9.0 Laplace Transform

9.1 General Principles of Laplace Transform

Laplace Transform

- Eigenfunction Property

$$
x(t)=e^{s t} \longrightarrow h(t) \longrightarrow y(t)=H(s) e^{s t}
$$

linear time-invariant

$$
H(s)=\int_{-\infty}^{\infty} h(\tau) e^{-s \tau} d \tau
$$

Chapters 3, 4, 5, 9, 10

Laplace Transform

- Eigenfunction Property
$e^{s t}$ eigenfunction of all linear time-invariant systems with unit impulse response $h(t)$
$H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t$ eigenvalue
- applies for all complex variables s

$$
\begin{array}{ll}
s=j \omega & e^{s t}=e^{j \omega t} \\
H(j \omega)=\int_{-\infty}^{\infty} h(t) e^{-j \omega t} d t & \text { Fourier Transform } \\
s=\sigma+j \omega & \\
H(\sigma+j \omega)=\int_{-\infty}^{\infty} h(t) e^{-(\sigma+j \omega) t} d t & \text { Laplace Transform }
\end{array}
$$

Laplace Transform

- Laplace Transform

$$
\begin{aligned}
& X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t, s=\sigma+j \omega \\
& x(t) \longleftrightarrow X(s)
\end{aligned}
$$

- A Generalization of Fourier Transform

$$
\begin{aligned}
& \text { from } s=j \omega \text { to } s=\sigma+j \omega \\
& \begin{aligned}
X(\sigma+j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-(\sigma+j \omega) t} d t \\
& =\int_{-\infty}^{\infty}\left[x(t) \mathrm{e}^{-\sigma t}\right] e^{-j \omega t} d t
\end{aligned}
\end{aligned}
$$

Fourier transform of $x(t) e^{-\sigma t}$

Laplace Transform

$$
\begin{array}{lr}
\left(e^{j \omega_{1} t}\right) \perp\left(e^{j \omega_{2} t}\right) \quad \text { orthogonal } \\
\left(e^{\left(\sigma_{1}+j \omega_{1}\right) t}\right) \npreceq\left(e^{\left(\sigma_{2}+j \omega_{1}\right) t}\right) \quad \text { Not orthogonal }
\end{array}
$$

Laplace Transform

- A Generalization of Fourier Transform
- X(s) may not be well defined (or converged) for all s
- $X(s)$ may converge at some region of s-plane, while $x(t)$ doesn't have Fourier Transform
- covering broader class of signals, performing more analysis for signals/systems

Laplace Transform

- Rational Expressions and Poles/Zeros

$$
X(s)=\frac{N(s)}{D(s)} \longrightarrow \text { roots } \longrightarrow \text { zeoros } \longrightarrow \text { poles }
$$

- Pole-Zero Plots
- specifying $X(s)$ except for a scale factor

Laplace Transform

- Rational Expressions and Poles/Zeros
- Geometric evaluation of Fourier/Laplace transform from pole-zero plots

$$
X(s)=M \frac{\Pi_{i}\left(s-\beta_{i}\right)}{\Pi_{j}\left(s-\alpha_{j}\right)}
$$

each term $\left(s-\beta_{i}\right)$ or $\left(s-\alpha_{j}\right)$ represented by a vector with magnitude/phase

Poles \& Zeros

Region of Convergence (ROC)

- Property 1 : ROC of $X(s)$ consists of strips parallel to the $j \omega$-axis in the s-plane
- For the Fourier Transform of $x(t) e^{-\sigma t}$ to converge

$$
\int_{-\infty}^{\infty}\left|x(t) e^{-\sigma t}\right| d t<\infty
$$ depending on σ only

- Property 2 : ROC of $X(s)$ doesn't include any poles

Property 1, 3

Region of Convergence (ROC)

- Property 3 : If $x(t)$ is of finite duration and absolutely integrable, the ROC is the entire s-plane
$\int_{T_{1}}^{T_{2}}|x(t)| d t<\infty$
$\left[T_{1}, T_{2}\right]$: the finite duration
for $\sigma>0, \quad \int_{T_{1}}^{T_{2}}\left|x(t) e^{-\sigma \mid}\right| d t<e^{-\sigma T_{1}} \int_{T_{1}}^{T_{2}}|x(t)| d t$
for $\sigma<0, \quad \int_{T_{1}}^{T_{2}}\left|x(t) e^{-\sigma t}\right| d t<e^{-\sigma T_{2}} \int_{T_{1}}^{T_{2}}|x(t)| d t$

Region of Convergence (ROC)

- Property 4 : If $x(t)$ is right-sided $\left(x(t)=0, t<T_{1}\right)$,
and $\left\{s \mid \operatorname{Re}[s]=\sigma_{0}\right\} \in \operatorname{ROC}$, then $\left\{s \mid \operatorname{Re}[s]>\sigma_{0}\right\} \in \operatorname{ROC}$, i.e., ROC includes a right-half plane

$$
\begin{aligned}
& \int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{0} t} d t<\infty \\
& \text { for } \sigma_{1}>\sigma_{0} \\
& \int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{1} t} d t<e^{-\left(\sigma_{1}-\sigma_{0}\right) T_{1}} \int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{0} t} d t<\infty
\end{aligned}
$$

Property 4

T_{1}

Region of Convergence (ROC)

- Property 5 : If $x(t)$ is left-sided $\left(x(t)=0, t>T_{2}\right)$, and $\left\{s \mid \operatorname{Re}[s]=\sigma_{0}\right\} \in \operatorname{ROC}$, then $\left\{s \mid \operatorname{Re}[s]<\sigma_{0}\right\} \in \operatorname{ROC}$, i.e., ROC includes a left-half plane

Property 5

Region of Convergence (ROC)

- Property 6 : If $x(t)$ is two-sided, and $\{s \mid \operatorname{Re}[s]=$ $\left.\sigma_{0}\right\} \in$ ROC, then ROC consists of a strip in s-plane including $\left\{s \mid \operatorname{Re}[s]=\sigma_{0}\right\}$ $x(t)=x_{R}(t)+x_{L}(t)$
$x_{R}(t):$ right-sided, $x_{L}(t):$ left-sided $\operatorname{ROC}[x(t)]=\operatorname{ROC}\left[x_{R}(t)\right] \cap \operatorname{ROC}\left[x_{L}(t)\right]$

See Fig. 9.9, 9.10, p. 667 of text
*note: $\operatorname{ROC}[x(t)]$ may not exist

(a)

(b)

(c)

Figure 9.9 Two-sided signal divided into the sum of a right-sided and left-sided sic nal: (a) two-sided signal $x(t)$; (b) the right-sided signal equal to $x(t)$ for $t>T_{0}$ and equal to 0 for $t<T_{0}$; (c) the left-sided signal equal to $x(t)$ for $t<T_{0}$ and equal to 0 . $t>T_{0}$.

(a)

Figure 9.10 (a) ROC for $x_{R}(t)$ in Figure 9.9; (b) ROC for $x_{L}(t)$ in Figure 9.9; (c) the ROC for $x(t)=x_{R}(t)+x_{L}(t)$, assuming that the ROCs in (a) and (b) overlap.

Region of Convergence (ROC)

- A signal or an impulse response either doesn't have a Laplace Transform, or falls into the 4 categories of Properties 3-6. Thus the ROC can be ϕ, s-plane, lefthalf plane, right-half plane, or a single strip

Region of Convergence (ROC)

- Property 7 : If $X(s)$ is rational, then its ROC is bounded by poles or extends to infinity
- examples:

$$
\begin{aligned}
& e^{-a t} u(t) \stackrel{L}{\longleftrightarrow} \frac{1}{s+a}, \mathrm{ROC}=\{s \mid \operatorname{Re}[s]>-a\} \\
& -e^{-a t} u(-t) \stackrel{L}{\longleftrightarrow} \frac{1}{s+a}, \mathrm{ROC}=\{s \mid \operatorname{Re}[s]<-a\}
\end{aligned}
$$

$$
\text { See Fig. 9.1, p. } 658 \text { of text }
$$

- partial-fraction expansion

$$
X(s)=\sum_{i}\left(\frac{\beta_{i}}{s+a_{i}}\right)
$$

Figure 9.1 (a) ROC for Example 9.1; (b) ROC for Example 9.2.

Region of Convergence (ROC)

- Property 8 : If $x(s)$ is rational, then if $x(t)$ is rightsided, its ROC is the right-half plane to the right of the rightmost pole. If $x(t)$ is left-sided, its ROC is the left-half plane to the left of the leftmost pole.

Property 8

Region of Convergence (ROC)

- An expression of $X(s)$ may corresponds to different signals with different ROC's.
- an example:

$$
X(s)=\frac{1}{(s+1)(s+2)}
$$

See Fig. 9.13, p. 670 of text

- ROC is a part of the specification of $X(s)$
- The ROC of $X(s)$ can be constructed using these properties

ROC and Poles/Zeros

- ROC: values of s for which $\int_{-\infty}^{\infty} x(t) e^{-s t} d t$ converges
- defined for a given $x(t)$, ${ }^{*}$ not* for a given $X(s)$
- very often in some region of s-plane this converges for $X(s)$, but such region may be out of ROC of $x(t)$
- Poles/Zeros: defined for a given $X(s)$
$-X\left(s_{1}\right)=0$ doesn't necessarily imply $\int_{-\infty}^{\infty} x(t) e^{-s_{1} t} d t$ converges
- Zeros may be out of ROC
- ROC and Poles/Zeros are related by the properties discussed in the textbook
- one can define an $X(s)$ with given poles/zeros and then find $x(t)$, but such an $x(t)$ may not exist

Inverse Laplace Transform

$$
\begin{aligned}
& x(t) e^{-\sigma_{t} t}=F^{-1}\left\{X\left(\sigma_{1}+j \omega\right)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X\left(\sigma_{1}+j \omega\right) e^{j \omega t} d \omega \\
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X\left(\sigma_{1}+j \omega\right) e^{\left(\sigma_{1}+j \omega\right) t} d \omega \\
& x(t)=\frac{1}{2 \pi j} \int_{\sigma_{1}-j \infty}^{\sigma_{1}+j \infty} X(s) e^{s t} d s \quad d s=j d \omega
\end{aligned}
$$

- integration along a line $\left\{s \mid \operatorname{Re}[s]=\sigma_{1}\right\} \in \operatorname{ROC}$ for a fixed σ_{1}

Laplace Transform

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X\left(\sigma_{1}+j \omega\right) e^{\left(\sigma_{1}+j \omega\right) t} d \omega \quad \text { (合狘 ?) } \\
& X\left(\sigma_{1}+j \omega\right)=\int_{-\infty}^{\infty} x(t) \frac{e^{-\left(\sigma_{1}+j \omega\right) t}}{\neq} d t \\
& \text { (分断 ?) } \\
& \neq \vec{A} \cdot \vec{v} \text { (分析) } \quad\left[e^{\left(\sigma_{1}+j \omega\right) t}\right]^{*}=e^{\sigma_{1} t} \cdot e^{-j \omega t} \\
& x(t) e^{-\sigma_{1} t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X\left(\sigma_{1}+j \omega\right) e^{j \omega t} d t \text { (合成) } \\
& X\left(\sigma_{1}+j \omega\right)=\int_{-\infty}^{\infty}\left[x(t) e^{-\sigma_{1} t}\right] \cdot e^{-j \omega t} d t \quad \text { (分析) }
\end{aligned}
$$

Inverse Laplace Transform

- Practically in many cases : partial-fraction expansion works

$$
X(s)=\sum_{i=1}^{m} \frac{A_{i}}{s+a_{i}} \quad, \mathrm{ROC}
$$

for each term $\xrightarrow{A_{i}}$

$$
s+a_{i}
$$

- ROC to the right of the pole at $s=-a_{i}$

$$
\rightarrow A_{i} e^{-a_{i} t} u(t)
$$

- ROC to the left of the pole at $s=-a_{i}$

$$
\rightarrow-A_{i} e^{-a_{i} t} u(-t)
$$

- Known pairs/properties practically helpful

9.2 Properties of Laplace Transform

$$
\begin{aligned}
& x(t) \stackrel{L}{\longleftrightarrow} X(s), \mathrm{ROC}=R \\
& x_{1}(t) \stackrel{L}{\longleftrightarrow} X_{1}(s), \mathrm{ROC}=R_{1} \\
& x_{2}(t) \stackrel{L}{\longleftrightarrow}
\end{aligned} X_{2}(s), \mathrm{ROC}=R_{2} . ~ l
$$

- Linearity
$a x_{1}(t)+b x_{2}(t) \stackrel{L}{\longleftrightarrow} a X_{1}(s)+b X_{2}(s), \mathrm{ROC} \supset\left(R_{1} \cap R_{2}\right)$
- Time Shift

$$
x\left(t-t_{0}\right) \stackrel{L}{\longleftrightarrow} e^{-s t_{0}} X(s), \mathrm{ROC}=R
$$

Time Shift

$$
\begin{aligned}
& X\left(\sigma_{1}+j \omega\right)=F\left[x(t) e^{-\sigma_{1} t}\right] \\
& F\left[x\left(t-t_{0}\right) e^{-\sigma_{1} t}\right]=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-\sigma_{1} t} e^{-j \omega t} d t \\
= & \left(e^{-\left(\sigma_{1}+j \omega\right) t_{0}}\right) \cdot \int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-\sigma_{1}\left(t-t_{0}\right)} e^{-j \omega\left(t-t_{0}\right)} d\left(t-t_{0}\right) \\
= & \left.e^{-\left(\sigma_{1}+j \omega\right) t_{0}} \cdot X(s)\right|_{s=\sigma_{1}+j \omega}=\left[e^{-s t_{0}} \cdot X(s)\right]_{s=\sigma_{1}+j \omega}
\end{aligned}
$$

- Shift in s-plane

$$
e^{s_{0} t} x(t) \stackrel{L}{\longleftrightarrow} X\left(s-s_{0}\right), \mathrm{ROC}=R+\operatorname{Re}\left[s_{0}\right]
$$

$$
=\left\{s+\operatorname{Re}\left[s_{0}\right] \mid s \in R\right\}
$$

ROC shifted by $\operatorname{Re}\left[s_{0}\right]$
See Fig. 9.23, p. 685 of text

- for $s_{0}=j \omega_{0}$

$$
e^{j \omega_{0} t} x(t) \stackrel{L}{\longleftrightarrow} X\left(s-j \omega_{0}\right), \mathrm{ROC}=R
$$

shift along the $j \omega$ axis

Shift in s-plane

$$
s_{0}=j \omega_{0}
$$

$$
x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s), \quad \text { with } \mathrm{ROC}=R,
$$

(a)

(b)

Figure 9.23 Effect on the ROC of shifting in the s-domain: (a) the ROC of $X(s)$; (b) the ROC of $X\left(s-s_{0}\right)$.

- Time Scaling (error on text corrected in class)

$$
x(a t) \stackrel{L}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right), \mathrm{ROC}=a R=\{a s \mid s \in R\}
$$

- Expansion (?) of ROC if $a>1$

Compression (?) of ROC if $1>a>0$ reversal of ROC about $j w$-axis if $a<0$
(right-sided \rightarrow left-sided, etc.)
See Fig. 9.24, p. 686 of text

$$
x(-t) \stackrel{L}{\longleftrightarrow} X(-s), \mathrm{ROC}=-R=\{-s \mid s \in R\}
$$

(c)

Figure 9.24 Effect on the ROC of time scaling: (a) ROC of $X(s)$; (b) ROC of $(1 /|a|) X(s / a)$ for $0<a<1$; (c) ROC of $(1 /|a|) X(s / a)$ for $0>a>-1$.

- Conjugation

$$
\begin{aligned}
& x^{*}(t) \stackrel{L}{\longleftrightarrow} X^{*}\left(s^{*}\right), \mathrm{ROC}=R \\
& X(s)=X^{*}\left(s^{*}\right) \text { if } x(t) \text { real }
\end{aligned}
$$

- if $x(t)$ is real, and $X(s)$ has a pole/zero at $s=s_{0}$ then $X(s)$ has a pole/zero at $s=s_{0}{ }^{*}$
- Convolution

$$
x_{1}(t) * x_{2}(t) \stackrel{L}{\longleftrightarrow} X_{1}(s) X_{2}(s), \mathrm{ROC} \supset\left(R_{1} \cap R_{2}\right)
$$

- ROC may become larger if pole-zero cancellation occurs
- Differentiation

$$
\frac{d x(t)}{d t} \stackrel{L}{\longleftrightarrow} s X(s), \text { ROC } \supset R
$$

ROC may become larger if a pole at $s=0$ cancelled

$$
\begin{aligned}
& -t x(t) \stackrel{L}{\longleftrightarrow} \frac{d X(s)}{d s}, \mathrm{ROC}=R \\
& \left(-j t x(t) \stackrel{F}{\leftrightarrow} \frac{d}{d \omega} X(j \omega)\right)
\end{aligned}
$$

- Integration in time Domain

$$
\begin{aligned}
& \int_{-\infty}^{t} x(\tau) d \tau \longleftrightarrow \frac{L}{S} X(s), \operatorname{ROC} \supset(R \cap\{s \mid \operatorname{Re}[s]>0\}) \\
& \int_{-\infty}^{t} x(\tau) d \tau=x(t) * u(t) \\
& u(t) \longleftrightarrow L \\
& \left(\int_{-\infty}^{t} x(\tau) d \tau=x(t) * u(t) \stackrel{F}{\leftrightarrow} \frac{\operatorname{ROC}=\{s \mid \operatorname{Re}[s]>0\}}{j \omega}+\pi X(j 0) \delta(\omega)\right) \\
& \qquad\left(u(t) \stackrel{F}{\leftrightarrow} \frac{1}{j \omega}+\pi \delta(\omega)\right)
\end{aligned}
$$

- Initial/Final - Value Theorems
$x(t)=0, t<0$
$x(t)$ has no impulses or higher order singularities at $t=0$
$x\left(o^{+}\right)=\lim _{s \rightarrow \infty} s X(s)$
Initial-value Theorem
$\lim _{t \rightarrow \infty} x(t)=\lim _{s \rightarrow 0} s X(s) \quad$ Final-value Theorem
- Tables of Properties/Pairs

See Tables 9.1, 9.2, p.691, 692 of text

TABLE 9.1 PROPERTIES OF THE LAPLACE TRANSFORM

Section	Property	Signal	Laplace Transform	ROC
		$\begin{aligned} & x(t) \\ & x_{1}(t) \\ & x_{2}(t) \end{aligned}$	$\begin{aligned} & X(s) \\ & X_{1}(s) \\ & X_{2}(s) \end{aligned}$	$\begin{aligned} & R \\ & R_{1} \\ & R_{2} \end{aligned}$
9.5.1	Linearity	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	At least $R_{1} \cap R_{2}$
9.5.2	Time shifting	$x\left(t-t_{0}\right)$	$e^{-s t_{0}} X(s)$	R
9.5.3	Shifting in the s-Domain	$e^{s_{0} t} x(t)$	$X\left(s-s_{0}\right)$	Shifted version of R (i.e., s is in the ROC if $s-s_{0}$ is in R)
9.5.4	Time scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s / a is in R)
9.5.5	Conjugation	$\chi^{*}(t)$	$X^{*}\left(s^{*}\right)$	R
9.5.6	Convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(s) X_{2}(s)$	At least $R_{1} \cap R_{2}$
9.5.7	Differentiation in the Time Domain	$\frac{d}{d t} x(t)$	$s X(s)$	At least R
9.5.8	Differentiation in the s-Domain	$-t x(t)$	$\frac{d}{d s} X(s)$	R
9.5.9	Integration in the Time Domain	$\int_{-\infty}^{t} x(\tau) d(\tau)$	$\frac{1}{s} X(s)$	At least $R \cap\{\mathcal{R} e\{s\}>0\}$

Initial- and Final-Value Theorems
9.5.10 If $x(t)=0$ for $t<0$ and $x(t)$ contains no impulses or higher-order singularities at $t=0$, then

$$
x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)
$$

If $x(t)=0$ for $t<0$ and $x(t)$ has a finite limit as $t \longrightarrow \infty$, then

$$
\lim _{t \rightarrow x} x(t)=\lim _{s \rightarrow 0} s X(s)
$$

TABLE 9.2 LAPLACE TRANSFORMS OF ELEMENTARY FUNCTIONS

Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	$u(t)$	$\frac{1}{s}$	Qe $\{s\}>0$
3	$-u(-t)$	$\frac{1}{s}$	$\mathfrak{Q}_{\mathcal{e}}\{s\}<0$
4	$\frac{t^{\prime-1}}{(n-1)!} u(t)$	$\frac{1}{s^{\prime \prime}}$	$\mathcal{R e x}_{\mathcal{E}}\{s\}>0$
5	$-\frac{t^{n-1}}{(n-1)!} u(-t)$	$\frac{1}{s^{\prime \prime}}$	$Q \times\{s\}<0$
6	$e^{-\alpha t} u(t)$	$\frac{1}{s+\alpha}$	$\mathfrak{R}_{\mathscr{C}}\{s\}>-\alpha$
7	$-e^{-\alpha t} u(-t)$	$\frac{1}{s+\alpha}$	$Q_{e}\{s\}<-\alpha$
8	$\frac{t^{n-1}}{(n-1)!} e^{-\alpha t} u(t)$	$\frac{1}{(s+\alpha)^{n}}$	$\mathcal{R} \cdot\{s\}>-\alpha$
9	$-\frac{t^{n-1}}{(n-1)!} e^{-\alpha t} u(-t)$	$\frac{1}{(s+\alpha)^{n}}$	$Q_{e}\{s\}<-\alpha$
10	$\delta(t-T)$	$e^{-s T}$	All s
11	$\left[\cos \omega_{0} t\right] u(t)$	$\frac{s}{s^{2}+\omega_{0}^{2}}$	Qe $\{s\}>0$
12	$\left[\sin \omega_{0} t\right] u(t)$	$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$	$\operatorname{Rex}_{\mathcal{E}}\{s\}>0$
13	$\left[e^{-\alpha t} \cos \omega_{0} t\right] u(t)$	$\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{0}^{2}}$	Que $\{s\}>-\alpha$
14	$\left[e^{-\alpha t} \sin \omega_{0} t\right] u(t)$	$\frac{\omega_{0}}{(s+\alpha)^{2}+\omega_{0}^{2}}$	$\operatorname{Re}\{s\}>-\alpha$
15	$u_{n}(t)=\frac{d^{n} \delta(t)}{d t^{n}}$	s^{n}	All s
16	$u_{-n}(t)=\underbrace{u(t) * \cdots * u(t)}_{n \text { times }}$	$\frac{1}{s^{n}}$	$R_{\mathcal{E}}\{s\}>0$

9.3 System Characterization with Laplace Transform

- Causality
- A causal system has an $H(s)$ whose ROC is a righthalf plane
$h(t)$ is right-sided
- For a system with a rational $H(s)$, causality is equivalent to its ROC being the right-half plane to the right of the rightmost pole
- Anticausality
a system is anticausal if $h(t)=0, t>0$ an anticausal system has an $H(s)$ whose ROC is a left-half plane, etc.

Causality

$$
X(s)=\sum_{i} \frac{A_{i}}{s+a_{i}}, \quad \frac{A_{i}}{s+a_{i}} \rightarrow A_{i} e^{-a_{i} t} u(t)
$$

- Stability
- A system is stable if and only if ROC of $H(s)$ includes the $j \omega$-axis
$h(t)$ absolutely integrable, or Fourier transform converges

See Fig. 9.25, p. 696 of text

- A causal system with a rational $H(s)$ is stable if and only if all poles of $H(s)$ lie in the left-half of s-plane

ROC is to the right of the rightmost pole

Stability

$$
\int_{-\infty}^{\infty}|h(t)| d t<B
$$

Figure 9.25 Possible ROCs for the system function of Example 9.20 with poles at $s=-1$ and $s=2$ and a zero at $s=1$: (a) causal, unstable system; (b) noncausal, stable system; (c) anticausal, unstable system.

- Systems Characterized by Differential Equations

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}} \\
& \left(\sum_{k=0}^{N} a_{k} s^{k}\right) Y(s)=\left(\sum_{k=0}^{M} b_{k} s^{k}\right) X(s)
\end{aligned}
$$

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s_{k}} \longrightarrow \text { zeros }
$$

- System Function Algebra
- Parallel

$$
\begin{aligned}
& h(t)=h_{1}(t)+h_{2}(t) \\
& H(s)=H_{1}(s)+H_{2}(s)
\end{aligned}
$$

- Cascade

$$
\begin{aligned}
& h(t)=h_{1}(t) * h_{2}(t) \\
& H(s)=H_{1}(s) \cdot H_{2}(s)
\end{aligned}
$$

- System Function Algebra
- Feedback

$$
\begin{aligned}
& Y(s)=H_{1}(s)\left[X(s)-H_{2}(s) Y(s)\right] \\
& H(s)=\frac{Y(s)}{X(s)}=\frac{H_{1}(s)}{1+H_{1}(s) H_{2}(s)}
\end{aligned}
$$

9.4 Unilateral Laplace Transform

$$
\begin{array}{ll}
X(s)_{u}=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t & \text { unilateral Laplace Transform } \\
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t & \text { bilateral LaplaceTransform }
\end{array}
$$

impulses or higher order singularities at $t=0$ included in the integration

$$
x(t) \stackrel{L}{\longleftrightarrow} X(s)_{u}
$$

- ROC for $X(s)_{u}$ is always a right-half plane
- a causal $h(t)$ has $H(s)_{u}=H(s)$
- two signals differing for $t<0$ but identical for $t \geq 0$ have identical unilateral Laplace transforms
- similar properties and applications

Examples

- Example 9.7, p. 668 of text

$$
\begin{aligned}
& x(t)=e^{-b|t|}=e^{-b t} u(t)+e^{b t} u(-t) \\
& e^{-b t} u(t) \longleftrightarrow \frac{1}{s+b}, \operatorname{Re}\{\mathrm{~s}\}>-b \\
& e^{b t} u(-t) \stackrel{L}{\longleftrightarrow} \frac{-1}{s-b}, \operatorname{Re}\{\mathrm{~s}\}<+b \\
& e^{-b|t|} \longleftrightarrow \stackrel{L}{\longleftrightarrow} \frac{1}{s+b}-\frac{1}{s-b}=\frac{-2 b}{s^{2}-b^{2}},-\mathrm{b}<\operatorname{Re}\{\mathrm{s}\}<+b, \quad \mathrm{~b}>0
\end{aligned}
$$

No Laplace Transform, $\quad \mathrm{b} \leq 0$

Examples

- Example 9.7, p. 668 of text

Figure 9.12 Pole-zero plot and ROC for Example 9.7.

Figure 9.11 Signal $x(t)=e^{-b|t|}$ for both $b>0$ and $b<0$.

Examples

- Example 9.9/9.10/9.11, p.671-673 of text

$$
X(s)=\frac{1}{(s+1)(s+2)}=\frac{1}{s+1}-\frac{1}{s+2}
$$

$$
\operatorname{Re}\{\mathrm{s}\}>-1, \quad x(t)=\left[e^{-t}-e^{-2 t}\right] u(t)
$$

$$
\operatorname{Re}\{\mathrm{s}\}<-2, \quad x(t)=\left[-e^{-t}+e^{-2 t}\right] u(-t)
$$

$$
-2<\operatorname{Re}\{\mathrm{s}\}<-1, x(t)=-e^{-t} u(-t)-e^{-2 t} u(t)
$$

Examples

- Example 9.9/9.10/9.11, p.671-673 of text

(a)

(b)

(c)

Figure 9.14 Construction of the ROCs for the individual terms in the partial-fraction expansion of $X(s)$ in Example 9.8: (a) pole-zero plot and ROC for $X(s)$; (b) pole at $s=-1$ and its ROC; (c) pole at $s=-2$ and its ROC.

Examples

- Example 9.25, p. 701 of text

$$
\begin{aligned}
& x(t)=e^{-3 t} u(t) \rightarrow y(t)=\left[e^{-t}-e^{-2 t}\right] u(t) \\
& X(s)=\frac{1}{s+3}, \operatorname{Re}\{\mathrm{~s}\}>-3
\end{aligned}
$$

$$
Y(s)=\frac{1}{(s+1)(s+2)}, \operatorname{Re}\{s\}>-1
$$

$\therefore H(s)=\frac{Y(s)}{X(s)}=\frac{s+3}{(s+1)(s+2)}, \quad \operatorname{Re}\{\mathrm{s}\}>-1$
$\left(R O C_{Y}=R O C_{X} \cap R O C_{H}\right.$, poles at $\left.s=-1, s=-2\right)$ $R O C$ of $H(s)$ is to the right of the rightmost pole $\rightarrow H(s)$ is causal
All poles in the left-half plane
$\rightarrow H(s)$ is stable

Problem 9.60, p. 737 of text

Echo in telephone communication

Figure P9.60

$$
\begin{aligned}
& h(t)=\alpha \delta(t-T)+\alpha^{3} \delta(t-3 T) \\
& \begin{aligned}
H(s) & =\alpha e^{-s T}+\alpha^{3} e^{-3 s T} \\
& =\alpha e^{-s T}\left(1+\alpha^{2} e^{-2 s T}\right), \text { all } s, \text { no poles }
\end{aligned}
\end{aligned}
$$

Problem 9.60, p. 737 of text

To find zeros of $H(s)$

$$
1+\alpha^{2} e^{-2 s T}=0, \alpha e^{-s T}= \pm j=e^{j\left(\pm \frac{\pi}{2} \pm 2 m \pi\right)}
$$

$$
s=\cdot \frac{1}{T} \log \alpha+j\left(\pm \frac{\pi}{2 T} \pm \frac{2 m \pi}{T}\right)
$$

Problem 9.60, p. 737 of text

for $s_{0}=\frac{1}{T} \log \alpha+j\left(\frac{\pi}{2 T}\right)=\sigma_{0}+j \omega_{0}$
$e^{s_{0} t}=e^{\left(\frac{1}{T} \log \alpha+j \frac{\pi}{2 T}\right) t}=-\alpha^{2}$ when $t=2 T$
$H\left(s_{0}\right)=0$, eigenvalue
Signal generated by $\alpha \delta(t-T)$ cancels that by $\alpha^{3} \delta(t-3 T)$

Problem 9.44, p. 733 of text

$\mathrm{x}(\mathrm{t})=\sum_{n=0}^{\infty} e^{-n T} \delta(t-n T) \quad\left(\mathrm{e}^{-\mathrm{T}}=\alpha\right)$
$\mathrm{X}(\mathrm{s})=\sum_{n=0}^{\infty} e^{-n T} e^{-s n T}=\frac{1}{1-e^{-(1+s) T}}$
to find poles
$e^{-(1+s) T}=1=e^{j m(2 \pi)}, \mathrm{s}=-1+j m\left(\frac{2 \pi}{T}\right)$
for $s_{0}=-1+j \frac{2 \pi}{T}=\sigma_{0}+j \omega_{0}$
$e^{s_{0} t}=e^{\left(-1+j \frac{2 \pi}{T}\right) t}=e^{-T}=\alpha \quad$ when $t=T$

