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ABSTRACT

RASTA processing has proven to be a successful technique for
channel normalization in automatic speech recognition (ASR). We
present two approaches to the design of RASTA-like filters from
training data. One consists of finding the solution to a constrained
optimization problem on the feature time trajectories while the other
uses Linear Discriminant Analysis (LDA). Whereas LDA is often
applied to one or a few frames of the feature vectors we apply LDA
to feature time trajectories. Both approaches result in similar filters
which are consistent with the ad hoc designed RASTA filter.

1. Introduction

Relatively unstructured data-driven systems are the mainstream in
today’s ASR. These systems acquire their structure from the large
amounts of training data and are susceptible to failure when used in
conditions that assume a different structure than that acquired during
the training.

It is our belief that more knowledge-constrained and structured de-
signs will result in simpler and ultimately more reliable systems.
However, if we are to hardwire any constraints into the system, it
is crucial that these constraints are based on well tested, reliable and
relevant knowledge.

Some reasonable constraints may be implied by properties of the hu-
man hearing process and we have been relatively successful when
incorporating them into ASR [1, 2]. On the other hand, it is hard
to deny the power of real speech data. Thus, we support using the
speech data, as long as they are used in a way to provide permanent
and reusable knowledge.

Along this line, we came to realize that since speech developed to
optimally use the properties of human auditory perception, any rel-
evant auditory knowledge may have its counterpart in the structure
of the acoustic speech signal, and the constraints derived from the
data may either correct or support the knowledge-based constraints.

1.1. RASTA Processing

For the past several years we have been working on the incorpora-
tion of temporal auditory masking into speech processing [2]. As an
engineering simulation of this powerful auditory constraint we pro-
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Figure 1: Problem setup block diagram

posed to filter out slow and fast changes in the trajectories of an crit-
ical logarithmic short-time spectrum of speech. The initial ad hoc
form of the RASTA filters was optimized on a relatively small series
of ASR experiments with noisy telephone digits. The experiments
yielded a filter with a spectral zero at zero modulation frequency and
a pass-bandapproximately from 1 to 12 Hz. The same filter was used
for all frequency components.

Optimizations using ASR experiments are costly and there is no
guarantee that the solutions obtained will not be specific to a given
ASR problem. Any data-based optimization which would avoid us-
ing a specific ASR paradigm is desirable.

In the current work we use two optimization techniques to design
a set of RASTA filters from realistic noisy data. The first is a con-
strained optimization technique which uses the natural time-varying
structure of the continuous speech data. The second technique is
based on a Linear Discriminant Analysis (LDA) [7] which uses
phoneme-labeled speech data. The data used in both cases consisted
of parallel speech recordings corrupted by different channels.



Carlos Avendano, Sarel van Vuuren and Hynek Hermansky, "Data-Based RASTA-Like Filter Design for Channel Normalization 

in ASR," in Proc. ICSLP’96, Philadelphia, pp. 2087-2090, October 1996. 

2. Filter Design by Constrained Optimization

In this section we find a set of filters for channel normalization by
constructing a constrained optimization program. The design crite-
ria is the distance minimization between the processedfeatures when
they are obtained from speechcorrupted by different communication
channels.

The idea can be explained with the aid of Fig. 1. A speech signal
s(n) is corrupted by N different channels Hj(z). After an appro-
priate feature extraction procedure we have a set of NK corrupted
time trajectories xj(m;k), where k = 1; :::;K is the feature index,
m is the decimated time index and j=1,2 ...,N . Notice that we also
show a set of trajectories of clean speech which will be used to set
the constraints described in the next section.

Ideally we would like to apply a transformation Wk(z) on the time
trajectories such that the outputs yj(m;k) for the kth feature are as
similar as possible to each other, that is, we seek channel indepen-
dence. A trivial solution to this problem is to setWk(z) = �0 so the
need to constrain the solution to some reasonable value is obvious.
As will be seen later, the constraints will determine the behaviour of
the filters at certain modulation frequencies.

2.1. Technique

Considering that the effect of the channel is multiplicative in the
frequency domain we chose our transformation Wk(z) to be a
linear finite impulse response (FIR) filter applied to x(m;k) =
log [a(m;k)], where a(m;k) are critical band energy trajectories.
Notice that in this case we assume one-dimensional (frequency spe-
cific) filters but the methods should still be applicable to a more gen-
eral case. From now on we will call x(m;k) the critical bands omit-
ting the term logarithmic.

The FIR filter for each critical band was derived in the following
way:

Let

Jk = Ef

N�1X

j=1

NX

i=j+1

[yj(m;k)� yi(m;k)]
2g (1)

be the objective function for the kth critical band.

From (1) we see that the objective functions are defined as the
expected value (with respect to time) of the Euclidean distance
between the outputs yj(m;k) of the Wk(z) filter produced by
xj(m;k) for j = 1,...,N . These quadratic functions have a global
minimum at Wk(z)=�0. To avoid the trivial solution in which all fil-
ter coefficients are set to zero we need to impose a set of constraints.

2.2. Experimental Design

To derive the filters, three parallel speech recordings were used. A
sample of clean speechwas taken from the TIMIT database (approx-
imately 2 minutes). The other two samples were taken from the cor-
responding speech of the NTIMIT database (telephone channel) and
TIMIT recorded through a cellular telephone channel. Auditory fre-
quencyband trajectories for the three recordings were computed by a

weighted sum of their short-term power spectrum as proposed in [1].
The logarithm of these trajectories was taken to produce x0(m;k),
x1(m;k) and x2(m;k) respectively.

The same design was applied to each critical band independently.
For simplicity we will drop the frequency index k and it should be
understood that the following procedure was appliedK times.

Using (1) we find the objective function

J = w
T
Rx1;x1w+w

T
Rx2;x2w �wT

R
v
x1;x2

w (2)

In (2), w = [w0; w1; :::wL�1]T is the vector of filter coefficients,
Rxj ;xi refers to the cross-correlation matrix between xj(m) and
xi(m), and Rv = R + RT . In this case N = 2 and we need to
set two constraints (j=1,2), one for each of the outputs of the filter.

Constraints A reasonable constraint is to restrict the energy at the
output of the filter to be a fraction of the energy of the input signal.
While this constraint avoids the trivial solution, it imposes no re-
striction on the characteristics of the output signal and thus it will
be less effective if we need to preserve relevant information about
speech. Interestingly, by using this constraint we found that the fil-
ters had very similar responses (i.e. band-pass with strong dc sup-
pression and narrow pass-band) as the so called delta cepstrum pro-
cessing [4].

A more reasonable constraint was found by not allowing the dis-
tance between the filter outputs yj(m;k) and the original uncor-
rupted speech features x0(m;k) (see bottom of Fig. 1) to be large.
This similarity constraint can be more or less restrictive depending
on the amount of error allowed, and the resulting filters will have dif-
ferent characteristics depending on this factor. Notice that the avail-
ability of clean speech is only necessary for this particular constraint
and is not a general requirement of the technique.

The constraints proposed above can be written as:

Ef[x̂0(m)� ŷj(m)]2g < cj (3)

In these constraints we removed the dc component from the origi-
nal clean speech features and from the output of the filter to obtain
x̂0(m) and ŷj(m) respectively. This normalization is needed in or-
der to make a fair comparison of the clean and corrupted features
(since adding or removing a constant in the logarithmic domain cor-
responds to modifying the power of the signals in the linear domain).

Writing (3) in matrix notation we get:

Sx̂0 +w
T
Rxj ;xjw� 2wT

px̂0;xj �w
T
x̂j x̂j

T
w < cj (4)

Here Sx̂0 is the power of x̂0(m), x̂j is a vector with all elements
equal to the mean of xj(m), andpx̂0;xj is the cross-correlation vec-
tor between x̂0(m) and xj(m).

The constants cj were initially chosen using a -3dB criteria on the
power of the inputs to the filter and were varied systematically until
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no feasible solution could be found. The last feasible point was cho-
sen to be the new Constraint-OPtimized (COP) filter. The optimiza-
tion program described by (2) and (4) is non-linear with non-linear
constraints and was solved using sequential quadratic programming
[5].

3. Filter Design Using Linear Discriminant
Analysis

In this section we find a set of filters using LDA 1. Our approach is
different from previous works [3, 8] in that we apply LDA to feature
time trajectories rather than just to feature frames. We will call this
technique DISCriminant Optimized (DISCO) filtering.

3.1. Technique

We start with speech which is labeled into different classes. We
wish to design a filter that will maximize discriminability between
these classes. The technique is best explained with the aid of Fig. 2.
The figure shows an FIR filter acting on the k’th time trajectory of
feature x(m) (which in this case is obtained by concatenation of
x0(m;k),x1(m;k) and x2(m;k)) .

m

#1

x(m,k)

Class Class Class #1

Class assignment
Filter output

#2

L-point filter window
Trajectory

Figure 2: DISCO filtering technique. Illustrated is an FIR filter cen-
tered at time m and acting on the k’th time trajectory of feature x.

Referring to the figure, view the features on which the filter is acting
at time m as a vector xm . For a filter of length L, this vector lies
in an L-dimensional space. For every analysis step m, the output
of the filter is a projection of the L-dimensional input vector onto
a one-dimensional output space. Assigning a class to each vector
xm , we can use LDA to find the principal directions for which class
discriminability is maximum at the output. The first principal com-
ponent of this analysis is the L-point FIR filter for which linear dis-
criminability is maximized. A separate LDA is carried out for each
critical band time trajectory, thus yielding a separate FIR filter for
each band.

Fig. 2 also gives an idea of how we assign a class to the input vec-
tor xm. In the current work, we assume a non-causal FIR filtering.
Thus, we align the center of the input vectorxm with the underlying
label. This is not the only way to do the class assignment; e.g. had
we decided for a causalFIR filter we would have aligned the class la-
bel with the first element of the xm . The next input vector is xm+1 ,
i.e. it is formed by shifting the xm by one analysis step.

In our work the vector space for the LDA is constructed from seg-

1As far as we know LDA was first used in speech by Melvyn Hunt [3].

ments of time trajectories of a single speech feature over a relatively
long (typically at least a syllable) span of time. This is different from
other LDA-based approaches (eg. [8]) that apply LDA to a feature
vector or to a relatively short block of feature vectors.

3.2. Scope

In this paper we find a filter for each feature trajectory x(m;k) sep-
arately but it should be understood that our technique is much more
general:

� Our technique in principle extends to multivariate filtering or
non-linear discriminants [7].

� It could allow for more than just the principal component of
the LDA to be used.

� It allows for causal or non-causal filter design.

� It is not limited to any particular domain (e.g. since the aim
was to remove linear distortions, the domain was the logarith-
mic critical band power spectrum while if the aim was to re-
move additive noise the domain might have been different).

� It applies to different types and sets of classes. In this paper we
use broad TIMIT phonetic classes2.

4. Results

In this section we present the results obtained by the techniques de-
scribed above. If no distinction is made the reader should assume
that the results discussed apply to both approaches.
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Figure 3: DISCO filter bank

Experimental designs were obtained for every critical band (in this
case we used 15 bands) using both approaches and using the same
data. For different bands we found no substantial difference in the
frequency responsesof the filters except for bands where speech had
little or no energy and were dominated by noise. We illustrate this
fact by showing the magnitude frequency responses for the DISCO

2We used the following classes: closure, back vowel, mid vowel, front
vowel, fricative, stop, flap and affricate, retroflex, and nasal, but did not use
silence and non-speech.
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Figure 4: COP and DISCO filters compared to RASTA

filters at different critical bands (Fig. 3). We observe that in the last
few bands there is a stronger dc suppression.

The general solution shows a strong suppression of dc and slow
modulation frequencies. Differences between COP and DISCO fil-
ters can be observed in Fig. 4. COP filters have a considerably larger
ripple in the pass-band which in this case is narrower. Suppression
of high modulation frequencies seems to be stronger with DISCO
filtering, while the opposite is true at low frequencies.

The observed frequency characteristics depend on the type of dis-
turbance with which the speech data is corrupted. For instance,
if we were to corrupt a sample of speech by convolving it with a
periodically time varying linear system, the COP or DISCO filter
would show a strong suppression at the corresponding modulation
frequency.

The impulse response of the filters shows an almost even symmetry
about the center tap (which was chosen to be the origin) thus indi-
cating a nearly linear phase property. It should be mentioned at this
point that the length of the filter is a very important parameter since
it determines the behaviour at low modulation frequencies. In the
results reported here we use 1 second long, 101 point non-causalfil-
ters.

It is obvious that there are many common characteristics between the
new filters, and with the original RASTA filter. It is interesting to no-
tice the modulation frequency range which is consistently preserved
by all techniques and its correspondence with the results obtained in
recent perceptual experiments [6].

5. Conclusions

Two new approaches for deriving RASTA-like filters from training
data were presented. The results show that there exist common prop-

erties between them, pointing to the intrinsic characteristics of the
speech signal and the relation to auditory models used in the past.

Acknowledgments

The authors would like to thank Misha Pavel for his comments
an suggestions and USWEST Advanced Technologies (9069-111),
NSF/ARPA (IRI-9314959), DOD (MDA904-94-C-6169), CONA-
CYT, and the member companies of CSLU for their support.

6. REFERENCES

1. Hynek Hermansky, “Perceptual Linear Predictive (PLP) Analysis of
Speech,” J. Acoust. Soc. Am. 87(4),pp. 1748-1752 April 1990.

2. Hynek Hermansky and Nelson Morgan, “RASTA Processing of
Speech,” IEEE Trans. Speech and Audio Processing Vol.2 No.4, pp.
578-589, October 1994.

3. Melvyn J. Hunt, “A Statistical Approach to Metrics for Word and Syl-
lable Recognition,” J. Acoust. Soc. Am. 66(S1), S35(A), 1979.

4. Sadaoki Furui, “Speaker-Independent Isolated Word Recognition Us-
ing Dynamic Features of Speech Spectrum,” IEEE Trans. ASSP, VOL.
ASSP-34. No. 1, February 1986.

5. Roger Fletcher, Practical Methods of Optimization, John Wiley and
Sons, 2nd ed., March 1991.

6. Takayuki Arai, Hynek Hermansky, Misha Pavel and Carlos Avendano,
“Intelligibility of Speech with Filtered Time Trajectories of Spectral En-
velope,” to appear in Proceedings ICSLP 96, Philadelphia, PA 1996.

7. Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, 2nd ed., 1990.

8. R. Haeb-Umbach and H. Ney, “Linear Discriminant Analysis for Im-
proved Large Vocabulary Continuous Speech Recognition,” Proceed-
ings ICASSP-92, pp. I 13-16, San Francisco 1992.


