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From HMM’s to Segment Models: A Unified View
of Stochastic Modeling for Speech Recognition

Mari Ostendorf, Member, IEEE, Vassilios V., Digalakis, and. Owen A. Kimball, Member, IEEE

Abstract—In recent years, many alternative models have been
proposed to address some of the shortcomings of the hidden
Markov model (HMM), which is currently the most popular
approach to speech recognition. In particular, a variety of models
that could be broadly classified as segment models have been
described for representing a variable-length sequence of obser-
vation vectors in speech recognition applications. Since there are
many aspects in common between these approaches, including the
general recognition and training problems, it is useful to consider
them in a unified framework. Thus, the goal of this paper will
be to describe a general stochastic model that encompasses most
of the models proposed in the literature, pointing out similari-
ties of the models in terms of correlation and parameter tying
assumptions, and drawing analogies between segment models
and HMM’s. In addition, we summarize experimental results
assessing different modeling assumptions and point out remaining
open questions.

I. INTRODUCTION

O date, the most successful speech recognition sys-

tems have been based on the hidden Markov model
(HMM) [1], [2], and the use of HMM’s for acoustic modeling
dominates the continuous speech recognition field. Although
HMM’s will continue to play a role in most recognition
systems for a long time to come, many alternative models
have been proposed in recent years to address some of the
shortcomings of HMM’s. These new higher order models
tend to require more computation than HMM’s but with
the increase in computational power and the broad use of
progressive search techniques, they are viable and of interest
for current systems. Unfortunately, the research on new models
has tended to proceed in isolated pockets, and the proliferation
of terms used to describe different modeling assumptions has
made it difficult to appreciate the common themes across the
various proposals. The ‘goal of this paper is thus to bring
together a variety of work under a common framework in
order to make it easier for different researchers to benefit
from the successes of others in developing robust estimation
techniques and making appropriate assumptions about variable
dependence and parameter tying.

Manuscript received June 20, 1995; revised February 22, 1996. This work
was funded by ARPA and ONR under grant number ONR-N00014-92-J-1778,
with additional support for M. Ostendorf provided by ATR. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Douglas D. O’Shaughnessy.

M. Ostendorf is with the Electrical, Computer, and Systems Engineering
Department, Boston University, 44 Cummington St., Boston, MA 02215 USA.

V. Digalakis is with the Technical University of Crete, Hania, Greece.

O. A. Kimball is with the BBN HARK Systems Corp., Boston, MA, USA.

Publisher Item Identifier S 1063-6676(96)06718-1.

Broadly speaking, there are three HMM limitations that var-
ious models have tried to address: weak duration modeling, the
assumption of conditional independence of observations given
the state sequence, and the restrictions on feature extraction
imposed by frame-based observations. The limitation that an
HMM state duration model is implicitly given by a geometric
distribution has been addressed by introducing models with
explicit state duration distributions [3], [4]. Relaxation of
the assumption of conditional independence of ‘observations,
which is widely recognized to be practically useful but un-
realistic, has been the subject of several studies. A simple
mechanism for capturing time dependence is to. augment the
observation space with feature derivatives. In addition, several
variations of HMM’s have been proposed to explicitly model
correlation, including conditionally Gaussian HMM’s [5]-[7]
and “segmental” HMM’s [8], [9]. Finally, the goal of using
segmental rather than frame-based features, probably the initial
motivating factor for development of “segmental” acoustic
models, led to the work of Bush and Kopec [10] and Zue
and colleagues [11], [12]. However, the stochastic modeling
problem becomes more difficult when segmental or fixed-
length features are used, requiring heuristic weightings and/or
the use of posterior distributions. Excluding the posterior
distribution models, we shall show that many of the proposed
models are special cases of a more general segment model
(SM),! which facilitates comparison of the different modeling
assumptions.

The remainder of the paper is organized as follows. In
Section II, we address the problem of modeling frame-based
features, introducing the segment model as a generalization of
an HMM. We describe stochastic segment models in general -
terms, giving recognition and training algorithms and showing
differences with respect to the standard HMM algorithms for
these problems. Next, in Section III, we discuss specific dis-
tribution assumptions that can be made to model the dynamics
of feature vectors, show that many of the different models can
be seen as special cases of a dynamical system model, and
draw analogies to different HMM extensions. After treating
frame-based features, in Section IV, we move to the problem
of modeling fixed-length segmental features and discuss issues
in the use of posterior distributions for segment modeling.
Finally, Section V concludes with a discussion of several
questions in segment modeling that are unresolved by current
studies.

I'We have avoided the term “stochastic segment model” (SSM), which we
have used in much of our own work, to make clear that the term SM includes
the work of others, although the modifier “stochastic” would still apply.
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Fig. 1. HMM and an SM illustrated as generative processes: One frame (y) is generated by an HMM state, and a variable-length sequence of frames

(y1,++-, 1) is generated by a SM “state” associated with random length I.

II. SEGMENTAL AND HIDDEN MARKOV MODELS

Taking a statistical approach, the general problem of recog-
nizing a word sequence involves finding the sequence of labels
al¥ = {ay,--+,an} that is most likely given the sequence of
T D-dimensional feature vectors y¥ = {y1,---, yr}

a7 = argmax p(af'|y{ ) = arg max p(a7 )p(v{ |af’)
N,al Nl

where, for example, @; corresponds to a phone, and the
recognized phone sequence is constrained to pronunciations in
a lexicon. (Note that a € A need not be a phone label; it could
be any unit that can provide a mapping to a word sequence,
e.g., a “triphone” or other linguistic unit conditioned on
phonetic context or an automatically learned unit.) Using class-
conditional distributions,” as in the equation above, we need
a language model p(a}’) and an acoustic model p(y¥|alV).
Here, we focus on options for the acoustic model p(y{ |a]).

In hidden Markov modeling, the fundamental observation
distribution model is at the frame level: b,(y) = p(y|s) for
s € &, where S is the set of discrete HMM states, and
a phone is typically represented by a sequence of states.
In segment modeling, the fundamental distribution model
ba,i(¥}) = p(yt|a,l) represents a segment 3t = [y1,---, ],
where [ is a random variable, and a € A, where A is the set
of segment labels. (Without loss of generality, we assign time

=1 to the first frame in the segment.) Fig. 1 illustrates this
difference between the HMM and the SM from the perspective
of generative models, i.e., generating a single observation
versus a sequence of observations. From coding theory, we
know that quantizing sequences of observations makes it
possible to achieve lower distortion for a given bit rate than
quantizing individual samples. If a segmental coding strategy
is more efficient than a frame-based coding strategy, it seems
reasonable to expect that a segmental recognition strategy will
be more effective than a frame-based recognition strategy since
minimum distortion is related to maximum likelihood (ML) in
a Gaussian model.

2The terminology “class-conditional distribution” refers to the probability of

observations given a class label, e.g., p(y|a). whereas “posterior distribution”
refers to the probability of a class label given an observation, e.g., p(a|y).

In acoustic modeling, a “segment” might correspond to a
phone-sized unit, but SM’s have also been used to represent
subphone units [13]-[15], diphones [16], and syllables [18].
We therefore use the term “segment” here in a more general
sense than the typical linguistic association of “segment” with
phonetic units. The unit size does not affect the probabilistic
formalism, although it does have an impact on the compu-
tational costs of the model because of the greater length
variability that must be accounted for in longer units. In
both HMM’s and SM’s, the discrete “state” sequence s? and
(a, )Y, respectively, is typically modeled as a Markov chain.

With an HMM, there are several options for modeling the
distribution p(y|s), including discrete distributions, full or
diagonal covariance Gaussian densities, Gaussian mixtures,
and Laplacian distributions, all of which have been used
in speech recognition. Similarly, there are many possible
distribution assumptions with SM’s, in fact, many more op-
tions because of the large number of degrees of freedom
in the model. However, in both cases, there are general
recognition and’ training algorithms that can be described for
all distribution assumptions. In this section, we describe the
model at this general level for the particular case of class-
conditional distributions.

A. General Modeling Framework

A general segment model provides a joint model for a
random-length sequence of observations y! = [y1,---, ],
generated by unit a according to the density

vy lla) = p(yr, -, will a)p(lla) = ba,i(y1)p(la).
1

Letting £ be the set of possible observation lengths (in frames),
a segment model for label a € A is characterized by 1) a
duration distribution p(l|a) that gives the likelihood of seg-
ment length [ € £ and, thereby, the likelihood of a particular
segmentation of an utterance and 2) a family of output densities
{ba1(y!);1 € L} that describes observation sequences of dif-
ferent lengths. In addition, a Markov assumption for sequences
of a; is made either implicitly or explicitly by embedding

p('yla e
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phone segments in a word pronunciation network or other
probabilistic finite-state network.

Before elaborating on this abstract definition, let us con-
sider two simple extensions of HMM'’s that fit this model.
The simplest distribution assumption for a segment model
uses a single output distribution and assumes that successive
observed frames are independent and identically distributed
within given segment boundaries. In this case, the probability
of the segment given label a and length [ is the product of the
probability of each observation y;

l
baa(y}) = [ [ p(wila),
=1

and the segment model reduces to a one-state HMM with
an explicit duration model p(l|a), as opposed to the typical
implicit geometric HMM duration model. (See Fig. 4 for this
and other relationships between distribution assumptions.) This
simple segment model is also known as a hidden “semi-
Markov” model [3], as well as a continuously-variable duration
HMM [4], [19], and a segment model [20]. By introducing
an explicit state duration distribution, these models have the
added complexity of hypothesizing segmentations in recogni-
tion and training. If we can accept this additional cost, then
it is natural to move beyond the simple single-region segment
model to more complex segment models since the benefit of
an explicit length distribution is small relative to the gains
possible with less restrictive distribution assumptions.

To make the model slightly more complex, we. can use
multiple distribution regions = 1, - -, R but still assume that
observations are conditionally independent given the segment
length, as in, e.g., [21] and [22]. In this case, the probability
of a segment given label a and duration [ becomes

l

11 pwila, ) @)

i=1

ba(y1) =

where the specific distribution used for vector y; corresponds
to region ;. If the sequence of regions is constrained by some
length-dependent mapping, this particular segment model can
be thought of as a HMM with a complex topology (parallel
paths for different lengths) and state parameter tying specified
by the mapping to the distribution regions.

The segment model can be further generalized in a variety
of ways. Here, we give the framework to represent a broad
class of segment models, leaving more specific examples for
Section III. The segment duration distribution {p(/le);l €
L} can be either parametric or nonparametric. Parametric
models investigated have included the Poisson distribution
[3], the Gamma distribution [4], a speaking-rate-normalized
Gamma distribution [23], and context-dependent clustered
Gamma models [24]. The nonparametric model simply uses
smoothed relative frequencies, e.g., [22]. For phone-sized
units, any reasonable assumption works well empirically,
probably because the contribution of the duration model is
small relative to the segment observation probability, which
is in a much higher dimensional space. The family of output
densities {b,;(y});! € L} represents I-length trajectories in
vector space (y; € R?) with a sequence of distributions that

can be thought of as dividing the segment into separate regions
in time. Observations may be correlated within and across
regions, but distribution parameters are time invariant within a
region. In this sense, a segment distribution region is similar to
an HMM state. A collection of distribution mappings (or time-
warping transformations) {T3(¢);4 = 1,---,1l;1 € L} associate
each frame ; in the variable length observation ¢} with one
of the model regions. Together, the mapping and the region-
dependent distributions provide a means of specifying b, ;(y})
for a large range of | with a small number of parameters.

The mapping T; is a key component needed to specify the
distribution family. 77 can be deterministic or dynamic. Two
variations of the deterministic mapping are possible: either
a) to a fixed number of distributions using a table lookup
or b) to a continuum of models determined by sampling a
segment trajectory, as shown in Fig. 2. Trajectory sampling is
more appealing for units that have smooth trajectories since
it avoids assumption of piecewise constant dynamics. On the
other hand, the constraint of a fixed number of distributions
allows for automatic mapping estimation, as discussed later.
A dynamic mapping, as used in [16] and [17], is implemented
using dynamic programming to find the ML mapping to a
fixed number of regions. If the distribution family is given
by (2), then a segment model with an unconstrained dynamic .
mapping is equivalent to an HMM network (e.g., [25]), except
for the explicit duration distribution. Deterministic mappings
have the advantage of reduced computation relative to dynamic
programming, ‘and for phone-sized units and smaller, they
work quite well in practice. In addition, there is evidence for
systematic intrasegmental timing patterns in speech [26] that
supports the use of a deterministic mapping, although not a
simple linear mapping.

To further explain the segment model and to illustrate the
relationship between segment models and HMM’s, consider
the problem of computing the probability of a phone sequence
in continuous speech. A phone can be represented by a
sequence of HMM states or by a segment model. In a HMM,
the T-length observation sequence yi is connected to the

N-length phone sequence al¥ via the state sequence s

(i |a’) Zp yi,s1lat)
= ZP (v |51, a7 )p(s7 ol ),
sT
where
T T
p(vi|si,a7’) = H (yelse) = H s:(Ut)s 3)
t=1 =1
p(silay) =1I(sT,ay) Hp(3t|3t~l) @
t=1
and I(s¥,a}) is an indicator function that equals one if the

state sequence sT is permissible by the phone sequence af’

and zero otherwise. The equations above require the usual
HMM assumptions that an observation vector is conditionally
independent from other observations and states given the
current state (see (3)) and that the state sequence is Markov
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Fig. 2. Distribution mapping to (a) a fixed number of model regions (five
here) versus (b) a continuum of distributions via trajectory sampling, illus-
trated in both cases for a linear-time warping with three-frame (o, down
arrows) and 12-frame (X, up arrows) observations. The line represents the
distribution mean as a function of time for 1-D observations.

(see (4)). Feature variability is captured by the frame-level
observation distributions associated with each state b.(-), and
time variability is represented in the state sequence model
p(8i|si—1), which puts a geometric distribution on the time
spent in each state.

Alternatively, in a segment model, we map to a)¥ from
y¥ via a segmentation. Since the segmentation can be
uniquely specified by the sequence of segment lengths

IV = {lj,~++,ly}, then
p(y7 la7) ZP (91,13 |a?")
= ZP yi 1Y, e )p(iY ey ),
where
pyi |1, at) HP(ZU;E: 1l a:)
= _Hbai,li Wi 1)) )
p(Y |al’) HP (lilai, lica, aiz1) (6)
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where t(¢) is the ending time of the ith segment, and [; =
t(i) —t(i — 1) is the segment length. The assumptions required
to get (5) and (6) are the same as those used in (3) and
(4), respectively, with the definition of state expanded to
include the label-duration pair.? In the segment model, feature
variability is represented by a more general probability dis-
tribution conditioned on the segment label and length b, ;(-),
and time variability is represented in the duration probabilities
p(l|a) and the length-dependent mapping 7; that specifies the
distribution sequence within a segment.

The same HMM versus SM comparison can be made for
continuous word recognition, where a word is represented by
a network of subword units. In this case, the HMM state
sequence again serves as an intermediary between observations
and words since the HMM states map uniquely to a word
sequence. For the SM, the segmentation and segment labels
form the intermediate stage between words and observations.
In training and recognition problems, where the HMM state
sequence or the SM segmentation is hidden, the impact of the
difference in modeling assumptions is a larger state space for
the SM, as we will see in the remainder of this section.

B. Recognition Algorithms

The recognition algorithm for the segment model is similar
to that used for HMM’s, using dynamic programming to find
the most likely “state” sequence (i.e., Viterbi decoding). In
this section, we provide details about this algorithm together
with some techniques for reducing computation that serve to
counter the high cost of search with segment models.

1) Viterbi Decoding: The standard recognition solution for
HMM'’s with a large state space (e.g., large vocabulary con-
tinuous speech recognition) involves finding the most likely
state sequence

87 = arg max p(y7 Is] )p(s7)

51
via Viterbi decoding (dynamic programming) and then map-
ping the state sequence to the appropriate word sequence
wf = h(s7). Assuming that the state network used in
decoding has been defined by a word/pronunciation network,
the mapping then gives a unique word sequence.

For segment models, the solution is analogous, but in this
case, the state includes both the segment label and duration.
In other words, using the notation ¢ for a state in general,
the segment state is ¢ = (a,l) € A X £ = Q, whereas the
HMM state is ¢ = s € S = O. Segment-based recognition
then involves finding

(' = arg max (g p( T o (1Yl p(ed)}
Q)

again using a dynamic programming algorithm and then map-
ping the segment label sequence to the appropriate word
sequence Wi = f(a), as in HMM decoding. The key
difference between the SM and HMM search algorithms is

*In the segment model definition in (1), we make the stronger assumption
that p(1;|a;,li—1,ai—1) = p(li]a;) to simplify the presentation and reduce
the number of free parameters.
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the explicit evaluation of different segmentations, which adds
an extra dimension to the dynamic programming search, as
described below.*

Define A; to be the set of segment models that are active at
time ¢, which is determined by the word grammar, phoneme
pronunciation networks, and optional search pruning. Define
p(t,7) to be the set of allowable segment boundaries for a
segment with label j ending at time ¢, which is determined
by the utterance length and constraints on allowable phone
duration time. Finally, define 6;(7) to be the log probability
of the most likely segmentation/label sequence ending with
segment label 4 for observations y& = {y1, -, 3}

6e(i) =

t gm n-—1 _
max_logp(y1, {1, a1, an =1).
n,I7,al™

The traceback information is stored in 14(z}, which contains
the ending time and label of the best previous segment that
led to 84(7). Then, the dynamic programming SM recognition
algorithm involves the following:

Initialize: t =1
61(i) = log p(ya|l, )p(|i)p(d) Vie A l=1
Iterate:t=2,..-,T;Viec A, l, =t —7
5t(z) = ma“XjEAﬂ-,‘rEp(t,i) 57' (.7>+
log[p(yr+1, o, yellr, 9)p (L [9)p(il5)]
Pu(4) = argmax e 4 rep(s,)6r(3)+
log[p(yr+1,*+, yellr, 1P |9)p(25)]
Traceback:
ap = argmaxe 4, 67(i), t=1T
Iterate while ¢ >0: 1) (ay,t) = ¥:(a4),2) t «— ¥

Note that the recognized segment labels &, are indexed
by their ending time since the total number of recognized
segments is not known until traceback is finished.

- Ignoring the effect of pruning, which can be implemented

for both HMM’s and SM’s, the state space for the segment
model is determined by the product of the model set size
|A] and the number of allowable segment duration start
times, which is roughly the maximum allowable segment
duration Lyax (€.8, Lmax = 60 for read speech and a
10ms frame rate). The comparable state space for HMM’s
is |S|, which is typically only 3-5 times |.A|. On top of
this difference is the possibly higher cost of SM probability
evaluations if one of the models from Section II is used. As a
consequence, several SM cost reduction techniques have been
considered. For the case where the segment model uses an
assumption of conditional independence, it is possible to use
distribution score caching with the SM to eliminate redundant
Gaussian computations. The resulting SM will then have
computational requirements comparable with the analogous
HMM, plus an additional (nontrivial) cost associated with the
overhead of tracking segment structure. Segment-level score
caching is also useful, especially for more general distribution

“The algorithm described here is similar to that in [27], except that here,
we include the duration likelihood, the Markov label assumption, and pruning

notation and do not include the beuristic length penalty introduced to handle
fixed-length features.

assurnptions. A second approach to reducing computation is
segment “pruning” or eliminating unlikely phone candidates
based on partial segment likelihoods. In one experiment, where
candidates are pruned according to a threshold based  on
the contributions to the likelihood of successive frames, a
75% reduction in computation was obtained with no loss in
recognition accuracy [28].

2) Reduced Search Spaces: Although it is useful to reduce
the cost of segment evaluations, it is perhaps more important
to reduce the number of segment evaluations by reducing the
search space. There are two basic strategies for shrinking the
search space: 1) reducing the set of segmentations considered
and 2) SM rescoring in a multipass search framework.

For an utterance of length T, there are approximately 27
segmentations that must be considered in an optimal search.
Reducing the size of this set can significantly reduce segment
modeling search costs. Initial work in this area [11] involved
using hierarchical clustering of frames using a similarity
measure that resulted in a dendrogram representation of a set
of possible segmentations. This reduced set of segmentations
is then searched with a dynamic programming algorithm,
where the dendrogram specifies the segmentation constraints
{p(t,3)}. A different strategy is the local search algorithm
proposed in [28], which starts with an initial segmentation
and iteratively adjusts segmentation times and segment labels
to most improve overall likelthood at each step. Possible
adjustments—e.g., splits, merges, and combination split-merge
moves—define the local neighborhood searched; therefore, the
possible segmentation set is reduced but determined dynami-
cally as part of recognition.

Eliminating segmentations from the search space may in-
troduce errors early in the search process if the ultimate
goal is word recognition (or some other higher level unit);
therefore, alternative approaches have also been investigated.
In particular, one can use an HMM (i.e., a simpler model)
to provide a set of sentence hypotheses that are subsequently
rescored by a segment model. The sentence hypotheses can
be described as an N-best list or a word lattice. In either
case, the recognition algorithm is the same as that given in
Section II-B-1, but the set of segment labels A; to evaluate at
each time ¢ is reduced. Rescoring time can be further reduced
(by a factor of 30 without loss in performance) if the HMM
segmentation times are available, in ‘which case, {p(¢,%)} is
given by a window of times around. the corresponding HMM
start time for phone ¢ ending within some window of ¢.
Together, rescoring and segmentation time constraints make
large vocabulary recognition with segment models feasible,
but computation can be further reduced via rescoring a lattice
with time constraints rather than the equivalent N-best list [29]
(by a factor of 3-10, depending on the size of the N-best list).
Of course, all methods of reducing the search space introduce
errors, and it is an empirical question as to which approach is
more effective. In our experience, HMM hypothesis rescoring
has been most effective for word recognition in terms of both
accuracy and computation reduction.

An additional advantage of the rescoring framework is that
it provides a simple mechanism for combining knowledge
sources. In N-best rescoring [30]-[32], each knowledge
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source separately scores each hypothesis, the scores are
linearly combined, and the hypotheses are reranked based
on the combined score. The weights used in the score
combination can be estimated automatically given N-best
hypotheses and an optimization criterion such as minimum
word error rate in the top ranking sentence. Weight estimation
is an unconstrained multidimensional optimization problem,
which can be solved using gradient techniques such as
Powell’s method, as in [30], or by a grid-based search that
chooses among different local optima [33].

C. Parameter Estimation Algorithms

The hidden state component that is common to all the
acoustic models presented in Section II-A complicates pa-
rameter estimation, requiring some form of iterative algorithm
for ML estimation. In this section, we will first present
generalizations of the two most common iterative schemes
used in speech recognition, which are applicable for either seg-
mental or HMM’s. One estimates the conditional probability
distribution of the hidden state sequence and is an instance of
the expectation-maximization (EM) algorithm [34]. The other
finds the most likely hidden state sequence at each iteration and
is sometimes called “Viterbi training,” where the segmental
k-means algorithm in the HMM case [35] is an example.

Once a solution to the hidden-state problem is provided, the
second step of the iterative algorithm—which is estimation
of the state transition probabilities and “output” distribution
parameters (either segmental or frame-based)—is typically
straightforward, with the exception of some complex models
of segmental dynamics. We discuss the problem of estimating
the distribution mapping in the latter part of this section,
further discuss parameter estimation issues in Section III when
introducing specific distribution assumptions, and reserve the
detailed parameter update equations for Appendix A.

1) Discrete State Estimation—The Generalized For-
ward-Backward Algorithm: The EM algorithm was applied to
HMM'’s by Baum and colleagues [36] and is now a standard
estimation tool in speech recognition. For many of the new
variations of HMM’s that have been proposed, extensions
of the Baum-Welch algorithm have been derived, including
continuously variable duration HMM’s [4], segmental HMM’s
[37], and conditionally Gaussian HMM’s [S]-[7]. Here, we
give a solution for a more general notion of a discrete hidden
state that handles all of these models, using what we shall
refer to as the generalized forward-backward algorithm in
the expectation (E) step as an extension of the so-called
HMM forward-backward algorithm to compute the posterior
probability of a state given the observed data.

Following the approach in [1] but with a general unobserved
state ¢ € Q, the ML estimate for model parameters ¢ are
obtained by maximizing the marginal distribution

2

aff ehtwf]

po(vi) = p(a?, yT)

where the summation is over all admissible discrete state
sequences ¢ E h='[wk] for the given “transcription of the
training data w{<. The length M term in g7 is used to indicate

365

that the state sequence is not necessarily at the same time
scale as the observation sequence, allowing variable-length
observations. The solution to this maximization problem can
be obtained by the EM algorithm, treating ¢} as missing data
and maximizing at each iteration

Eo{logpy (a1, y{)Iyi }

= > pola’ly]) logpy (i w1) ®)
M,q{w

with respect to parameters §’ given parameters @ from the pre-
vious iteration. If the discrete state sequence has the Markov
property, then the terms needed for maximizing (8) are

> ol )

M,qMeqQ}

> )

Mg} eQ?

Pola: = q,91) =
Po(@ =0, apey =47 ) =

where ¢, is aligned with time ¢ (e.g., ending at time ), g,(;)
is the state preceding ¢;, Qi (q) = {¢M:q; = q} is the set of
all state sequences that pass through state ¢ at time ¢, and
Q¥ q,q¢) = {a?:qx = 4,950y = q'} is similarly defined
but constrains a state transition at time ¢. (Note that many
state sequences will not have a segment ending at time £,
in which case, ¢; has a null value.) These probabilities can
be computed efficiently with an extension of the forward-
backward algorithm, as shown below for p(q;,y7), where
the subscript ¢ is dropped to simplify the notation. The
recursions for the second probability p(gt, gy(1), ¥+ ) can be
derived similarly and are omitted for brevity.

Let ¢, and q;“ be the state sequences before and after the
state ¢;, and let Y(-) represent the contiguous observation
sequence that corresponds to a particular state or sequence
of states. Thus, Y (g:) represents the observation sequence
associated with state ¢;. Nonoverlapping state sequences are
assumed to have nonoverlapping observation sequences. The
state likelihood is given by

plge =aq,y1) =pla: = a.Y (a7, a,0))
=pla:=q,Y (g @), Y (g))
=p(et = ¢,V (g7 . )Y (¢l

(
=q,Y (g a) = of ()8 (q)

where o€ (g) and 3% (g) (G for general) are calculated using
the recursive “generalized” forward and backward algorithms
given below. Since the label sequence is not associated with
the same time scale as the observations, we denote previous
and next states by g,(;) and g, respectively, and their cor-
responding times at the observation level as ¢, and ¢,. (Note
that although ¢ is Markov, the sequence {g:;t = 1,---,T}
is not Markov, hence, the “semi-Markov” terminology in [3].)

af (q) =p(a: = ¢, Y (a;), Y (a))
= Zp @ =00u=70,Y(@),Y (%)

_Zp

(@)lae = @ qpry = 4,V (47 )
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Plgr = dlapey = ¢, V(a5 ))p(tpry = ¢ Y (a7 )
= Zp (ge)lae = @, Y (ap)))P(at = dlgpry = @)

-atp<q) ©)
i) =p(Y (9?)]qt = Q>Y(Q;>Qt))
= ZP (qn(t)) An(t) = q/|% =q
Y(Qt >Qt))
“‘Zp n(t) an t)*q7qt_Q7Y(Qt_7Qt)7
Y (qn)))
PY (@) tny = 0 ae = .Y (47, &)
Plany = ¢'la: = .Y (a7 . q0))
= Z/Bt Y(Qn(t))|Qn(t) = q Y(Qf))
-p(qnu) =qlg: = q). (10)

In the last step of both derivations, we use the assumptions
that 1) the general observations Y (¢) are conditionally Markov
given the current state, and 2) the label sequence is Markov.
These equations easily simplify to the standard HMM results
by letting ¢ = s € S,Y(q:) = Yyt = t — 1; and so
forth. For the segment model, ¢; = (a,l) € A x L,Y(¢) =
[Ye—it1,- -, Ye]s tp = t—1, etc., and the state likelihood p(g; =
(a,1),yT) is interpreted as the probability that a segment of
label o and length [ ends at time ¢. The term oF (a, ) (where §
stands for segment model) corresponds to the probability of the
partial observation sequence ¢ with a segment of label ¢ and
length [ ending at time ¢. Similarly, 87 (a,) corresponds to
the probability of the partial observation sequence 7 1, given
that: a segment of label a and length [ ends at time ¢ and the
preceding observations y}. The terms o (a, () and 37 (a, 1) are
calculated using recursive forward and backward algorithms:

af(% l) :p(at =a,ly = l??/i)
= Z Zp(yt*l—l-l? v 7ytla7 l)p(a> l|a/7l/)
a/ l/

! O‘f~l(a/v l/)

/Bf(a’ l) :p(ytz:i-lla't = a, lt = ZayD
= Z Z ﬁtSJrl’(a/J ll)p(yt+1’ S Yl |a/a l/)
a’ U .

-pla’,la, ) (12)
where we have made the additional (but unnecessary) assump-

tion that segment observations are conditionally independent
given the segment label sequence

p(Y(g0)lar = 0. Y (gp())) = p(Y(@)lae = q).
(The more general form allows for conditionally Gaussian
models across segments.) In addition, (11) and (12). simplify
* further if we include the ecarlier assumptions that segment
lengths depend only on the current segment label, and segment
labels are Markov

p(a,lja’,1") = p(lja)p(ala’)
and are then equivalent to those in [37]. .

(an

2) Discrete State Estimation: the Most Likely State Sequence:
An alternative approach is to jointly estimate the most-likely-
state-sequence (MLSS) ¢} and the model parameters 6,
thereby maximizing the likelihood

max (yl aQ1 )

T M
. 4 =
Po(y1,d1") o Eha ]

over f. This maximization can be performed by alternating
between the following two steps:

1) Find the most likely state sequence given the current

parameter estimates.

2) Re-estimate the model parameters 6 using the newly

obtained state sequence.

To find the most likely state sequence in the case of segment
models, we must find the most likely segment label sequence
and segmentation (or sequence of segment lengths) jointly.
As in recognition, we use a dynamic programming algorithm,
which differs from that described in Section II-B-1 in that
the possible label sequence is constrained according to the
known word sequence, effectively reducing the sets of active
segment labels {4, }. Describing the algorithm in terms of the
dynamic programming algorithm in Section II-B-1 represents
a slight generalization of that described in [27] since we do
not constrain the segmentation to a specific phone sequence
but allow for alternate pronunciations for words when such
are available from the recognition lexicon. For the parameter
re-estimation step, we can unify the treatment of the EM
and the MLSS algorithms by using degenerate conditional
distributions of the discrete state sequence, given the current
model parameters and the observations.

This MLSS re-estimation procedure has been applied to
both HMM’s [35] and segmental models [27]. For HMM’s,
it has been shown that under certain conditions, the MLSS
procedure will yield asymptotically identical results with the
Baum-Welch algorithm [38]. Although this has been debated,
in practice, the MLSS procedure provides satisfactory esti-
mates when good initial estimates and enough training data are
used. In particular, it provides a practical alternative for SM
training, for which the generalized forward-backward algo-
rithm can be very costly. Starting from an HMM segmentation,
segment model training requires only a few iterations of MLSS
training.

3) Robust Parameter Estimation: The main difficulty in
modeling context for segment recognition is that the SM has a
large number of free parameters, which requires a significant
amount of training. In representing context, the number of
models increases, and therefore, the effective amount of
training per model is reduced. In addition, the interesting
SM distribution assumptions are often not amenable to simple
smoothing techniques, such as co-occurrence smoothing used
in discrete distribution HMM’s [39] or variance clipping [40]
and Bayesian smoothing [41] used in continuous distribution
HMM’s. An alternative solution is parameter tying, i.e.,
assuming that some model parameters are shared across
models and/or regions. Parameters can be tied based on
heuristic ‘rules using knowledge of the application, as in
[42] and [43], or can be determined automatically through
distribution clustering.
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Parameter tying via distribution clustering has been used
successfully in both segment modeling [22], [44] and exten-
sively in hidden Markov modeling (e.g., [45]-[48]). A general
approach used in many recognition systems is divisive cluster-
ing to maximize the likelihood of the training data represented
by the clustered models (or alternatively to minimize entropy).
The algorithm uses a greedy search to successively add models
through binary splits of subsets of the data as in decision
tree design [49]. Using an ML criterion, each possible split
is evaluated in terms of the likelihood ratio of one versus
two distributions for representing the data at that node of the
tree. Distribution clustering is used with the MLSS training
algorithm described above in the parameter re-estimation step
of the algorithm or as an intermediate step, which uses MLSS
segmentation information to design model topology but is
followed by EM re-estimation [47], [50].

Examples of ML node evaluation functions are given in
[44] for different cases of parameter tying with frame-level
Gaussian distributions, i.e., assuming that observations are
conditionally independent given the state/region sequence. In
principle, the algorithm can be extended to any distribution
assumption that assumes conditional independence across but
not necessarily within regions, but the node evaluation func-
tions may be costly for complex distribution assumptions. As
a consequence, some combination of heuristics, clustering,
and experimentation will probably be needed to solve the
parameter tying problem for segment models.

4) Distribution Mapping Estimation: 1If T;(%) is a determin-
istic function that provides the distribution regions for the
I-long observation (typically frames i € {1,---,[}), then
it must be defined somehow. The mapping can be chosen
heuristically for both the fixed region and trajectory sampling
approaches or automatically for the fixed region approach
where T;(j) € {1,--+, R}, where R is the number of regions.
Heuristics that have been used successfully include linear time
warping for phones (e.g., [21], [27]), linear sampling of the
cepstral vector trajectory for phones [27], and functions of
consonant-vowel structure for syllables [43]. However, there
is evidence that intraphone timing, although systematic, is
nonlinear [26]; therefore, better performance may be obtained
by deriving the mapping automatically. Here, two approaches
are outlined, which could in principle be combined: divisive
distribution clustering in the temporal domain and trajectory
estimation, both based on a ML criterion.

The first approach uses ML distribution clustering as de-
scribed above but in the temporal domain. Starting with one
region per segment, data is successively partitioned to add
regions in the segment model where they most increase the
overall training likelihood, using questions like “is i/l <~?”
or “is [ < 7 (where «y is some threshold learned in clustering).
The resulting mapping is model-independent with a constant
number of regions per model, if clustering is based on the
statistics of all models. Alternatively, clustering can be phone
dependent, in which case, different phones can be assigned
different numbers of regions. Temporal clustering can also be
combined with distribution clustering to define parameter shar-
ing over different triphones, resulting in an overall algorithm
very similar to successive state splitting [50].

367

The second approach assumes a known number of regions
for each model and again can be used for general or model-
dependent warpings. The algorithm finds T; separately for
each length [ € £ (and optionally for each group of models
Ap C A) such that

Ty =argmax » »  logp(Yila, Ty)

! a€Ar Yi€Va,

!
=arg;naxz Z Zlogp(yéla,]}(j)) (13)

! a€A, Vi€V, j=1

where V,; = {Yi:a; = a,l; = 1}, and yj- is the jth
feature vector in segment Y;. Equation (13) can be maximized
using dynamic programming (e.g., [51]), assuming that the
mapping is constrained to be monotonic in model indices, i.e.,
Ti(j)Ty (5 + 1), and successive frames are either conditionally
independent or Markov given length [. Given the new warping
T}, the distribution parameters are then re-estimated, and the
process can be iterated within step (2) of the MLSS algorithm.
The initial warping might be a simple heuristic or one obtained
by divisive clustering. A disadvantage of this algorithm is that
it has no generalization mechanism for unobserved lengths .

III. MODELS OF FEATURE DYNAMICS

Since an HMM is a special case of a segment model, the
segment model is capable of achieving at least the same level
of performance as an HMM, and experiments have shown that
performance is similar for equivalent distribution assumptions
and numbers of free parameters [52]. However, the segment
model allows for more general families of distributions than
with an HMM, particularly distributions that implicitly or
explicitly model feature dynamics. There are many possible
distribution assumptions that can represent feature dynamics,
each with advantages and disadvantages that must be weighed
experimentally. In this section, we outline several different
alternatives, including constrained mean, Gauss—-Markov, and
more general linear models, as well as segmental mixture mod-
els. For each case, we describe analogous HMM assumptions.
Some insights into experimental tradeoffs are provided, but
the space of parameterizations has not been explored enough
to draw strong conclusions about the relative advantages of
the different assumptions.

A. Constrained Mean Trajectory

The simplest distribution assumption is given by (2), where
a segment model is characterized by distribution regions, and
frame-based observations are assumed to be conditionally in-
dependent, given the region sequence (or the state sequence,for
an HMM). Unlike an HMM, the region sequence within a
segment can be constrained by a deterministic distribution
mapping 7T}, hence the term “constrained mean.” Two issues
determine the particular type of constrained-mean trajectory
model: whether the distribution mapping 7 is a trajectory
sampling function or an indexing function to a fixed set of
regions and whether the mean trajectory is parametric or
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nonparametric.’ By parametric, we mean that the mean is
specified by.a constant, linear, or higher order polynomial
trajectory, and distributions for specific regions correspond
to points along the trajectory. Nonparametric trajectory mod-
els, on the other hand, have distribution parameters that
are separately estimated for each model region. While both
parametric and nonparametric models can use either type of
deterministic distribution mapping, it is most common for the
parametric trajectory to be used with trajectory sampling and
the nonparametric trajectory to be used with the fixed set of
region-dependent models.

The first frame-based stochastic segment models were non-
parametric, i.e., [27] for fixed-length observations and [21] for
variable-length observations. Further work at Boston Univer-
sity continued in this vein, exploring different frame-level dis-
tribution and parameter tying assumptions with deterministic
distribution mappings, e.g., [42], [54], [44], yielding perfor-
mance comparable with many state-of-the-art HMM systems
in an unlimited vocabulary dictation task (e.g., 10.0-11.5%
word accuracy on.the 1994 ARPA benchmarks [55]). Nonpara-
metric trajectory models using dynamic mappings include [16]
and [17]. Because time correlation can be captured implicitly
through the use of derivative features and because robust
parameter estimation is easier at the frame level, this model
has been difficult to improve upon in terms of performance.
Since the distributions across a segment are not constrained
in parameter estimation, this is also the least explicit model
- of feature dynamics.

Parametric trajectory segment models were introduced sep-
arately by Gish and Ng [56] (as a segment model) and Deng
et al. [15] (as a nonstationary-state HMM).® In both cases,
the mean trajectory is parameterized by a polynomial in D-
dimensional vector space, and frame-level observations are
assumed to be conditionally independent given the segment
length. Specifically, the sequence of distributions used in com-
puting the likelihood of an /-length segment yﬁ is described
by the sequence of means [u; -] = BZ;, where B is a
D x (m + 1) matrix of coefficients for polynomial order m,
and Z; is an (m+ 1) x { time sampling matrix. For m = 0, Z;
is a row vector of 1’s; for m = 1, Z; has a vector of 1’s in
the first row and a vector of normalized times ¢ in the second
row. As an example, the value of the ith component of the
mean vector at normalized time 7 is given in the quadratic
case (m = 2) by pe = by + bigg-i- bi3t~2, where bij is an
element of the coefficient matrix B. The two approaches differ
in the representation of time. Gish and Ng define the observed
segment to be a linear sampling of a complete trajectory;
therefore, £ € [0,1], as illustrated in Fig. 2(b) for a scalar
trajectory. Deng et al. use absolute time; therefore, { o« j
for the jth frame in the segment, i.e., the trajectory varies
with segment length. Using absolute time has the advantage
of efficient recognition and segmentation algorithms since the

3The parametric versus nonparametric terminology is borrowed from Gold-
enthal and Glass [53], although we classify their nonparametric model with
those described in Section IV that use fixed-length features.

6 A parametric trajectory model is also proposed by Krishnan and Rao [57],
but they represent probabilities of regression terms rather than observations,
and thus, their model fits with those in Section IV.

Markov assumption holds within and across segments, but it
is only reasonable for subphonetic units (a phone of length [

“generally does not correspond to the first half of a phone of

length 21).” Both approaches reduce training costs by taking
advantage of an assumption that the covariance is identical
for all frames in the segment, although this assumption may
have associated tradeoffs in speech recognition performance.
(In nonparametric trajectory modeling, we find that covariance
determinants vary as a function of the region in a phone, i.e.,
there is more variation at the beginning and end of a phone
than in the middle.) In experiments on the TIMIT corpus
comparing constant, linear, and quadratic mean functions, the
different researchers both find error rate reduction with higher
order models (approximately 10% for vowel classification [56]
and 20% for phone recognition [59]), and both find that only a
subset of sounds require quadratic trajectories (i.e., diphthongs
[56] or transitional subphonetic units defined by articulatory
features [59]).

The parametric .and nonparametric approaches each have
their respective advantages, and parameter estimation equa-
tions for both are given in the Appendix. The parametric
approach is well motivated by the smooth trajectories in many
speech units, assuming that units that do not vary smoothly
in time (e.g., stop consonants) are represented by multiple
segments (or “states”). The nonparametric approach has com-
putational (and/or storage) advantages since distribution means
can be stored in a small table and score caching can be used for
reducing computation. Parametric models tend to have fewer
parameters than nonparametric models, but nonparametric
models may be better suited to parameter tying (which has
been most successful at the subsegment level) and distribution
mapping estimation. Further research is needed to assess the
relative benefits.

B. Conditionally Gaussian Models

After conditional independence of observations, the next
simplest distribution assumption is the Markov property. For
Gaussian distributions,? this corresponds to a Gauss—Markov
assumption within and optionally across segment regions or
HMM states, e.g., for segments

. 1
ba’)l<yi) = H P(yt|yt—17 a, Tf)‘
t=1

(14) .

Researchers have long observed that the HMM assumption
of conditional independence is not valid and have investigated
alternative assumptions. Early work with Markov assumptions,
referred to here as conditionally Gaussian HMM’s,® was due
to Wellekens [5], who described extensions to the Viterbi and

"This deficiency of the model has been addressed somewhat by a state-
dependent time scaling term in [58], although normalized time is still
proportional to the frame time.

8 Discrete observation Markov assumptions are explored in [60].

9We have used the term “conditionally Gaussian HMM” to distinguish
between these models and autoregressive (or hidden filter) HMM’s [61],
[62]. The autoregressive model represents conditional dependence’ within a
fixed-dimensional vector of waveform samples using scalar linear prediction.
The conditionally Gaussian HMM represents conditional dependence aéross
vectors in a variable-length sequence, using vector linear prediction.
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warped time

sampled time

Fig. 3.
between hidden regions).

Baum-Welch algorithms for this case, and Brown, [6] who
also explored these models experimentally.

Conditionally Gaussian models were rediscovered by Kenny
et al. [7]), who (like Brown) found a benefit to the con-
ditionally Gaussian model for simple cepstral features but
not for features augmented with derivatives. The analogous
(Gauss—Markov) assumption for segment models was explored
by Digalakis er al. [52] with similar conclusions. Deng and
colleagues extended the parametric trajectory model [15] to the
Gauss—Markov case [63], providing the first positive results
for the Gauss—Markov assumption with cepstral derivatives.
The 10—40% reduction in error rate (smaller as the number
of states increased) obtained on a speaker-dependent CVC
syllable recognition task was not simply due to the addition
of the parametric trajectory mean; the combination of the
parametric trajectory mean and the Gauss-Markov assumption
outperformed either assumption alone.

For HMM’s, further work with explicit time correlation
modeling has generated more encouraging results. Woodland
[64] achieves improved performance by using higher order
vector predictors and discriminant output distributions. Taka-
hashi ez al. [65] also obtained good results by conditioning on
a quantized version of the previous observation and modeling
conditional dependence in a mixture framework. Segment
modeling research, on the other hand, took a different approach
to solving this problem by adding an observation noise term,
as described in the next section.

Training the Gauss—Markov parameters for the segment
model is analogous to the HMM solution. For segment mod-
eling, however, it is more convenient to use MLSS training
to associate observations to model regions than to deal with
the added complexity of the hidden segmentation; therefore,
the MLSS update equations are given in the Appendix. In
addition, for segment modeling, there is the question of
whether correlation is represented between observations or
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Illustration of two possible correlation assumptions: time warping (correlation between successive observations) versus time sampling (correlation

between some sequence of regions in a hidden trajectory, as
illustrated by time warping versus time sampling respectively
in Fig. 3, with time sampling requiring a more complex
parameter estimation process.

C. Dynamical System Model

A stochastic, linear dynamical system (DS) is, in general,
described by the equations
(15)
(16)

Typ1 = Fyxy +wy
yr = Hyxy + g

where z; is an unobserved state vector, y; is an observed
feature vector, and w,; and v, are uncorrelated Gaussian
vector processes with mean and autocovariance functions
(nw (), Cw(t,u) = Qw(t)drw) and (py(t),Cy(t,u) =
Qv (t)d: ), where 6, is the Kronecker delta. The initial
state zo is also Gaussian, with mean and covariance
(uo, Xo). The dynamical system model is widely used for
estimation and control problems with nonstationary signals
but was introduced as a speech recognition model by
Digalakis et al. [13], [66]. In order to use the DS in a
multiregion segment modeling framework, a parameter set
© = {H, pv,Qv,F,pw,Qw, 110, Yo} is defined for each
region of each segment model, assuming that the system
parameters are locally time-invariant within a region. The
probability of a segment is computed using the innovation
sequence {e;}

{

bat(vh) = [ [ pledla, )

t=1

amn

where p(e;fa,r;) is Gaussian with zero mean and covariance
Y., and e; and X, are found using the same equations given
in the Appendix as part of parameter estimation. Within a
region, the DS model can be viewed as a continuous-state
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Fig. 4. Family tree of stochastic models for a variable-length frame-based observation sequence. The arrows indicate model simplifications, with s
representing both HMM state and SM region. The four cases in the top half of the figure correspond to a single region (or “stationary”) SM. The three

models with the dashed boundaries have a continuous hidden state.

HMM since the hidden trajectory vectors z, are continuous
valued. Taken as a whole, the DS segment model combines
both a continuous unobserved state z; with a discrete state that
is the index to the model region 7.

One view of the hidden trajectory is as a filtered series of
targets (uw ), and in this sense, the DS model is similar to
that. proposed by Bakis [67] with the exception that Bakis’
approach uses minimum error rather than ML for training and
recognition. From another perspective, the stochastic process
‘generated by this model can be thought of as a scaled, noisy
observation (specified by the observation equation (16)) of a
Gauss—Markov process (described by the state equation (15)).
Thus, it includes the Gauss—-Markov process as a special case
(H = I,vy = 0,5 = ;). Many. of the other modeling
assumptions described here can also be viewed as special cases
of the DS model (see Fig. 4). For example, if the unobserved
state z; is taken to be zero, then the terms v; provide the
distributions for the regions (y; = v;), and the multiregion
DS model corresponds to the constrained-mean trajectory
assumption. The constrained mean may be parametric or not,
depending on the definition of v;. In Section III-E, we shall
describe additional special cases.

Training is equivalent to ML identification of a stochastic
dynamical system. The classical method to obtain ML esti-
mates requires the integration of adjoint equations, which can
become too involved under certain distribution assumptions
and for the large number of models typically used in speech.
Alternatively, the EM algorithm provides a simpler solution
by viewing the state variables x; as a hidden continuous state
[66]. Specifically, the EM algorithm involves iteratively com-
puting expected moments of the hidden state process and re-
estimating the model parameters using multivariate regression.
Further details are provided in the Appendix. Note that this

iterative algorithm is embedded in the parameter re-estimation
step of the general iterative MLSS training algorithm.
Because there are so many options for the structure of this
model, parameter tying becomes very important but also' more
difficult. Thus far, most parameter tying has been based on
experimentation and heuristic assumptions using knowledge
of the units being modeled. In [66], it was assumed -that
H = I,uw = 0 and Qv was tied over all regions and all
phones (arguing that “observation noise” was independent of
phone label). This structure was compared experimentally to
other variations that included the nonparametric constrained
mean and Gauss—Markov assumptions in context-independent
phone classification experiments, and the DS model with the
time warping correlation assumption gave the best results with
6-13% reduction in error rate relative to other models [81].
(Presumably, the benefit of the DS model would be greater for
the context-dependent modeling case because of the reduced
variance of the initial state. In addition, other results [68]
suggest that segmental models are better suited to representing
detailed contexts.) In contrast, Bakis [67] chose parameters
equivalent to making H model-dependent, uy = 0, tying F
over all phones (arguing that F' represented rate of movement
of the articulators and was therefore phone-independent),
and letting pw represent hidden targets. Ross and Ostendorf
[69] defined parameter tying for intonation modeling based
on linguistic studies of different factors affecting intonation.
Clearly, there are many untested options within this frame-
work, and further experimental work is needed for assessing
broad topology assumptions as well as parameter tying.

D. Nonlinear Models

The dynamical system model described in the previous
section can be further generalized by allowing for nonlin-
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ear models, as proposed in [70]. Other possibilities include
predictive neural network models, e.g., [71]-[74], generalized
to the segment framework. Of course, the use of nonlinear
models introduces an additional computational burden, par-
ticularly in automatic training, which is a cost that is not
clearly justified in all speech modeling problems. In our
own studies [13], we compared the performance of linear
versus nonlinear regression in explaining the variance of a
particular observation within a segment, where the nonlinear
regression is based on the alternating conditional expectation
(ACE) algorithm [75]. In addition to validating the widely
held belief that observations within the same segment are
highly correlated, the results showed that the percentage of
the variance explained by the linear regression method was in
most cases very close to that explained by the ACE method.
Thus, linear models (i.e., Gaussian assumptions) are probably
adequate for modeling intrasegmental dependencies, at least
for cepstral parameters and phone or subphone units. Linear
regression did not work well for predictions across phones;
therefore, nonlinear models may be useful for diphone units
and/or other feature sets. In addition, nonlinear models may
be useful in combination with linear models, e.g., for mapping
from a low-dimensional, linear hidden trajectoty space [76] or
for modeling the trajectory over longer time spans [77].

E. Segment-Level Mixtures

Since mixture distributions have been used so successfully
in HMM’s (e.g., [78]), a natural extension of any of the
models described so far is to segmental mixtures. The direct
analogy to HMM general Gaussian mixtures (which are often
called continuous density HMM’s) is a discrete mixture of
segmental distributions with the mixture mode specifying
which of the mixture components generated the segment
observations. Essentially, any of the models given in Fig. 4
can be extended by introducing a discrete mixture mode.
Alternatively, one can envision a continuous mixture mode
by defining a prior on a parametric trajectory. In either case,
the correlation among the sequence of random variables in
a segment is represented through the mixture mode. If the
advantage of frame-level mixture distributions stems from
systematic variation in speech, then segmental mixtures may
be able to represent the systematic component via a framework
that keeps the mixture mode constant across the segment.
In contrast, the frame-level mixture model allows mixture
modes to change randomly at each time step. Of course, if
the advantage of frame-level mixtures is simply that Gaussian
models do not fit the data well, then frame-based mixtures will
be a more efficient representation than segmental mixtures.
This question must be answered empirically and remains
open at this point, although our intuition and preliminary
experiments favor the systematic variation interpretation.

1) Discrete Mixture Modes: The discrete-mode segmental
mixture model attempts to represent systematic variation by
generalizing the SM to have a finite collection of segment-
level distributions, which are combined with mixture weights
that correspond to the probability of observing a particular
trajectory in a segment. Specifically, the probability of y}
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given unit ¢ and length [ is

Nc
ba,l(y%.) = Z p(cj|a)p(yi cha a, l)

i=1

N¢ )
=Y plela)b] ,(vles).

j=1

(18)

For each of the N¢ mixture components, c;, bg [(hle;) gives
the probability of the complete segment conditioned on that
component, and the probability p(c;|a) is the mixture weight.
Initial studies used constrained mean trajectory models as
the mixture components b7 ,(y4|c;), although in principle,
any of segmental distribution assumptions could be used.
Nonparametric trajectory segmental mixtures are introduced in
[54] and [79], and parametric trajectory mixtures are described
in [56]. (A segment-level mixture model is also proposed
in [80], but in this case, fixed-length segment observations
are used, as in [27], and the model does not strictly follow
the framework described here.) One problem with segmental
mixture models is the greater number of free parameters,
which can lead to overtraining and difficulties in estimating
robust context-dependent models, as described below. The
number of free parameters can be reduced, if necessary, by
using parametric constrained mean trajectories and/or by using
mixtures at the subsegment level as explored in [13] and [14].

As for the dynamical system model, the iterative EM
algorithm is required to estimate the mixture model parameters
since the mixture mode is hidden. In this case, the E-step
requires computation of the posterior probabilities of each
mixture component for each hypothesized segment, and the
M-step uses these probabilities to weight the observations
in updating the parameters. These steps are repeated until
adequate convergence is observed: typically a few iterations.
The EM algorithm for estimating frame-level mixture distri-
butions is sensitive to issues of initialization and unbounded
likelihoods, and the problems for segmental mixtures can be
more severe because of the higher dimensional space. As a
consequence, techniques like variance clipping are important
for obtaining good results.

Experiments with segmental mixtures of nonparametric con-
strained trajectory models [79] give very good performance
for context-independent phone modeling on the Resource
Management task, outperforming single constrained-mean and
frame-level mixture models by 20-30% [14], [79]. For the
context-dependent modeling case, however, more training data
and/or further work on parameter tying is needed before this
approach outperforms the frame-level mixture model.

2) Continuous Mixture Modes: An alternative approach to
segmental mixture modeling is to represent a continuum of
possibilities by putting a prior on some parameter of the
trajectory, such as the mean in the parametric constrained-
mean trajectory model. The simplest such model assumes a
constant mean throughout the segment y; ~ N(u,Y), where
the mean is modeled by a Gaussian prior 4 ~ N (pg, Xo). This
model was proposed by Russell [8] and Gales and Young [37],
[9] as a “segmental HMM” and by Ostendorf and Digalakis
[81], [13] as a “target state SM.” The constant Gaussian mean
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model is again a special case of the dynamical system model,
where the state is constant for all {,z; = zy = g, ie.,
=1 puy =0,w, =0and @y = . In addition, it can
be viewed as a sophisticated version of variable frame rate
analysis, as shown in [8] and [68], where the segment mean
is used rather than the first observed value.

The three separate developments of the constant, random
mean model resulted in three approaches for computing the
probability of a segment. Russell [8] proposed an approxi-
mation of the segment probability based on the most likely
trajectory given y!, whereas Gales and Young [9] give a
formula for the exact probability:

logba(yh) =K — L |1log |Z| + log |So| — log ||

i
+ g S5 o + Sy Sy — pX T s
=1

where K includes the 27 terms, T indicates transpose (versus
T for observation length), and

Sol=ngt 4127t and

l

pn =50 | S5 0 + =71y
=1

Under the dynamical system interpretation, the exact solution
can be obtained recursively by taking the product of the
innovation probabilities as in Section III-C, which can save
computation because it allows for segment pruning. However,
the recursive solution is only efficient when the terms K; and
¥, (from the Appendix) are prestored for all lengths, which
is not practical for long segments.

More general parametric trajectories can also be used in a
continuous mixture, as Holmes and Russell [82] have shown in
an extension that puts a prior on linear (or potentially higher
order) trajectories. When the hidden mean is a polynomial
trajectory with m > 0, which is the hidden polynomial mean
model in Fig. 4, there is no direct analogy to the DS model
unless the assumption that w; are uncorrelated is relaxed.

Initial experimental results by all sites on context-
independent modeling were discouraging, perhaps because
of the constant mean and covariance assumptions. However,
initial work in context-dependent phone modeling has led to
some gain in performance on a digit recognition task: 20-30%
reduction in error rate relative to a standard frame-based HMM
but smaller improvements relative to variable-frame-rate and
mixture HMM’s [68]. In addition, the use of higher order
trajectories could lead to further improvements.

IV. SEGMENTAL FEATURES AND POSTERIOR DISTRIBUTIONS

As mentioned earlier, one of the ‘initial motivations for
considering segmental models is the potential for incorporating
segmental features. In this section, we return to. the problem of
representing segmental features and show that it is problematic
for stochastic modeling in general. Since the most promising

approach to incorporating segmental features in a valid statisti-
cal model is through posterior distributions, we then highlight
some modeling issues critical to this approach.

A segmental feature is any transformation f(y!,l) of the
variable-length segment observation sequence ¥}, such as a
vector of average formant frequencies. In approaches using
conditional distribution models with feature transformations,
Equation (5) becomes

(yi((z) 1)+1|li> ai)

52

P(?J1 |l1 » a1 )

.
1
—

=

p(f (Y5, L), ai)

o
Il
—

where Y, = y:gl) 141 represents the observations in the

ith segment. (In this section, we use “=” to indicate a
modeling assumptjon.) One common type of “segmental fea-
ture” is a fixed-length, sampled version of the observation
sequence, different versions of which are used in [27], [95],
and [80]. Unfortunately, the. fixed-length feature mapping
changes the dimensionality of the probability space of the
whole sequence so that it is proportional to the number of
hypothesized segments, and thus, fewer segments are favored
because of the smaller number of probability terms. The
dimensionality problem can be addressed heuristically with
a length-dependent weighting factor, as in, e.g., [27], but it
reflects a more general problem of conditioning on different
events for different segmentations, as illustrated next with
the posterior distribution equations. Moreover, for context-
dependent models and the nonparametric constrained-mean
distribution, Kimball [79] finds that the fixed-length fea-
ture assumption hurts performance, even with the appropriate
heuristic length weighting factor.

The dimensionality difference is not so obviously a problem
with posterior distribution models. Looking at the problem
of phone classification, it seems reasonable to assume that
there is a piecewise constant mapping from the space of
segment observations to phone likelihoods, as in p(a|Y) =
p(al£(Y,1)). For the problem of phone recognition, however,
segment boundaries are not known a priori, and this mod-
eling assumption requires feature processing to depend on
the segmentation. Using posterior distributions, the segment
recognition problem (see (7)) becomes

|ll Y1 )P(ZN|91 )}

——argmax {maxp(a1 |F(yF ,lN))p(lmy?)} 19)
N a

il =arg max {max play
NaN

where F(yf,1{) = {f(Y;,1;)}. Since the feature process-
ing assumption necessarily depends on the segmentation, the
features differ as a function of the segmentation, and the
overall conditioning event F'(yf,1{’) is not unique. In this
case, the foundation of statistical detection theory is lost since
the theory holds for comparing p(a|2) to p(a’|#) and not for the
comparison of p(a|z) to p(a’|w). Thus, segmental features are
problematic in general for joint segmentation and recognition
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problems and are most useful for the more restricted case of
rescoring hypotheses with the same segmentation.

However, posterior distribution models need not be re-
stricted to fixed-length features, and there is much interest
in such models because they provide a broader and potentially
more powerful class of discriminant functions. In particular,
both decision trees [49] and neural networks can be used to
estimate posterior distributions, providing general nonparamet-
ric models of the mapping from observations to class labels.
(For neural networks, see [83] for a connection to HMM’s
and [84] for a more general discussion.) Posterior distributions
have been used successfully in HMM’s (e.g. [85]-[88]) and,
under certain assumptions, can be shown to be mathematically
consistent [89]. For segmental posterior distributions, however,
some additional difficulties are encountered, again because of
the segmentation dependence. There are fundamentally two
problems: segmentation likelihood modeling and appropri-
ate independence assumptions for context-dependent models.
Various methods for computing the segmentation likelihood
(p(I¥|¥¥) in (19)) have been explored with some success [90],
[91], although experiments in [79] suggest that further work
is needed. In addition, an appropriate choice of the segmen-
tation probability model might address the conditioning event
mismatch problem for segmental features so that p(a|z)p(z|y)
is compared with p(a’|w)p(wly), and the recognition problem
is a joint maximization over labels and features.

Context modeling is difficult in general since it requires
robust estimation techniques to handle the practical problem
of a large number of free parameters, which is an issue
explored in [92] and [93] for posterior distributions. How-
ever, the bigger problem relates to conditional independence
assumptions, which are theoretically inconsistent in some of
the currently proposed segmental posterior distribution models.
It is reasonable to simplify (19) by assuming

N
NN T NN , T\ — N T
plat' iy .91 ) =p(n' I, 91) = HP(%’”l (YL Yie1)

i=1

where ; is a triphone label. Since successive triphones nec-

essarily depend on each other, it is not appropriate to drop the

;1 conditioning here. Further simplification, however, is, at
best, a reasonable approximation, as in

p('Yi‘l{V7y?a7i—l)
~p(Vilvi-1,{(L;,Y;),i =i— K, -, i+ K})

for some K, assuming that observations sufficiently distant
in time do not affect the current state. It is not reasonable
to assume that ; is independent of all Y; # Y; given Y;.
This was shown experimentally in [79] and can be seen
intuitively by considering an analogous problem for HMM’s:
The approximation

p(seluT, s1-1) = p(8else—1,97 ) ~ P(se|ss—1, )

is roughly equivalent to ignoring the backward pass of the
forward-backward algorithm.

This is not to say, however, that either posterior distribution
modeling or the use of segmental features has been completely
unsuccessful. Despite theoretical problems, fixed-length and
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segmental features have been used with practical success in
a variety of systems. They facilitate the use of segmental
neural networks [94], [90], [92] and allow for joint correlation
modeling of the entire segment [95], [57], [80]. The question
raised here is whether these results might be even more
successful in a slightly revised framework. Since the area of
posterior distribution modeling has received less attention than
models based on class-conditional distributions, many of the
questions of interest are not yet fully answered, and problems
raised here will undoubtedly be addressed with further work.

V. DISCUSSION

In summary, segment models can be thought of as a
higher dimensional version of a HMM, where Markov states
generate random sequences rather than a single random vector
observation. The basic segment model includes an explicit
segment-level duration distribution and a family of length-
dependent joint distributions (which are specified via region-
dependent distributions and a time mapping to those regions).
Since segment models are a generalization of HMM’s, the
standard HMM training and recognition algorithms can be
easily extended to handle segment models, but with a higher
computational cost due to the expanded state space.

The advantage of segment models is that there are many
alternatives for representing a family of distributions, allowing
for explicit trajectory and/or correlation modeling. Several dis-
tribution assumptions that have been proposed in the literature
have been described here. Looking at the group of options as
a whole, the key modeling assumptions include the following:

1) whether the trajectory model is hidden (as for the dy-
namical system and various segmental mixture models)
versus observed (as for the constrained-mean trajectory
and Gauss—-Markov models)

2) whether correlation is modeled explicitly - through
Gauss—Markov assumptions or a mixture mode versus
implicitly through the distribution mapping constraints

3) whether the trajectory (hidden or not) is represented
parametrically or nonparametrically.

In addition, the use of a deterministic mapping to distribution
regions raises questions about what is the best model of
intrasegmental timing. Aspects of these alternatives have been
explored in isolated experiments, but much more work is
needed to assess the relative benefits of the different modeling
assumptions as a whole. Of course, the answer to questions
about structure will depend on the particular feature vectors
used and the units represented, which raises further questions
about the problems for which segmental models are best suited.

In addition to better understanding the behavior of the
different segmental models through empirical studies, further
algorithmic and theoretical development is needed on several
fronts. For example, distribution clustering has proved to be
very useful for HMM’s, as well as for clustering region-
dependent distributions in segment models. However, because
subphonetic distribution clustering has been more successful
than phone-level clustering, new techniques may be needed for
robust estimation of context-dependent parametric trajectory
models and segmental mixture models. A related problem
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is adaptation. Both speaker and incremental adaptation have
proved to be powerful tools for improving HMM performance,
but there are many more parameters in a segment model than
in an. HMM. Therefore, segment models (even more than
HMM'’s) will require adaptation techniques that can generalize
from a small amount of data to a large number of parameters.
Finally, the use of posterior distributions in segment modeling
is still in its early stages, and much can be done to advance
these models.

In conclusion, we note that much of the theoretical frame-
work of the segment model can also be applied to other
time series modeling problems. For.example, phrase-structured
language modeling (e.g. [96] and [97]) can be formulated as
a variable-length state (segment) process, where a “segment”
corresponds to a phrase, and the “observations” are words. In
this case, the observation distribution assumptions would need
to reflect the discrete nature of word-based observations. SM’s
can also be used in synthesis applications, as in [69], where
trajectory modeling and structural ‘constraints make the DS
-model more useful than HMM’s. Thus, a further development
of segment models will have implications beyond acoustic
modeling for speech recognition.

APPENDIX
PARAMETER ESTIMATES FOR DIFFERENT
DISTRIBUTION ASSUMPTIONS

Here, we provide the re-estimation formulae for the different
distribution assumptions described in Section III, specifically
for step 2) of the MLSS training algorithm. (The analogous
solutions using the general forward-backward algorithm are
simple extensions that use sums of all observations weighted
by the likelihood of the hypothesized segment.) The full
derivations of the results are omitted, but references are
included in each case. In all cases, we simplify the notation
by using the index  to indicate segment model label and
region index combined. Accordingly, we assume that training
for model a is based on the set of segment observations
ya. = {}/i:ai = a}u where Y; = [yt“"'aytz-i-li}ayt is a D-
dimensional vector, and training for region r in model o is
based on )/, (r), which are the observation frames assigned to
that region. Finally, define |A| as the number of observations
in the set A.

Nonparametric Constrained Mean Trajectory: For the
nonparametric constrained trajectory model, the parameter
estimates are simply the standard Gaussian mean and
covariance estimates:

1
b=, 2 v

Yr €Yo (r)
- 1
Yp = Z (e — fir) (e — )™
[Va(r)] Ye€Va(r)

Parametric Constrained Mean Trajectory: The Gaussian
distributions for the parametric trajectory model are char-
acterized by a D x (m + 1) matrix B for describing the
vector mean trajectory with an mth-order polynomial and
a single D x D covariance matrix ¥ used for all frames.
The particular parameter estimation solution depends on the

trajectory sampling assumption; therefore, different solutions
are given in [56] and [15]. Here, we present the Gish-Ng
solution [56] since their model is most similar to the other
examples included in the Appendix. (These equations differ
slightly from those in [56] since we use a transposed definition
of ¥; and have not included the segmental mixture terms.)
Define the ML estimates of the trajectory parameter matrix
for a single segment observation Y; as

B = KZE[ZLZE]—I

where Z; is the (m+ 1) x | time sampling matrix described in
Section III-A. Taking this statistic for all segments Y; that map
to the specific model of interest, the new model parameters are

' -1
B= Z ﬂizlizg Z ZziZlF;F and
Yi€V, Yi€Ya
DI > (Yi-Bz)(Y:i - Bz,)T  (20)

where fi; is the jth column of B Z;,, which is the estimated
mean for sample j in an /; length segment. (In this case,
the region r is indexed by normalized time, which may be
continuous valued.)

Dynamical System and Gauss—Markov Models: Using the
EM algorithm for estimating the parameters of the dynamical
system model, as proposed in [66], involves computing the
conditional expectations of the sufficient statistics for the
hidden state during the E-step, using these to re-estimate the
parameters during the M-step, and iterating until convergence.
In this discussion, we assume ¢ is such that y; € Y,(r)
and [V,(r)] = N. At each iteration p, assuming that the
observations y; are complete, the E-step involves computation
of the expected first- and second-order statistics given
the observation set Y,(r) and current model parameters
01‘(13) = {HT9 Wvr, Qury Fr, Hwe, QW?”: Hor, EOr}

Eo, py{#t|Va(r)} = 2yn
B, (p ey |Va(r)} = dyndiy + Syn

Eer(p){l”tx?—ﬂya(?")} :Cf?t;Ni’;r_nN + Et,t—uN

(To simplify notation in further discussion, we drop the r
from ), and the specific parameters.) These statistics are
calculated using the fixed-interval smoothing form of the
Kalman filter, including forward and backward recursions as
shown below, augmented with cross-covariance recursions
to get second-order statistics. This solution is analogous to
the HMM forward-backward algorithm, but state expectations
are computed rather than likelihoods because the state is
continuous (see the box at the bottom of the next page).

During the M-step, new parameter estimates are found
based on the estimated state statistics. To further simplify the
equations in this section, we define the operators

1 1
<0>To:rﬁzo <0>Ts=‘mzo

te7, teTs
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where 7, = {t:y: € Ya(r)} includes all observations mapping
to a and r, and Ty = {t:yr41 € Va(r)} excludes the last
observation time. The formulae for fully observable y; are then

[ﬁ ﬂV]=<[ytE{$tT|ya} yel)7,

(v =eem),)

21
Qv = )1, — (wE{l 1V} w7,
H w]” 22)
[F ﬂW]—_-([E{xthtTWa} E{ze1| Vo)) 7,
,<<[E{w§|ya} Pleal]) )
E{xt D)a} 1 T,
(23)
Qw = (B{zi121|Va})7,
—([B{zrp1zi 1Yo} E{zea| Vo)),
JF ] (24)

When the means are assumed to be zero, these equations
simplify as shown below for uy = 0.

H = (g B{af Va7, (B{zez] (Vo })7,) 7
Ov = (ywl)z, — HE{z |V }vE) 7, '

The estimates for o and X are simply the standard Gaussian
mean and covariance equations using the estimated first- and
second-order moments Eq(,) {zo|Va} and Eg(p) {zozd |Va} for
all instances of at least one observation mapping to region 7.
Since the Gauss—Markov model corresponds to the special case
where there is no observation noise, the solution in this case
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is simply given by (23) and (24), substituting y; for z; and
omitting the E-step.

This solution is based on the derivation in [66], [43] and
assumes that y; is fully observable. These references also
include solutions for the case when some ¥, are completely
[66] or partially [26] missing and problems of nonuniform
parameter tying [43]. (Observations y; might be missing when
correlation is defined in terms of a hidden trajectory, i.e., the
“sampled time” example in Fig. 3.)

Discrete-Mode Segmental Mixture Model: The parameters
to be estimated in training the segmental mixture model
include the weights for components of the segmental mixtures
p(c;) and the means and covariances of the frame-level
Gaussians (assuming a constrained mean trajectory model).
Training involves the EM algorithm, embedded in step 2 of
the MLSS algorithm, which involves iteratively 1) computing
the likelihood (“counts™) of the different mixture modes and
2) re-estimating the parameters based on these counts.

In the E-step of the EM algorithm, we accumulate “counts”
for each component of the segmental mixture distribution.
At iteration p, the segmental “count” n;; gives the estimate
of the probability of segmental component c; given segment
observation Y;

_ PP(Yile)p(e))

=Pl = A N2
771] p (CJD/;) pp(sz) H

where

pP(Yy) = > pP(Yile;)pP(es)-
k

The M-step requires estimation of mixture weights and
component means and covariances based on the “counts” from
the E-step. The update formulae for the parameters in, for

E-Step: Forward recursions

Bye = Bgjp-1 + Krey
Typ1)e = Foye + pw
e =y — pv — HEy1
K, :Em_lHTE;l
Ve, = H2t|t—1HT + Qv
Et]t = Zt|t—1 - KtzetK;r
Seoae = (I = KH)FE, oy
S = FEaF T + Qw

E-Step: Backward Recursions
Eropin = Tpo1pp—1 T As[To v — Bee—1]
TioyN =21 ASyn = Et[t—l]A;F
Ay = Et—1|t—1Ftlllz_1
Sia-1 N = Dp -1t + BN — Etlt]Et_hflEt,t—Ht

t)t—1
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example, the nonparametric trajectory model are

Z Mij Z Tij Z Yt

Y€V, Yi€Ya  teT(r)

Ble) = e g = B2 T gy
SN w > nslT(r)]
J' Yi€Va Yi€Va
STomg > (we— i) = fie) "
- Y€V  t€T(r)
ir =
> mlT(r)
YieVa
where 7 (r) represents the subset of timesin 1, - - -, [;, that map

to the region r under consideration. The complete derivation
of these equations is given in [79], together with the solution
for the case where the model has both segment and frame-
level mixtures. (For the parametric trajectory model solution,
see [56].) Although no tying is assumed here, in practice, there
may be situations where parameter tying is advantageous. In
this case, the equations above change only slightly, essentially
summing together counts of tied parameters.
Continuous-Mode Segmental Mixture: For the assumption
of a constant hidden mean with a Gaussian prior, three views
of the model led to three proposed parameter estimation
algorithms. Gales and Young [9] find a closed form solution
for the mean (g, which for the MLSS training algorithm is

1;
D B0+ v

~ Yi€Va t=1
M =

Z [liio + 3]~

YieY,

but no simple solution for the covariance terms. They address
this problem by using the approximation that ;|| > [X],
to get parameters estimates in one step, avoiding the use of
embedded iterations in the maximization step. Russell [8] gives
the same solution for the mean and deals with the problem
of the covariance estimates by using covariance values from
a previous iteration in the update equations, giving another
approximate one-step solution. Digalakis and Ostendorf [81],
[13] treat the segment means as hidden variables and use the
EM algorithm to get a ML solution, but embedded iteration is
required. The EM solution is based on the dynamical system
model, but the recursive E-Step equations are not needed here
since there is only a single hidden state to estimate. The
expected statistics of the hidden state of segment Y; computed
in the E-Step for all ¥; € Y, are
l; :
E{z; 0|YVi} =0 = | Dpo + 20 Z Y| [Z+4Z50]
t=1
=2 S0+ popd

where Z; o is the MAP estimate. Then M-Step update equations

E{ziozo|Vi}

are then
fio = Z 250,
D]“ Y€V,
o= Y B{ziozly|Vi} - jwoig,
|y“! Vi€V

S: % 7
le}fze;;a;yw xoyt

YieVa

The embedded estimation solution should give better results
for the MLSS training approach, but the one-step solutions are
better suited to training with the generalized forward-backward
algorithm.
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