8.0 Communication Systems

e Modulation: embedding an information-bearing
signal into a second signal

€9 x() : information-bearing signal
c(t) : carrier signal
y(t) = x(t)c(t) : modulated signal

— PUrposes :
« locate the signal on the right band of the spectrum

o Mmultiplexing : simultaneous transmission of more than
one signals over the same channel

o resistance to noise and disturbance

— demodulation : extracting the information-bearing
signal from the modulated signal
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8.1 Amplitude Modulation (AM) and
Frequency-Division Multiplexing (FDM)

Complex Exponential Carrier
e Modulation

c(t) = e! %) o :carrierfrequency
x(t) : information-bearing signal
y(t) = x(p)e
Cljow)= 276w —-,), 6,=0
Y(jo)=X(jo- jo,)

e Demodulation

() = vt e—j(a)ct+6?c) — x(t
( ) y( ) ( ) See Fig. 8.1, p.584 of text
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Figure 8.1 Effect in the frequency
domain of amplitude modulation with a
complex exponential carrier: (a) spec-
trum of modulating signal x(f); (b)
spectrum of carrier ¢(t) = e<; (c)
spectrum of amplitude-modulated sig-
nal y(t) = x(t)e'!,



Sinusoidal Carrier

e Modulation
c(t) = cos(a.t + 6.)
y(t) = x(t)cos(a.t + 6.)
Cljow)=7zl6(0-a,)+6(w+a,)| 6, =0
(

C

jo)=3[X(jo— jo)+ X(jo+ jo,)]

See Fig. 8.4, p.586 of text
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Figure 8.4 Effect in the frequency
domain of amplitude modulation with a
sinusoidal carrier: (a) spectrum of
modulating signal x{(f); (b) spectrum
of carrier ¢(t) = c0S w,f; () spectrum
of amplitude-modulated signal.



Sinusoidal Carrier

e Demodulation
— Synchronous demodulation (detection)

z(t) = y(t)cos(at + 6,)
z(t) = x(t)cos’ ot , 6, =0

= % x(t)1 + cos 2a,t]

See Fig. 8.6, 8.8, p.588, 589 of text

A lowpass filter gives x(t)
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Figure 8.6 Demodulation of an amplitude-modulated signal with a sinu-
soidal carrier: (a) spectrum of modulated signal; (b) spectrum of carrier signal;
(c) spectrum of modulated signal multiplied by the carrier. The dashed line
indicates the frequency response of a lowpass filter used to extract the de-
modulated signal.
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Figure 8.8 Amplitude modulation and demodulation with a sinusoidal car-
rier: (a) modulation system; (b) demodulation system. The lowpass filter cut-
off frequency w,, is greater than wy and less than 2w, — wpy.



Sinusoidal Carrier

e Demodulation
— Synchronous demodulation (detection)

If the demodulating carrier is not in phase with the
carrier

z(t) = x(t)cos(a,t + 6, )cos(aw.t + ¢,.)
= % x(t)cos(d, — ¢, )+ cos(2mt + 6, + ¢.)]

output signal reduced by cos(6, — ¢, )
synchronization required.
phase-locked loops.



Sinusoidal Carrier

e Demodulation

— Asynchronous demodulation (envelope detection)

envelope (the smooth curve connecting the peaks)
carries the information, can be extracted in some other
ways

y(t) = [AT x(t)]cos(at + ¢.)
always positive
See Fig. 8.10, 8.11, p.591, 592 of text

the carrier component consumes energy but carries no
Information
See Fig. 8.14, p.593 of text
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R M ~‘< signal for which the modulating signal
Envelope is positive. The dashed curve repre-

sents the envelope of the modulated
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Figure 8.11 Demodulation by envelope detection: (a) circuit for envelope
detection using half-wave rectification; (b) waveforms associated with the en-
velope detector in (a): r(f) is the half-wave rectified signal, x(t) is the true
envelope, and w(t) is the envelope obtained from the circuit in (a). The rela-
tionship between x(f) and w(f) has been exaggerated in (b) for purposes of
illustration. In a practical asynchronous demodulation system, w(t) would typi-
cally be a much closer approximation to x{f) than depicted here.
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Sinusoidal Carrier

e Double-sideband (DSB)/Single-sideband (SSB)

double-sideband modulation uses twice the bandwidth

DSB/WC (with carrier) , DSB/SC (suppressed carrier),
upper-sideband, lower-sideband

See Figs. 8.19, 8.20, 8.21, 8.22, p.598-601 of text

— a 90 phase-shift network can be used

H(ja))z—j, @ >0
J, o<0
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Figure 8.19 Double- and single-
sideband modulation: (a) spectrum of
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ter modulation with a sinusoidal car-
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lower sidebands.
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Figure 8.21 System for single-sideband amplitude modulation, using a 90°
phase-shift network, in which only the lower sidebands are retained.
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Frequency-Division Multiplexing (FDM)

each signal allocated with a frequency slot. Many
signals transmitted simultaneously over a single
wideband channel using a single set of transmission
facilities

See Figs. 8.15, 8.16, 8.17, p.594-596 of text
See Fig. 4.27, p.326 of text

Signals mixed in time domain but separated In
frequency domain.
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Figure 8.15 Frequency-division
multiplexing using sinusoidal amplitude
modulation.
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Figure 4.26 Implementation of a bandpass filter using amplitude modula-
tion with a complex exponential carrier.



8.2 Pulse Modulation and
Time-Division Multiplexing

e Amplitude Modulation with a pulse train carrier
See Figs. 8.23, 8.24, p.602, 603 of text

y(t) = x(t)c(t)

C(ja)):27ziak5(a)—ka)c), w, = 2Z

T
a sin(k:;)lz A/2)
V(io)= Y axX(j(w—ke,)

A lowpass filter gives x(t) If sampling theorem is
satisfied, o, > 2 w,,
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Figure 8.23 Amplitude modulation
of a pulse train.
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Figure 8.24 Spectra associated with amplitude modulation of a pulse train:
(a) spectrum of a bandlimited-signal x(f); (b) spectrum of the pulse carrier
signal ¢(t) in Figure 8.23; (c) spectrum of the modulated pulse train y(f).



o Amplitude Modulation with a pulse train carrier

— This remains true as long as c(t) Is periodic,
represented by a sequence a,. Sinusoidal AM is a
special case here. Impulse train sampling is the case
A — 0.

e Pulse-Amplitude Modulation
— pulse amplitudes corresponds to the sample values
example : rectangular pulses (sample-and-hold)

See Fig. 8.26, p.606 of text

Sampling theorem applies.



Figure 8.26 Transmitted waveform for a single PAM channel. The dotted
curve represents the signal x(1).
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e Time-Division Multiplexing (TDM)

Each signal allocated with a time slot in a period T.

Many signals transmitted simultaneously over a single
channel using a single set of facilities

See Figs. 8.25, 8.27, p.605, 606 of text

Signals mixed in frequency domain but separated In
time domain.
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Figure 8.27 Transmitted waveform with three time-multiplexed PAM channels. The
pulses associated with each channel are distinguished by shading, as well as by the
channel number above each pulse. Here, the intersymbol spacing is 77 = T/3.




e Intersymbol interference

pulses distorted during transmission and causing
Interference to adjacent symbols

See Figs. 8.28, 607 of text

Pulses with zero intersymbol interference
p(t)=0, t==+T,+2T, +3T,.....

T, sin(ﬂt/Tl)
a
See Figs. 8.30, 609 of text

(1) plt)=




Intersymbol Interference

’x'm -

Intersymbol
interference

It Is the sample values
rather than pulse shapes
to be transmitted

Distortionless
transmission via
distorted channels
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Figure 8.28 Intersymbol interference.
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Figure 8.30 Absence of intersymbol interference when sinc pulses with
correctly chosen zero-crossings are used.



e Intersymbol interference
Pulses with zero intersymbol interference
p(t)=0, t==T,,+£2T,,+3T,,.....

2 Plio)= 1+P(jo), |o|<Z

1
- T 21
Pl(.la)) ! -I-1 <‘a) S -I-1
~0 . else

P,(jw) with odd symmetry about | TE

1

L T,
See Figs. 8.31, 610 of text

Pl(_ jo + jﬂj:_Pl(jahL jlj, OSa)STE
1
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Figure 8.31

Odd symmetry around /75 as defined in eq. (8.29).



e Pulse coded modulation (PCM)

— binary representation of pulse amplitude (sample
values) and binary transmission of signals

— much more easier to distinguish between 1’s and 0’s
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8.3 Angle/Frequency Modulation
Angle Modulation

_y(t) = cos|m.t + 6,(t)] = cos|a(t)]

0.(t)= 0, + kpx(t) phase modulation (PM)

dot)

ot
dt
dot

) _
It —a)c+kp

= w, + k, x(t) frequency modulation (FM)

phase modulation with x(t)
dx(t) corresponds to frequency
dt  modulation with dx(t)/dt




Angle Modulation
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Angle Modulation

— Instantaneous frequency

0 0) = L o)

phase modulation w(t) = @, +k, % x(t)

frequency modulation @ (t) = @, + k. x(t)
Highly nonlinear process  See Figs. 8.32, p.612 of text

— features

constant envelope: transmitter always operates at peak
power

Information not carried by amplitudes : amplitude
disturbances eliminated to a large extent
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Figure 8.32 Phase modulation, frequency modulation, and their relationship: (a)
phase modulation with a ramp as the modulating signal; (b) frequency modulation with
a ramp as the modulating signal; (c) frequency modulation with a step (the derivative of
a ramp) as the modulating signal.
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Spectrum of FM Signals

e Consider the easiest case
x(t) = Acosw, t
o(t)= o, +k,Acoso t = @, + Awcosaw.t, Aw =k, A
y(t) = cos|lat + (Aw/ ) sin w,_t]

Awl w, = m, modulaton index

e Narrowband FM, m << n/2
cos(msin o t) = 1

sin(msin w_t) ~ msin o, t
y(t) = cos a,t — m(sin w,_t)(sin o ,t) narrowband FM
y,(t) = cosawt + m(cosw,t)cosmt) DSB/WC

See Figs. 8.33, 8.34, p.615 of text



Narrowband FM vs. DSB/WC
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Figure 8.33 Approximate spectrum
for narrowband FM.






Spectrum of FM Signals

e \Wideband FM , m not small

y(t) = cos .t cos(msin w,_t) —sin wt sin(msin @, t)

— cos(msinaw,t), sin(msinw,,t)
periodic with fundamental frequency w,,
with spectrum of impulses at multiples of o,

See Figs. 8.35, p.616 of text

n-th harmonics considered negligible, | n|>m

B=2mw, =2Aw =2k, A
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Spectrum of FM Signals

e Example : periodic square wave signal

x(t): periodic square - wave, k;, =1, Ao = A

a)-(t): w, + Aw Or @, —Aw

y(t) = r(t)cos|(w, + Aw)t]+ r(t — Tf) cos|(w, — Aw)t]

See Figs. 8.36-8.39, p.617, 618 of text
Y(io)= 2[R(jo + jo, + jA0) + R(jo - jo, - jA0)]
+ %[R’(ja)+ o, — jAa))+ R'(ja)— o, + jAa))]

R'(jw)=e1""R(jow)
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Figure 8.36 Symmetric periodic square wave.
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Figure 8.38 Symmetric square wave r(¢) in eq. (8.50).
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Figure 8.39 Magnitude of the spectrum for w > 0 corresponding to fre-
quency modulation with a periodic square-wave modulating signal. Each of the
vertical lines in the figure represents an impulse of area proportional to the

height of the line.



8.4 Discrete-time Modulation
e Complex exponential carrier
c[nﬁ):

ejcocn

C(ej“’) = iZﬂé(a) — o, +k2r)
K =—o0

y[n]= x[n]c|n]

Y(e)= 1 | X (¥)cle@?)de

27
See Figs. 8.41, p.620 of text

e Sinusoidal carrier
c[n] = cos w.n

See Figs. 8.42, 8.43, p.621, 612 of text
e Example : Software Defined Radio
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Figure 8.41 (a) Spectrum of x[n]; (b) spectrum of ¢[n] = &*"; (c) spec-
trum of y[n] = x[n]e[n].
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Problems

Problem 8.25, p.633 of text

— Frequency inverter as a speech scrambler for secure
Speech communication

X(jo) =0,

a)| > ., x(¢)real

x® RO

— Inverse system is itself



Problems

Problem 8.34, p.640 of text

— Implementing AM with a nonlinear element
(multiplier is difficult to implement)

cos(w.t)

1 i

x(t) —->®——> ()2 |—> AJ[ — (1)

1 I
_(J.)h _“.L)! (L){ (!)h w

Figure P8.34

[x(7) + cos w1} = x*(¢) + cos®(w.1) + 2x(t) cos( 1)

T

removed by filtering



Problems

Problem 8.39, p.645 of text

— Frequency Shift Keying (FSK) for digital transmission

mp(t)

nNA NN
IV VV ¢ t

Figure P8.39



Data Transmission (p.111 of 2.0) (p.2 of 8.0)
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Problems
Problem 8.39, p.645 of text

(@) x =0,
T T
v =yl =l = L cosz(a)ot)dt‘ R _[0 (cos m,t |(cos a)lr)dt‘
x, =1,
—y =l = _[OT cosz(a)lt)dt‘ - IOT (cos m,t)(cos a)lt)dt‘

y or —y maximized when
. |
L (cos m,t )(cos ¢ )dt

= :OT (cos m,t cos myt)dt = 0

“orthogonal” but evaluated in a period of T
(b) Jj (cos myt fcos ayt )dt = %J.OT cos(@, + @, )t + cos(w, — e, )kt = 0

when T is a common multiple of the periods of
both cos(w, + @ ) and cos(w, — o, )t



Problems

- Problem 8.40, p.646 of text

— Quadrature multiplexing

cosw,t *

A (] H(jes) v, (8 }

b3
=
Y

Demultiplexed

* F(1) m—
outputs

\&/
@—» r(t)=multiplexed signal
A o] H(jw) p——3=,(t)
(1) ><?

sinw .t

(a) Figure P8.40




Problems

Problem 8.40, p.646 of text

[xl(z‘) cos .t + x, (1) sin a)cz‘]cos @ 1

= x,(t) cos’(@.t) + x,(¢)(sin w 1)(cos @ t)

1, cos(Qaw 1) sin(2w 1)

In frequency domain,
X1 (j(w — 00)) + X1 (j(w + ©)] = j[X2(j(w — @) — X2 (j(w + wo))]



Sinusoidals (p.25 of 4.0)
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Problems

Problem 8.40, p.646 of text
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Problems

Problem 8.44, p.649 of text

— Zero-forcing equalizer for pulse transmission

y(t) = i a.x(t - kT,)
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Intersymbol Interference (p.43ofs.0)

X[1]

It Is the sample values
rather than pulse shapes
to be transmitted

’x'm -

r A Distortionless
intersymbol transmission via
Interference distorted channels



Problems

Problem 8.44, p.649 of text

N
h(t) = Zaké'(t — le)
k=—N

Requirement: y(kT,) = [ 1, k=0
0, k==+1,+£2, £3 -
Example: N =1

y(O) — 611X(_ Tl) + aox(O) + a_lx(Tl) — 1

J/(Ti) = alx(O) + aox(Tl) + a_lx(ZTI) — 0

y(le) — 611)C(T1) + CIOX(Q,Tl) + a_lx(:}Tl) — 0

solve for a,, q,...



