_{d}\left(e^{j 2}\right)$ for two different sampling rates.

Formal Formulation/Analysis

- D/C Conversion
(1) mapping a sequence to an impulse train
(2) lowpass filtering

Figure 7.23 Conversion of a discrete-time sequence to a continuoustime signal.

Formal Formulation/Analysis

- Complete System

See Fig. 7.24, 7.25, 7.26, p.538, 539, 540 of text

$$
\begin{equation*}
Y_{c}(j \omega)=X_{c}(j \omega) H_{d}\left(e^{j \omega T}\right) \tag{7.24}
\end{equation*}
$$

equivalent to a continuous-time system

$$
\begin{array}{r}
H_{c}(j \omega)=H_{d}\left(e^{j \omega T}\right),|\omega|<\omega_{s} / 2 \\
0,|\omega| \geq \omega_{s} / 2 \tag{7.25}
\end{array}
$$

if the sampling theorem is satisfied

Figure 7.24 Overall system for filtering a continuous-time signal using a discretetime filter.

Figure 7.25 Frequency-domain illustration of the system of Figure 7.24: (a) continuous-
time spectrum $X_{c}(j \omega)$; (b) spectrum after impulse-train sampling; (c) spectrum of discrete-time sequence $X_{d}[n]$; (d) $H_{d}\left(e^{i \Omega}\right)$ and $X_{d}\left(e^{j \Omega}\right)$ that are multiplied to form $Y_{d}\left(e^{i / 2}\right)$; (e) spectra that are multiplied to form $Y_{p}(j \omega)$; (f$)$ spectra that are multiplied to form $Y_{c}(j \omega)$.

Figure 7.26 Discrete-time frequency response and the equivalent continuous-time frequency response for the system of Figure 7.24.

Discrete-time Processing of Continuous-time Signals

- Note
- the complete system is linear and time-invariant if the sampling theorem is satisfied
- sampling process itself is NOT time-invariant

Examples

- Digital Differentiator
- band-limited differentiator

$$
\begin{gathered}
H_{c}(j \omega)=j \omega,|\omega|<\omega_{c}=\omega_{s} / 2 \\
0,|\omega| \geq \omega_{c}
\end{gathered}
$$

- discrete-time equivalent

$$
H_{d}\left(e^{j \Omega}\right)=j(\Omega / T),|\Omega|<\pi
$$

See Fig. 7.27, 7.28, p.541, 542 of text

Figure 7.27 Frequency response of a continuous-time ideal band-limited differentiator $H_{c}(j \omega)=j \omega,|\omega|<\omega_{c}$.

Figure 7.28 Frequency response of discrete-time filter used to implement a continuous-time band-limited differentiator.

Examples

- Delay

$$
\begin{aligned}
& -y_{c}(t)=x_{c}(t-\Delta) \\
& H_{c}(j \omega)=e^{-j \omega \Delta},|\omega|<\omega_{c}=\omega_{s} / 2 \\
& 0 \quad,|\omega| \geq \omega_{c}
\end{aligned}
$$

- discrete-time equivalent

$$
H_{d}\left(e^{j \Omega}\right)=e^{-j \Omega \Delta / T},|\Omega|<\pi
$$

See Fig. 7.29, p. 543 of text

Figure 7.29 (a) Magnitude and phase of the frequency response for a continuous-time delay; (b) magnitude and phase of the frequency response for the corresponding discrete-time delay.

Examples

- Delay
- Δ / T an integer

$$
y_{d}[n]=x_{d}[n-\Delta / T]
$$

- Δ / T not an integer

$$
x_{d}[n-\Delta / T]
$$

undefined in principle
but makes sense in terms of sampling if the sampling theorem is satisfied

$$
\text { e.g. } \quad \Delta / T=1 / 2 \text {, half-sample delay }
$$

$$
y_{d}[n]=y_{c}(n T)=x_{c}\left(n T-\frac{1}{2} T\right)
$$

Figure 7.30 (a) Sequence of samples of a continuous-time signal $x_{c}(t)$; (b) sequence in (a) with a half-sample delay.

7.3 Change of Sampling Frequency

Up/Down Sampling

(P. 5 of 7.0)

$$
p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n T) T: \text { sampling period }
$$

$$
\omega_{s}=\frac{2 \pi}{T}: \text { sampling frequency }
$$

Figure 7.2 Impulse-train sampling.

(P. 7 of 7.0)

Figure 7.3 Effect in the frequency domain of sampling in the time domain: (a) spectrum of original signal; (b) spectrum of sampling function;

Figure 7.3 Continued (c) spectruof sampled signal with $\omega_{S}>2 \omega_{M}$;
(d) spectrum of sampled signal with
$\omega_{s}<2 \omega_{M}$.

Aliasing Effect (P. 13 of 7.0)

$$
\begin{aligned}
& x(t)=A \cos \omega_{0} t \\
& y(t)=b \cos \left(\omega_{0}+\omega_{s}\right) t, \omega_{s}=\frac{2 \pi}{T}
\end{aligned}
$$

$$
\begin{aligned}
x(n T) & =A \cos \omega_{0} n T \\
y(n T) & =b \cos \left(\omega_{0}+k \frac{2 \pi}{T}\right) n T \\
& =b \cos \omega_{0} n T
\end{aligned}
$$

After sampling with $\omega_{s}=\frac{2 \pi}{T}$, any two frequency components ω_{1}, ω_{2} become indistinguishable, or sharing identical samples, or should be considered as identical frequency components if $\left|\omega_{1}-\omega_{2}\right|=k \frac{2 \pi}{T}$

$$
\begin{gathered}
e^{j\left(\omega_{0}+k \frac{2 \pi}{T}\right) n T} \\
\| \\
\omega_{S}
\end{gathered}
$$

Sampling (P. 15 of 7.0)

$\xrightarrow{\text { sampling }}$

$x(t) \stackrel{F}{\leftrightarrow} X(j \omega), \quad x_{p}(t) \stackrel{F}{\leftrightarrow} X_{p}(j \omega)$

$$
\begin{aligned}
& X_{p}(j \omega) \\
& x(t)=\sum x[n] \delta(t-n)
\end{aligned}
$$

Aliasing Effect (P. 16 of 7.0)

$z(t)=x(t)+y(t)=A \cos \omega_{0} t+b \cos \left(\omega_{0}+\omega_{s}\right) t$
$z(n T)=x(n T)+y(n T)=(A+b) b \cos \omega_{0} n T$
$\omega_{s}<2 \omega_{M}$
Aliasing Effect

Sampling Thm (p. 17 of 7.0)

$\omega_{s}>2 \omega_{M}$

Aliasing for Discrete-time Signals

$$
x[n]=A e^{j \omega_{0} n^{k N}}
$$

$$
e^{j\left(\omega_{0}+\frac{2 \pi}{N}\right) k N}=e^{j \omega_{0} k N}
$$

$$
y[n]=b e^{j\left(\omega_{0}+\frac{2 \pi}{\lambda \lambda}\right) n^{\prime}}
$$

$$
z[n]=x[n]+y[n]
$$

$$
z[k N]=(A+b) e^{j \omega_{0} k N}
$$

Impulse Train Sampling of Discrete-time Signals

- Completely in parallel with impulse train sampling of continuous-time signals

$$
p[n]=\sum_{k=-\infty}^{\infty} \delta(n-k N), N: \text { sampling period }
$$

$$
x_{p}[n]=x[n] p[n]=\sum_{k=-\infty}^{\infty} x[k N] \delta[n-k N]
$$

$$
=x[n] \text { if } n \text { is an integer multiple of } N
$$

$$
0 \quad \text { else } \quad \text { See Fig. 7.31, p. } 546 \text { of text }
$$

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}] \longrightarrow \mathrm{x}_{\mathrm{p}}[\mathrm{n}] \quad p[n]=\sum_{k=-\infty}^{\infty} \delta(n-k N), N: \text { sampling period } \\
& x_{p}[n]=x[n] p[n]=\sum_{k=-\infty}^{\infty} x[k N] \delta[n-k N] \\
& =x[n] \text { if } n \text { is an integer multiple of } N \\
& 0 \text { else }
\end{aligned}
$$

See Fig. 7.31, p. 546 of text

Figure 7.31 Discrete-time sampling.

Impulse Train Sampling of Discrete-time

Signals

- Completely in parallel with impulse train sampling of continuous-time signals

$$
\begin{aligned}
X_{p}\left(e^{j \omega}\right) & =\frac{1}{2 \pi} \int_{2 \pi} P\left(e^{j \theta}\right) X\left(e^{j(\omega-\theta)}\right) d \theta \\
P\left(e^{j \omega}\right) & =\frac{2 \pi}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \omega_{s}\right) \\
\omega_{s} & =\frac{2 \pi}{N}: \text { sampling frequency } \\
X_{p}\left(e^{j \omega}\right) & =\frac{1}{N} \sum_{k=0}^{N-1} X\left(e^{j\left(\omega-k \omega_{s}\right)}\right)
\end{aligned}
$$

Figure 7.32 Effect in the frequency domain of impulse-train sampling of a discrete-time signal: (a) spectrum of original signal; (b) spectrum of sampling sequence; (c) spectrum of sampled signal with $\omega_{S}>2 \omega_{M}$; (d) spectrum of sampled signal with $\omega_{s}<2 \omega_{M}$. Note that aliasing occurs.

Impulse Train Sampling of Discrete-time

Signals

- Completely in parallel with impulse train sampling of continuous-time signals
$-\omega_{s}>2 \omega_{M}$, no aliasing, $\omega_{s}=\frac{2 \pi}{N}$
$x[n]$ can be exactly recovered from $x_{p}[n]$ by a lowpass filter

With Gain N and cutoff frequency $\omega_{M}<\omega_{c}<\omega_{s}-\omega_{M}$ See Fig. 7.33, p. 548 of text

- $\omega_{s}<2 \omega_{M}$, aliasing occurs
filter output $\quad x_{r}[n] \neq x[n]$ but $\quad x_{r}[k N]=x[k N], k=0, \pm 1, \pm 2, \ldots \ldots$

Figure 7.33 Exact recovery of a discrete-time signal from its samples using an ideal lowpass filter: (a) block diagram for sampling and reconstruction of a band-limited signal from its samples; (b) spectrum of the signal $x[n]$; (c) spectrum of $x_{\rho}[\mathrm{n}]$; (d) frequency response of an ideal lowpass filter with cutoff frequency $\omega_{s} / 2$; (e) spectrum of the reconstructed signal $x_{r}[\mathrm{n}]$. For the example depicted here $\omega_{s}>2 \omega_{M}$ so that no aliasing occurs and consequently $x_{r}[n]=x[n]$.

Impulse Train Sampling of Discrete-time

Signals

- Interpolation
- $h[n]$: impulse response of the lowpass filter

$$
\begin{aligned}
h[n] & =\frac{N \omega_{c}}{\pi} \frac{\sin \omega_{c} n}{\omega_{c} n} \\
x_{r}[n] & =x_{p}[n] * h[n] \\
& =\sum_{k=-\infty}^{\infty} x[k N] \frac{N \omega_{c}}{\pi} \frac{\sin \omega_{c}(n-k N)}{\omega_{c}(n-k N)}
\end{aligned}
$$

- in general a practical filter $h_{r}[n]$ is used

$$
\begin{aligned}
x_{r}[n] & =x_{p}[n] * h_{r}[n] \\
& =\sum_{k=-\infty}^{\infty} x[k N] h_{r}[n-k N]
\end{aligned}
$$

Figure 7.10 Ideal band-limited interpolation using the sinc function: (a) band-limited signal $x(t)$; (b) impulse train of samples of $x(t)$; (c) idea band-limited interpolation in which the impulse train is replaced by a superposition of sinc functions [eq. (7.11)].

Decimation/Interpolation

- Decimation: reducing the sampling frequency by a factor of N, downsampling : two reversible steps
- taking every N -th sample, leaving zeros in between

$$
x_{p}[n]=\sum_{k=-\infty}^{\infty} x[k N] \delta[n-k N]
$$

- deleting all zero's between non-zero samples to produce a new sequence (inverse of time expansion property of discrete-time Fourier transform)

$$
x_{b}[n]=x_{p}[n N]=x[n N]
$$

- both steps reversible in both time/frequency domains

See Fig. 7.34, p. 550 of text

Figure 7.34 Relationship between $x_{p}[n]$ corresponding to sampling and $x_{b}[n]$ corresponding to decimation.

Figure 5.13 The signal $x_{(3)}[n]$ obtained from $x[n]$ by inserting two zeros between successive values of the original signal.

Figure 5.14 Inverse relationship between the time and frequency domains: As k increases, $x_{(k)}[n]$ spreads out while its transform is compressed.

$$
x[n] \stackrel{F}{\longleftrightarrow} X\left(e^{j \omega}\right) \quad(\mathrm{p} .37 \text { of } 5.0)
$$

- Time Expansion

$$
\text { define } \begin{aligned}
& x_{(k)}[n]=x[n / k], \text { If } \mathrm{n} / \mathrm{k} \text { is an integer, } \\
& \mathrm{k} \text { : positive integer } \\
&=0, \text { else }
\end{aligned}
$$

See Fig. 5.13, p. 377 of text

$$
x_{(k)}[n] \stackrel{F}{\longleftrightarrow} X\left(e^{j k \omega}\right)
$$

See Fig. 5.14, p. 378 of text

Decimation/Interpolation

- Decimation:

$$
\begin{aligned}
X_{b}\left(e^{j \omega}\right)= & \sum_{k=-\infty}^{\infty} x_{b}[k] e^{-j \omega k}=\sum_{k=-\infty}^{\infty} x_{p}[k N] e^{-j \omega k} \\
= & \sum_{\substack{n=n \\
\text { minteper }}} x_{p}[n] e^{-j \omega n / N} \quad(k=n / N) \\
= & \sum_{n=-\infty}^{\infty} x_{p}[n] e^{-j \omega \omega / / N} \\
& \left(x_{p}[n]=0 \text { if } n \text { not integer multiple of } N\right) \\
= & X_{p}\left(e^{j \omega / N}\right)
\end{aligned}
$$

See Figs. 7.34, 7.35, p. 550, 551 of text

Figure 7.34 Relationship between $x_{p}[n]$ corresponding to sampling and $x_{b}[n]$ corresponding to decimation.

Figure 7.35 Frequency-domain illustration of the relationship between sampling and decimation.

Decimation/Interpolation

- Decimation
- decimation without introducing aliasing requires oversampling situation
See an example in Fig. 7.36, p. 552 of text

Figure 7.36 Continuous-time signal that was originally sampled at the Nyquist rate. After discrete-time filtering, the resulting sequence can be further downsampled. Here $X_{c}(j \omega)$ is the continuous-time Fourier transform of $x_{c}(t), X_{d}\left(e^{j \omega}\right)$ and $Y_{d}\left(e^{i \omega}\right)$ are the discrete-time Fourier transforms of $x_{d}[n]$ and $y_{d}[n]$ respectively, and $H_{d}\left(e^{j \omega}\right)$ is the frequency response of the discrete-time lowpass filter depicted in the block diagram.

Decimation/Interpolation

- Interpolation: increasing the sampling frequency by a factor of N, upsampling
- reverse the two-step process in decimation from $x_{b}[n]$ construct $x_{p}[n]$ by inserting $N-1$ zero's from $x_{p}[n]$ construct $x[n]$ by lowpass filtering See Fig. 7.37, p. 553 of text
- Change of sampling frequency by a factor of N / M : first interpolating by N, then decimating by M

(a)

Figure 7.37 Upsampling: (a) overall system; (b) associated sequences and spectra for upsampling by a factor of 2 .

Decimation/Interpolation

Decimation/Interpolation

Examples

- Example 7.4/7.5, p.548, p. 554 of text

$$
x[n] \leftrightarrow X\left(e^{j \omega}\right), \quad X\left(e^{j \omega}\right)=0 \text { for } \frac{2 \pi}{9} \leq|\omega| \leq \pi
$$

sampling $x[n]$ without aliasing

$$
\begin{aligned}
& \omega_{s}=\frac{2 \pi}{N}>2 \omega_{M}=2\left(\frac{2 \pi}{9}\right), \therefore \mathrm{N} \leq 9 / 2 \\
& N_{\max }=4, \omega_{s}=\frac{2 \pi}{N_{\max }}=\frac{2 \pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

Examples

- Example 7.4/7.5, p.548, p. 554 of text

$$
x[n] \leftrightarrow X\left(e^{j \omega}\right), \quad X\left(e^{j \omega}\right)=0 \text { for } \frac{2 \pi}{9} \leq|\omega| \leq \pi
$$

maximum possible downsampling: using full band $[-\pi, \pi]$

$$
\begin{aligned}
& x[n] \underset{4: 1}{\longrightarrow} x_{b}[n] \\
& \text { (} N_{\text {max }}=4 \text {) } \\
& \xrightarrow[\mathrm{B}: 2]{ } x_{u}[n] \xrightarrow[9: 1]{\longrightarrow} x_{u b}[n] \\
& \text { (} \mathrm{N} / \mathrm{M}=9 / 2 \text {) }
\end{aligned}
$$

Examples

- Example 7.4/7.5, p.548, p. 554 of text

(a)

(c)

Figure 7.38 Spectra associated with Example 7.5. (a) Spectrum of $x[n]$; (b) spectrum after downsampling by 4 ; (c) spectrum after upsampling $x[n]$ by a factor of 2; (d) spectrum after upsampling $x[n]$ by 2 and then downsampling by 9 .

Problem 7.6, p. 557 of text

$X_{1}(j \omega)=0,|\omega| \geq \omega_{1}$

$$
X_{2}(j \omega)=0,|\omega| \geq \omega_{2}
$$

$$
w(t)=x_{1}(t) x_{2}(t)
$$

Figure P7. 6
$W(j \omega)=\frac{1}{2 \pi}\left[X_{1}(j \omega) * X_{2}(j \omega)\right]$
$W(j \omega)=0,|\omega| \geq\left(\omega_{1}+\omega_{2}\right), \therefore \omega_{s}=\frac{2 \pi}{T}>2\left(\omega_{1}+\omega_{2}\right)$

Problem 7.20, p. 560 of text

S_{A} : inserting one zero after each sample
S_{B} : decimation 2:1, extracting every second sample

(a)

(b)

Figure P7. 20
Which of (a)(b) corresponds to low-pass filtering with $\omega_{c}=\pi / 4$?

Problem 7.20, p. 560 of text

S_{A} : inserting one zero after each sample
S_{B} : decimation $2: 1$, extracting every second sample

Problem 7.20, p. 560 of text

(b) no

S_{A} : inserting one zero after each sample
S_{B} : decimation $2: 1$, extracting every second sample

(b)

Problem 7.23, p. 562 of text

Figure P7.23

Problem 7.23, p. 562 of text

$$
\begin{aligned}
& p(t)=p_{1}(t)-p_{1}(t-\Delta) \\
& p_{1}(t)=\sum_{k=-\infty}^{\infty} \delta(t-2 k \Delta) \\
& \quad P_{1}(j \omega)=\sum_{k=-\infty}^{\infty} \frac{\pi}{\Delta} \delta\left(\omega-k \frac{\pi}{\Delta}\right) \\
& P(j \omega)=P_{1}(j \omega)-e^{-j \omega \Delta} P_{1}(j \omega)
\end{aligned}
$$

$$
\text { for } \omega=(2 m) \frac{\pi}{\Delta}, \mathrm{m}: \text { integer }
$$

$$
e^{-j \omega \Delta}=1, \text { etc. }
$$

Problem 7.23, p. 562 of text

Problem 7.24, p. 562 of text

Figure P7. 24

$$
\begin{aligned}
& s(t)=s_{1}(t)-1 \\
& S(j \omega)=\sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-k \frac{\pi}{\Delta}\right)-2 \pi \delta(\omega)
\end{aligned}
$$

Problem 7.41, p. 572 of text

Figure P7.41

Problem 7.41, p. 572 of text

$$
\begin{gathered}
s_{c}(t)=x_{c}(t)+\alpha x_{c}\left(t-T_{0}\right), \quad \mathrm{T}=T_{0} \\
s[n]=s_{c}(n T)=x[n]+\alpha x[n-1] \\
\mathrm{S}\left(e^{j \Omega}\right)=\left(1+\alpha e^{-j \Omega}\right) X\left(e^{j \Omega}\right) \\
\mathrm{H}\left(e^{j \Omega}\right)=\frac{1}{1+\alpha e^{-j \Omega}}
\end{gathered}
$$

difference equation : $y[n]+\alpha y[n-1]=s[n]$

Problem 7.52, p. 580 of text

Figure P7.52
dual problem for frequency domain sampling

