
7.0 Sampling 

7.1 The Sampling Theorem

A link between Continuous-time/Discrete-time Systems

x(t) y(t)

h(t)

x[n] y[n]

h[n]

Sampling

x[n]=x(nT), T : sampling period

x[n]x(t)
h[n]

y[n] y(t)

h(t)

Recovery



Motivation: handling continuous-time signals/systems 

digitally using computing environment

– accurate, programmable, flexible, 

reproducible, powerful

– compatible to digital networks and relevant 

technologies

– all signals look the same when digitized, 

except at different rates, thus can be 

supported by a single network

Question: under what kind of conditions can a 

continuous-time signal be uniquely specified 

by its discrete-time samples? 

See Fig. 7.1, p.515 of text

– Sampling Theorem



Recovery from Samples ?
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Impulse Train Sampling
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See Fig. 4.14, p.300 of text

frequency sampling : 2
Ts
 =

– periodic spectrum, superposition of scaled, shifted 

replicas of X(jω) 

See Fig. 7.3, p.517 of text
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⚫ Sampling Theorem (1/2)

( ) MjX  =     ,0

– x(t) uniquely specified by its samples x(nT), n=0, 1, 

2……

– precisely reconstructed by an ideal lowpass filter 

with Gain T and cutoff frequency ωM < ωc < ωs- ωM

applied on the impulse train of sample values 

Impulse Train Sampling

rateNyquist  : 22 if Ms

T
 =

See Fig. 7.4, p.519 of text





⚫ Sampling Theorem (2/2)

( ) MjX  =     ,0

– if ωs ≤ 2 ωM

spectrum overlapped, frequency components 

confused --- aliasing effect

can’t be reconstructed by lowpass filtering

Impulse Train Sampling

See Fig. 7.3, p.518 of text



Aliasing Effect
𝑥 𝑡 = 𝐴 cos𝜔0 𝑡

𝑦 𝑡 = 𝑏 cos(𝜔0 +𝜔𝑠)𝑡,  𝜔𝑠 =
2𝜋

𝑇

𝑥 𝑛𝑇 = 𝐴 cos𝜔0 𝑛𝑇

𝑦 𝑛𝑇 = 𝑏 cos(𝜔0 + 𝑘
2𝜋

𝑇
)𝑛𝑇

= 𝑏 cos𝜔0 𝑛𝑇

After sampling with 𝜔𝑠 =
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𝑇
, any two frequency components 𝜔1, 𝜔2
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Continuous/Discrete Sinusoidals (p.36 of 1.0)

൦

cos𝜔0𝑡 ≠ cos 𝜔0 + 2𝜋 𝑡

cos𝜔0𝑛 𝑇 = cos 𝜔0 + 2𝜋 𝑛 𝑇


𝑒𝑗𝜔0𝑡 ≠ 𝑒𝑗(𝜔0+ 2𝜋)𝑡

𝑒𝑗𝜔0𝑛𝑇 = 𝑒𝑗(𝜔0+ 2𝜋 ) 𝑛𝑇
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Sampling
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Aliasing Effect

𝑧 𝑡 = 𝑥 𝑡 + 𝑦 𝑡 = 𝐴 cos𝜔0 𝑡 + 𝑏 cos(𝜔0 +𝜔𝑠)𝑡

𝑧 𝑛𝑇 = 𝑥 𝑛𝑇 + 𝑦 𝑛𝑇 = (𝐴 + 𝑏)cos𝜔0𝑛𝑇

𝜔𝑠 < 2𝜔𝑀
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Sampling Thm
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Recovery from Samples ? (p.3 of 7.0)
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Practical Sampling
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Practical Sampling
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⚫ Practical Issues

– nonideal lowpass filters accurate enough for 

practical purposes determined by acceptable level of 

distortion

oversampling ωs = 2 ωM + ∆ ω

– sampled by pulse train with other pulse shapes

– signals practically not bandlimited : pre-filtering

Impulse Train Sampling



Oversampling with Non-ideal 

Lowpass Filters
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⚫ Zero-order Hold:

– holding the sampled value until the next sample taken

– modeled by an impulse train sampler followed by a 

system with rectangular impulse response

Sampling with A Zero-order Hold

See Fig. 7.6, 7.7, 7.8, p.521, 522 of text

⚫ Reconstructed by a lowpass filter Hr(jω)
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⚫ Impulse train sampling/ideal lowpass filtering

Interpolation
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See Fig. 7.10, p.524 of text





Ideal Interpolation



⚫ Zero-order hold can be viewed as a “coarse” 

interpolation

Interpolation

See Fig. 7.12, p.525 of text

⚫ Sometimes additional lowpass filtering naturally 

applied

See Fig. 7.11, p.524 of text

e.g. viewed at a distance by human eyes, mosaic    

smoothed naturally











⚫ Higher order holds

Interpolation

See Fig. 7.13, p.526, 527 of text

– zero-order : output discontinuous

– first-order : output continuous, discontinuous 

derivatives

– second-order : continuous up to first derivative

discontinuous second derivative
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⚫ Consider a signal x(t)=cos ω0t

Aliasing

– sampled at sampling frequency

reconstructed by an ideal lowpass filter

with

xr(t) : reconstructed signal

fixed ωs, varying ω0

T
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 =









⚫ Consider a signal x(t)=cos ω0t

Aliasing

–

when aliasing occurs, the original frequency ω0 takes 

on the identity of a lower frequency, ωs – ω0

( ) ( )

( ) ( ) ( )txttx

txttx

srs
s

r
s

−=

==

 cos   
2

 (d) (c)

cos           
2

 (b) (a)

00

00









See Fig. 7.15, 7.16, p.529-531 of text

– w0 confused with not only ωs + ω0, but ωs – ω0



⚫ Consider a signal x(t)=cos ω0t

Aliasing

– many xr(t) exist such that

the problem is how to get the right one

– if x(t) = cos(ω0t + ϕ)

the impulses have extra phases ejϕ, e-jϕ

–
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Sinusoidals (p.25 of 4.0)



⚫ Consider a signal x(t)=cos (ω0t + ϕ)

Aliasing

– (a) (b)
2

0
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s
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 0
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( ) ( )  ( )txttx sr −−=   cos 0

phase also changed



Example 7.1 of Text

𝑥 𝑡 = cos(𝜔0 𝑡 + 𝜙),  𝜔𝑠 = 2𝜔0

𝑥𝑟 𝑡 = (cos𝜙) cos(𝜔0𝑡),  𝑡 = 𝑛𝑇

Sampling is “time-varying”
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Example 7.1 of Text
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𝑥(𝑛𝑇) =
1

2
𝑒𝑗𝑛𝜋 𝑒𝑗𝜙 + 𝑒−𝑗𝜙 = (𝑒𝑗𝑛𝜋) ⋅ (cos 𝜙)

Example 7.1 of Text

𝑥 𝑡 = cos(
𝜔𝑠
2
𝑡 + 𝜙) =

1

2
[𝑒

𝑗
𝜔𝑠
2
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+ 𝑒
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2
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]
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2
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2
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[𝑒𝑗𝑛𝜋 ⋅ 𝑒𝑗𝜙 + 𝑒−𝑗𝑛𝜋 ⋅ 𝑒−𝑗𝜙]

𝑒𝑗𝑛𝜋= 𝑒−𝑗𝑛𝜋 = ±1 = (𝑒𝑗𝜋)𝑛= (𝑒−𝑗𝜋)𝑛= (−1)𝑛

(−1)𝑛
𝜙 = 0 𝜙 ≠ 0

𝑛 = 1,3,5,⋯
𝑛 =
1,3,5,⋯

cos𝜙

𝑛 = 0,2,4,⋯

𝑛 = 0,2,4,⋯
𝑛 =
0,2,4,⋯

𝑛 =
1,3,5,⋯



Examples

• Example 7.1, p.532 of text

(Problem 7.39, p.571 of text)
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7.2 Discrete-time Processing of 

Continuous-time Signals

⚫ Processing continuous-time signals digitally

C/D

Conversion

xc(t) yc(t)

A/D Converter

D/C

Conversion

D/A Converter

Discrete-time

System

xd[n]=xc(nT) yd[n]=yc(nT)

x[n]x(t) h[n] y[n] y(t)

h(t)

Recovery



⚫ C/D Conversion

Formal Formulation/Analysis

(1) impulse train sampling with sampling period T

(2) mapping the impulse train to a sequence with unity 

spacing

– normalization (or scaling) in time



⚫ Frequency Domain Representation

Formal Formulation/Analysis

ω for continuous-time, Ω for discrete-time, only in this 

section
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⚫ Frequency Domain Relationships

Formal Formulation/Analysis

– continuous-time
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– discrete-time

(5.9)

(4.9)



⚫ Frequency Domain Relationships

Formal Formulation/Analysis

– relationship
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See Fig. 7.22, p.537 of text

(7.6)



C/D Conversion

– Xd(e
jΩ) is a frequency-scaled (by T) version of Xp(jω)

xd[n]    is a time-scaled (by 1/T) version of xp(t) 

– Xd(e
jΩ) periodic with period 2π

Xp(jω) periodic with period 2π/T=ωs

𝑋𝑐(𝑗𝜔) 𝑋𝑝(𝑗𝜔)
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Sampling (p.15 of 7.0)
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⚫ D/C Conversion

Formal Formulation/Analysis

(1) mapping a sequence to an impulse train

(2) lowpass filtering



⚫ Complete System

Formal Formulation/Analysis

equivalent to a continuous-time system

See Fig. 7.24, 7.25, 7.26,  p.538, 539, 540 of text

( ) ( ) ( )Tj

dcc eHjXjY  =

( ) ( )

2    0,                             

2    ,

s

s

Tj

dc eHjH



 



=

if the sampling theorem is satisfied

(7.24)

(7.25)



x[n]x(t)
h[n]

y[n] y(t)

h(t)

Recovery







⚫ Note

Discrete-time Processing of 

Continuous-time Signals

– the complete system is linear and time-invariant if 

the sampling theorem is satisfied

– sampling process itself is NOT time-invariant



⚫ Digital Differentiator

Examples

– band-limited differentiator

– discrete-time equivalent

( )

c

scc jjH







==

    0,                    

2    ,

( ) ( ) =     ,TjeH j

d

See Fig. 7.27, 7.28, p.541, 542 of text





⚫ Delay

Examples

– yc(t)=xc(t-∆)

– discrete-time equivalent

( )

c

sc

j

c ejH



 



== −

    ,    0                   

2    ,

( ) = −     ,Tjj

d eeH

See Fig. 7.29, p.543 of text





   Tnxny dd −=

⚫ Delay

Examples

– ∆/T an integer

– ∆/T not an integer

undefined in principle

but makes sense in terms of sampling if the 
sampling theorem is satisfied

e.g.      ∆/T=1/2, half-sample delay

See Fig. 7.30, p.544 of text
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7.3 Change of Sampling Frequency
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frequency sampling : 2

period sampling :    

T
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Aliasing Effect
𝑥 𝑡 = 𝐴 cos𝜔0 𝑡

𝑦 𝑡 = 𝑏 cos(𝜔0 +𝜔𝑠)𝑡,  𝜔𝑠 =
2𝜋

𝑇

𝑥 𝑛𝑇 = 𝐴 cos𝜔0 𝑛𝑇

𝑦 𝑛𝑇 = 𝑏 cos(𝜔0 + 𝑘
2𝜋

𝑇
)𝑛𝑇

= 𝑏 cos𝜔0 𝑛𝑇

After sampling with 𝜔𝑠 =
2𝜋

𝑇
, any two frequency components 𝜔1, 𝜔2

become indistinguishable, or sharing identical samples, or should be 

considered as identical frequency components if 𝜔1 − 𝜔2 = 𝑘
2𝜋

𝑇

𝑒
𝑗 𝜔0+𝑘

2𝜋

𝑇
𝑛𝑇

= 𝑒𝑗𝜔0𝑛𝑇 (𝑇 = 1 for discrete-time signals )
𝜔𝑠

0 0 0

𝐴 𝐴 𝐴

𝑏𝑏𝑏

𝜔0

𝜔𝑠 =
2𝜋

𝑇

𝜔

𝜔𝑠
𝑏

𝜔0 𝜔0 +𝜔𝑠

𝐴

𝜔

(P.13 of 7.0)



Sampling

𝑥 𝑡 ՞
𝐹
𝑋(𝑗𝜔),     𝑥𝑝(𝑡)՞

𝐹
𝑋𝑝(𝑗𝜔)

sampling

𝑋(𝑗𝜔)

𝜔
0

𝑋𝑝(𝑗𝜔)

𝜔𝑠
𝜔𝑠

sampling
2𝜔𝑠𝜔𝑠

𝜔
0

2𝜋

𝑇
(= 2𝜋, if 𝑇 = 1)

𝑥 𝑡 =

𝑛

𝑥 𝑛 𝛿(𝑡 − 𝑛)

0   1  2    3
𝑡 𝐹(chap4)

𝐹(chap5)

2𝜋

𝑥[𝑛]
𝑛

0   1  2    3

𝑒𝑗𝜔0𝑛

𝜔0

𝑒𝑗 𝜔0+2𝜋 𝑛

𝑇 = 1

𝜔

(P.15 of 7.0)



Aliasing Effect

𝑧 𝑡 = 𝑥 𝑡 + 𝑦 𝑡 = 𝐴 cos𝜔0 𝑡 + 𝑏 cos(𝜔0 +𝜔𝑠)𝑡

𝑧 𝑛𝑇 = 𝑥 𝑛𝑇 + 𝑦 𝑛𝑇 = (𝐴 + 𝑏)𝑏cos𝜔0𝑛𝑇

𝜔𝑠 < 2𝜔𝑀
Aliasing Effect

0 𝜔𝑠

−𝜔𝑀

𝜔𝑠

𝜔𝑠 𝜔𝑀

𝜔

(P.16 of 7.0)



Sampling Thm (p.17 of 7.0)

𝜔𝑠 > 2𝜔𝑀

−𝜔𝑀

𝜔𝑀
0 𝜔𝑠 2𝜔𝑠

−𝜔𝑐 0 𝜔𝑐
𝜔

𝜔



Aliasing for Discrete-time Signals

𝑒
𝑗 𝜔0+

2𝜋
𝑁

𝑘𝑁
= 𝑒𝑗𝜔0𝑘𝑁

𝑇 𝑇/𝑁

𝑥 𝑛 = 𝐴𝑒𝑗𝜔0𝑛

𝑦 𝑛 = 𝑏𝑒𝑗(𝜔0+
2𝜋

𝑁
)𝑛

𝑧 𝑛 = 𝑥 𝑛 + 𝑦 𝑛

𝑧 𝑘𝑁 = (𝐴 + 𝑏)𝑒𝑗𝜔0𝑘𝑁

𝑘𝑁

𝑘𝑁



⚫ Completely in parallel with impulse train sampling 

of continuous-time signals

Impulse Train Sampling of Discrete-time 

Signals

  ( )
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 of multipleinteger an  is  if             

period sampling :  ,

Nnnx
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See Fig. 7.31, p.546 of text



  ( )

         

 
else       0             

 of multipleinteger an  is  if             

period sampling :  ,

Nnnx

kNnkNxnpnxnx

NkNnnp

k

p

k

=

−==

−=







−=



−=





See Fig. 7.31, p.546 of text



⚫ Completely in parallel with impulse train sampling 

of continuous-time signals

Impulse Train Sampling of Discrete-time 

Signals

( ) ( ) ( )( )

( ) ( )

( ) ( )( )
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frequency sampling : 2
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See Fig. 7.32, p.547 of text





⚫ Completely in parallel with impulse train sampling 
of continuous-time signals

Impulse Train Sampling of Discrete-time 

Signals

– ωs > 2ωM, no aliasing, ωs = 2𝜋
𝑁

x[n] can be exactly recovered from xp[n] by a 

lowpass filter

With Gain N and cutoff frequency ωM < ωc < ωs- ωM

See Fig. 7.33, p.548 of text

– ωs < 2ωM, aliasing occurs

filter output    xr[n] ≠ x[n]

but    xr[kN] = x[kN], k=0, ±1, ±2, ……





⚫ Interpolation

Impulse Train Sampling of Discrete-time 

Signals

– h[n] : impulse response of the lowpass filter

 

     

 
( )

( )kNn

kNnN
kNx

nhnxnx

n

nN
nh
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cc

k

pr

c
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−

−
=

=
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sin

sin

– in general a practical filter hr[n] is used

     

   kNnhkNx

nhnxnx

k

r

rpr

−=

=




−=





⚫ Decimation: reducing the sampling frequency by a 

factor of N, downsampling : two reversible steps

Decimation/Interpolation

– deleting all zero’s between non-zero samples to produce 
a new sequence (inverse of time expansion property of 
discrete-time Fourier transform)

     kNnkNxnx
k

p −= 


−=

 

See Fig. 7.34, p.550 of text

     nNxnNxnx pb ==

– taking every N-th sample, leaving zeros in between 

– both steps reversible in both time/frequency domains





(p.38 of 5.0)



(p.39 of 5.0)



  ( )jF eXnx ⎯⎯→

⚫ Time Expansion

( )   

else  ,0

  ,/ define

=

= knxnx k
If n/k is an integer, 

k: positive integer

See Fig. 5.14, p.378 of text

See Fig. 5.13, p.377 of text

( )  ( )jkF
k eXnx ⎯⎯→

(p.37 of 5.0)



⚫ Decimation:

Decimation/Interpolation

( )    

 

 

 

( )Nj
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Nnj

-n

p
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Nnj
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k
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) of multipleinteger not   if   0(                    

               

)(                    

  

 of multiple
integer

See Figs. 7.34, 7.35,  p. 550, 551 of text







⚫ Decimation

Decimation/Interpolation

– decimation without introducing aliasing requires 
oversampling situation

See an example in Fig. 7.36, p. 552 of text





⚫ Interpolation: increasing the sampling frequency by 

a factor of N, upsampling

Decimation/Interpolation

– reverse the two-step process in decimation

from xb[n] construct xp[n] by inserting N-1 zero’s

from xp[n] construct x[n] by lowpass filtering

See Fig. 7.37,  p. 553 of text

⚫ Change of sampling frequency by a factor of N/M: 

first interpolating by N, then decimating by M





Decimation/Interpolation

Decimation

Interpolation

0 1 2

0 1 2

𝑡

𝑡

𝑇

𝑇′ = 𝑁𝑇

𝑥𝑐(𝑡)

𝑇

𝑁𝑇

𝑡

𝑛

0

𝑥𝑝[𝑛]
𝑥𝑑 𝑛 = 𝑥𝑐 𝑛𝑇 = 𝑥[𝑛]

𝑥𝑑
′ 𝑛 = 𝑥𝑐 𝑛𝑇′ = 𝑥𝑏 𝑛

= 𝑥𝑐(𝑛𝑁𝑇)

𝑛



Decimation/Interpolation

𝑇

𝑇′ = 𝑁𝑇

0
𝜔

𝑋𝑐(𝑗𝜔)

0

0

0

0

0

𝜔

𝜔

Ω′

Ω

Ω

𝑋(𝑗𝜔), 𝑋(𝑒𝑗Ω)

𝑋𝑝(𝑗𝜔), 𝑋𝑝(𝑒
𝑗Ω′)

2𝜋

2𝜋
𝑇

𝑋𝑏(𝑒
𝑗Ω)

2𝜋

2𝜋

for 𝑥𝑏[𝑛]

for 𝑥𝑝[𝑛]
2𝜋
𝑇′
=
2𝜋
𝑁𝑇



Examples

• Example 7.4/7.5, p.548, p.554 of text

sampling x[n]  without aliasing

  ( ) ( )  =
9

2for    0   , jj eXeXnx

24
22   ,4

29N   , 
9

2222

max

max




====






==

N
N
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s

Ms



Examples

• Example 7.4/7.5, p.548, p.554 of text

maximum possible downsampling: using full band [-π, π]

  ( ) ( )  =
9

2for    0   , jj eXeXnx

   

      )29(N/M          

)4(                                

1:92:1

max1:4

=⎯⎯→⎯⎯⎯→⎯

=⎯⎯→⎯

nxnxnx

Nnxnx

ubu

b



Examples

• Example 7.4/7.5, p.548, p.554 of text



Problem 7.6, p.557 of text
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Problem 7.20, p.560 of text

B

A

S

S : inserting one zero after each sample

: decimation 2:1, extracting every second sample

Which of (a)(b) corresponds to low-pass filtering

with                  ?4 =c

 nx1  nx2
 nx3

 nx1



Problem 7.20, p.560 of text

B

A

S

S : inserting one zero after each sample

: decimation 2:1, extracting every second sample

(a) yes

 nx1  nx2
 nx3



Problem 7.20, p.560 of text

(b) no

B

A

S

S : inserting one zero after each sample

: decimation 2:1, extracting every second sample

 nx1



Problem 7.23, p.562 of text



Problem 7.23, p.562 of text
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Problem 7.23, p.562 of text

( )ty



Problem 7.24, p.562 of text
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Problem 7.41, p.572 of text



Problem 7.41, p.572 of text

( ) ( ) ( )

  ( )    

( ) ( ) ( )
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Problem 7.52, p.580 of text

dual problem for frequency domain sampling


