2.2 Differential PCM (DPCM)

- Quantize and transmit only the differencesin
samples

dn] = x[n] — X[ n—1]
much smaller values of d[n] give much better

performance
Error Accumulation Problem
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Xq[N] = Xq[N-1]+dg[nN]
= Xgln-1]+d[n]+¢[r]

Xo[n+1] = Xq[n]+dg[n+1]
= Xq[n-1]+d[n]+e[n] +d[n+1]+e[n+1]
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guantization error
accumulated




Error Accumulation Problem

e Solution
redefine  d[n]=Xx[n] — Xg[N-1]
= X[n] — (Xo[n-2]+d[n-1]+€[n-1])
previous errors absorbed
SeeFig. 3.28, p.228of Haykin
use of very limited memory and computation

Processing Gain
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o4 = E[(d[n])?] = E[(x[n] — x[n-1]) ]
= E[(x[n])*] + E[(X[n-1])?] — 2E[(X[n]X[n-1])]
define r, = ELXINIX[n-1])]

E [(x[n])’]
= E[([n])7] (2-2r2)

G = 1 r, :varying for speech, audio signals, etc.
2(1-r4) averaged over ashort period only

note : g[n] neglected here




Linear Prediction of Signals

- signal samples are highly correlated locally

- previous samples can be used to predict the
next sample

e Formulation
X[n] :kZPka X[ n—K]
P : prediction order
d[n] =x[n] — X[n]
SeeFig. 3.26, p.223of Haykin
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Linear Prediction of Signals

e Solution
W=R'T
. t
W= [W1, Wa, ..., Wp]
- t
r_[r11r21 7rp]
R=rr1o I Iz ...lp1—
1 o ri ... Ip—2
) ] ro ... Ip-3
— Ip-1 Tp—2 Ilp-3... Tp -

= ELINIX[n=K])]
E [(x[n])’]

Wiener-Hopf Equation



Vector Space | nterpretation of Wiener-Hopf
Equation

e 3-dim Vector Space — an estimation problem
Givenysy, Yo, X, find
X* = a1y1tay», abest estimate of x
such that | X=X [P=[(X-X )+ (X =X )] = min
- Solution :
{(? —ayy1— &Y2) * Y1 =0
(X — ay1— ay2) *y2.=0
- Orthogonality Principle : the differenee vector

should be orthogonal to the plane of (y4, V») ,
or to bothy; and y,

- This principle can be extended to all vector
space with valid definition of inner product
 Vector Space of Random Variables
V ={ X ; Xisarandom variable }
- XY =FE[ XY]
Xl = E[X7]
Xisorthogona toY if E[XY]=0



Vector Space I nterpretation of Wiener-Hope
Equation

e Orthogonality Principlefor Linear Prediction
- Given x[n-1] , X[n—2], ... X[n—p] and x[n] , find

X[n] :gpl, Wi X[n—K]
such that || x[n] — X[N] || = min
- Orthogonality Principle
([ ~ X wix[n-K]) * (x[n-{]) =0,

1=1,2,3,...,p
E[(X[n]x[n—])] =kZlek E[(x[n-K])x[n—]])]
1=1,2,3,...,p

r=Rw

W=R'T Wiener-Hopf Equation

Adaptive Linear Prediction

r inr, R aretime-varying
Wi aretime-varying

T[n], Wi[n] estimated based on short-time
statistics obtained with windowed x[n]



| mproved DPCM with Linear Prediction

X{n] = X W [nlxln-K]
Wi[n] : estimate of wy at timen
best estimate of x[n] by minimizing o4
d[n] = x[n] — X[n]
SeFig. 3.28, p. 228 of Haykin
o¢° =min, G = max
* Redundancy and Predictability

x[n] = x[n] + d[n]

f

predictable with previous unpredictable,

samples, correlated with New Information,
previous samples uncorrelated with
statistically, redundancy previous samples

- DPCM isto remove the redundancy before
guantization

- Using more computation and memory to
Improve performance
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