
1.3 Sampling Theorem −−Replacing 
Continuous-time Signals by 
Sequences of Data 

Question: Under What Kind of Conditions Can 
Signal Waveforms Un quely 
Recovered from Its Sa ples? 
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continuous-time  discrete-time signal 
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ωs =    : sampling frequency 2π 
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Considerations from Single Frequency 
Components 

• x(t) = A cos (ω0t) 

y(t) = b cos [(ω0+ωs) t] , ωs : sampling frequency 

z(t) = x(t) + y(t) 

- x(nTs) = A cos (ω0 nTs) 

y(nTs) = b cos [(ω0 + ωs) nTs] = b cos (ω0 nTs)  
2π 
 Ts 

ωs = 

z(nTs) = (A + b) cos (ω0 nTs) 

- Any two frequency components ω1 , ω2  become 
indistinguishable if |ω1 − ω2| = m˙ωs , m: integer, 

when sampled at frequency ωs 

- Aliasing effect 

- For discrete-time signal x[n] at sampling frequency 
ωs , only the frequency range [ 0, ωs ] (or an 
equivalent) makes sense. Other frequency ranges 
are simply repetitive 



Considerations for a Continuous Spectrum 

• X(ω) =  x(t) e−jωt dt ∫
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Sampling Theorem 

- if  ωs > 2 W 
the original signal can be uniquely recovered by 
low pass filtering 

- if  ωs < 2 W 
the original signal can’t be recovered 
See Fig. 7.3, 7.4, pp. 518-519 of Oppenheim 

• Mathematical formulation 

p(t) = ∑ δ(t−nTs) 
  ∞ 
 

k= - ∞

xp(t) = x(t)p(t) = ∑ x( nTs )δ(t−nTs) 
  ∞ 
 

k= - ∞

See Fig. 7.2, p. 516 of Oppenheim 

- It can be shown the Fourier transform of xp(t) is   

Xp(ω) = ∑ X(ω − nωs) 
See Fig. 7.3, p.518 of Oppenheim 

  ∞ 
 

n= - ∞ 

• An Example for Aliasing Effect 
See Fig. 7.15, 7.16, pp. 529-531 of Oppenheim 

Practical Considerations 
- Over-sampling 
- Pre-filtering 

Ref. 7.0, 7.1.1, 7.3 of Oppenheim 



1.4 Pulse-coded Modulation (PCM) – 
Digital Representation of 
Continuous-time Signals 

 

x(t) → x[n] = x( nTs ) → 1010110110 
binary representation of a 
real number 

    number of bits    truncation  
per sample      error 
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Qua izat n (Scalar Q tization) 
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Quantization Error 
xQ[n] = x[n] + e[n] 

• Assume simplest case –uniform quantization 

mk − mk-1 = ∆k = step size for k-th level 
     = ∆ , same for all k 
∆ =    2A 

   L 
See Fig. 3.11, p. 195 of Haykin 

| e[n] | <    ∆ 
  2 

assume e[n] is uniformly distributed (this is 
reasonable if L is large enough or ∆ is small 
enough) 
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Quantization Error 

• Signal-to-noise Ratio 

σx
2 = E [n]  2  

SNRQ =  = 22R (α 22R = L2)  

- 6 dB re

- Quanti
by usin

 

PCM Proc

 

     Pre-filterin
x(t) 

 
Ref :  3
 
 
 

[ (x

  σx
2

σe
2 
ductio

zation 
g mor

esses

  g

S

.6 of H
) ] 

   3σx
2

A2
n of σe
2 every extra bit per sample 

error can be arbitrarily suppressed 
e bits per sample 

 

    

 

Quantizer

…

kEncoding 

x[n]

ampler

 

vk

for digital transmis
storage or processi

ankin 
01

x

…1101 1
sion,  
ng 


	1.3 Sampling Theorem ((Replacing Continuous-time Signals by Sequences of Data
	Considerations from Single Frequency Components
	Considerations for a Continuous Spectrum
	Sampling Theorem
	Practical Considerations
	Quantization (Scalar Quantization)
	Quantization Error
	Quantization Error
	PCM Processes

