2.4 Vector Quantization (VQ)

Scalar Quantization

| | | T [
-A=mg Vi A

S:kg J,V=vi,Vo, ...,V }
Q:S—>V

QMX[Nn]) = vk if x[n] e K

L=2%

Each vy represented by a R-bit pattern

- Quantization characteristics (codebook)
{h,L,.... 1} and {vi,vo,.., v}
designed considering at |east

1. error sensitivity
2. probability distribution of x[n]



2-dim Vector Quantization (VQO)

Example:
Xn = (X[n], x[n+1] )
S={Xn=X[n],x[n+1] ) ; X[n]| <A, [x[n+1]|<A}
¢ VQ
-SdividedintoL 2-dimregionsJ,, b, ..., k,...d
S=U 3
each with arepresentative vector vy € J
V={Vi,Vs, ...,V }
-Q: S>>V
Q(Xn)=Vk If Xne Xk

L=2F
each vy represented by a R-bit pattern
- Considerations

1.error sensitivity may depend on X[ n], X[n+1]
jointly

2.distribution of x[n] , x[n+1] may be
correlated statistically

3.more flexible choice of J,

- Quantization Characteristics (codebook)
{ Jl, Jz, ceey J|_ } and{ vl,T/z, ...,T/L }



N-dim Vector Quantization

X=(X1, X2, ..., XN )
S={X=(X1, X2, .., Xn) , | Xk | <A, k=1,2,...N}
S:kliJle,V ={V1,Va, ...,V }
Q:S—>V
QX)=vk iIf Xek
L = 2%, each Vi represented by an R-bit pattern
Codebook Trained by a L arge Training Set

» Define distance measure between two vectorsX, y

d(X,y) : SxS— R" (non-negative real numbers)
- desired properties
d(X,y)=>0
d(x,x)=0
d(x,y)=d(y,x)
dX,y)+d(y,z)>d(x,2z)
examples:
d(%,y) =3 (i — i)’
d(%,y) =[x -V



Codebook Trained by a L arge Training Set

e [terativetraining

' |
(@ B (2)
Fixed{ v, Vo, ...,V } Fixed{ J, X, ..., J }
find best set of find best set of
{J11‘JZ1"'1‘JL} {VJ_,VZ,...,VL}

T

() J={ X|d(X, V) <d(x, ) ,j =k}
S D=YdX, QX)) =min

alx

nearest neighbor condition
(2) For each k

— 1 =
Vi=— D X
hﬂ'féJk

— Dy :_z d(y ,Vk) =min

xeJk

centroid condition

(3) Conyergence condition
D => Dy
k=1
after each iteration D isreduced, but D >0
|IDM™Y D™ | < e, m:iteration

Lloyd-Max Algorithm



Applications of VO

- Any set of parameters with somehow related
properties can be grouped into a vector for VQ

- Number of hits to be transmitted can be
reduced

Ref: 10.1, 10.2, Gersho and Gray, “ \ector
Quantization and Sgnal Compression”
Kluwer, 1992
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