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ABSTRACT

We describe use of Linear Discriminant Analysis (LDA) for
data-driven automatic design of RASTA-like �lters. The
LDA applied to rather long segments of time trajectories
of critical-band energies yields FIR �lters to be applied to
these time trajectories in the feature extraction module. Fre-
quency responses of the �rst three discriminant vectors are in
principle consistent with the ad hoc designed RASTA, delta
and double-delta �lters. On a connected digit task the new
features outperform the original RASTA processing.

1. INTRODUCTION

A typical automatic speech recognition (ASR) system con-
tains a feature extraction module followed by a stochastic
classi�er. While the classi�er is typically trained on training
data, the feature extraction module is most often based on
knowledge and beliefs. The knowledge applied in the feature
extraction module has a critical role in the ASR process.
Any information lost during the feature extraction is lost for
the recognition process. On the other hand, the knowledge
hardwired into the feature extraction module is the knowl-
edge which does not have to be re-acquired from the data
every time the recognizer is used for a new task.
In the late seventies, Hunt [1] proposed the use of Linear

Discriminant Analysis (LDA) for deriving improved features
for ASR. The LDA is applied to training data which contain
sources of non-linguistic variability and the resulting trans-
formation matrix is then a part of the feature extraction
module which thus becomes more robust to the source of the
particular non-linguistic variability.
The current paper presents a technique which applies LDA

to rather long segments of a single time trajectory of critical
band energy. Then, the LDA yields FIR �lters to be applied
to this time trajectory.

1.1. Temporal Domain and RASTA Technique

Acoustic feature vectors typically represent short-term char-
acteristics of the speech signal. Standard HMM-based sys-
tems do classi�cation over this short time span under the
assumption of independence of the short-term acoustic vec-
tors.
The peripheral human auditory system appears to be

able to e�ectively integrate rather large time-spans (around
200 msec) of the audio signal [2]. Several emergent tech-
niques employ short-term feature vectors from medium-span

segments of speech. Among them, the RASTA technique [3]
does band-pass �ltering of time trajectories of speech fea-
tures. To alleviate harmful e�ects of convolutive distor-
tions, frequency components of time trajectories of logarith-
mic critical-band spectral energies below 1 Hz and above
12 Hz are attenuated. Such processing was found optimal by
ASR experiments.

1.2. Toward a data-driven design

The initial ad hoc form of the RASTA �lters was optimized
on a relatively small series of ASR experiments with noisy
telephone digits. The optimizations using these ASR exper-
iments are costly and there is no guarantee that the solu-
tions obtained will not be speci�c to a given ASR problem.
Therefore, data-based optimization which would avoid using
a speci�c ASR paradigm is desirable.
The linear discriminant analysis (LDA) is a stochastic

technique which optimizes linear discriminability between
classes (see e.g. [1] for examples of LDA in ASR). We ex-
amine the use of LDA for data-driven design of RASTA-like
�lters.

2. TECHNIQUE

Figure 1 shows the Linear Discriminant Analysis technique.
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Figure 1. Linear discriminant analysis on segments
of the time trajectory of a single logarithmic critical-
band energy.
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The vector space for the LDA is constructed from segments
of the time trajectory of a single logarithmic critical-band
energy over a relatively long (typically about 1 s) span of
time [4]. These segments are overlapped with a one frame
spacing.
This approach is di�erent from previous works using

LDA [1, 5] since it applies LDA to rather long time trajec-
tories of features rather than just to a single feature vector
or to a relatively short block of feature vectors. This partic-
ular application of LDA results in the principal components
(discriminant vectors) forming a set of FIR �lters. The LDA
on time-shifted segments of the trajectories therefore allows
an FIR �ltering interpretation of the analysis. This in turn
allows us to directly relate the new LDA technique to other
processing techniques such as RASTA processing. It should
be noted, that up to certain constraints and assumptions1 ,
the LDA-based FIR �lters map most e�ciently (with respect
to the within-class and the across-class variability) the vector
space onto several points of the output space.

2.1. Databases

As LDA tries to optimize class separability in the presence
of unwanted variability the result depends crucially on the
type of nonlinguistic variability present in the data, as well
as on the set of classes in the analysis. In the current paper
we examine three di�erent databases and two sets of classes.
First, we apply the LDA to a hand-labeled subset of the
Switchboard database. This database is labeled according
to standard conventions into a set of 56 American English
phonemes. Additionally, this database also contained classes
of between-word pauses, and utterance beginning and end
silences[6]. Second, the Switchboard database is appended
by the identical database but with an added simulated con-
volutional variability. This is achieved by adding a constant
approximately representing 2 standard deviations of the data
to each time trajectory. Finally, the English portion of the
OGI multi-lingual database is used with a representative set
of phoneme classes for the analysis. Essentially this set in-
cludes prevalent phonemes in the speech and excludes silence.
While we obtained the class assignments from a hand-labeled
continuous speech corpus, we note that they may as well be
obtained using automatic techniques such as forced align-
ment. Furthermore, as we will show, the LDA-based �lters
need not be designed and used on the same data. We will
show that even when the �lters are designed on a database
di�erent from the one on which they are eventually used they
can still outperform other processing methods.

3. DISCRIMINANT VECTORS AS FILTERS

In previous work we [4] showed that the frequency response
of the �rst discriminant vector agrees well with the frequency
response of the ad hoc designed RASTA �lter that smooths
the feature trajectory. We stress the signi�cance of this re-
sult. The discriminant vectors were designed entirely from
the data without any intervention whereas the RASTA �lter
was iteratively optimized for on ASR experiments.
In Figures 2 to 5 we give frequency and impulse responses

of the �rst three discriminant vectors derived on all three
above described databases, as well as the frequency and

1It is assumed that the data is heteroscedastic.

impulse responses of the original RASTA �lter and of the
RASTA �lter combined with the �lters approximating the
�rst (delta) and the second (double-delta) derivatives.
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Figure 2. Frequency and impulse responses of the
�rst three discriminant vectors derived on the clean
Switchboard database.
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Figure 3. Frequency and impulse responses of
the �rst three discriminant vectors derived on the
Switchboard database with additional steady-state
variability.

The �rst thing to notice is that, as expected, �lters de-
signed on the Switchboard data with the additional steady-
state variability exhibit stronger suppression of low as well
as of high frequencies2 . The stronger suppression of low
frequencies is expected because the additional variability is
steady-state.
Filters designed on the OGI multilingual database do con-

tain similar general characteristics as the �lters derived on
the Switchboard data but di�er in details (for example the
second and the third �lters are interchanged). We note that

2For the Switchboard experiments, which used only 30 minutes

of speech data, to guarantee numerical stability, we enforced a

condition number of 500 for the with-in covariance matrix. This

conditioning caused a slight suppression for the high frequencies.

We did not use this conditioning for the OGI data.
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a reduced class set of only the 20 most common phoneme
labels was used with the OGI database.
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Figure 4. Frequency and impulse responses of the
�rst three discriminant vectors derived on the En-
glish portion of OGI multi-lingual database.

The similarity of the �rst discriminant vectors from all
three databases with the original RASTA �lter is notice-
able. The impulse responses of the �rst discriminant vector
is approximately symmetric, implying close to zero phase
and supporting de Veeth and Boves [7].
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Figure 5. Frequency and impulse responses of the
RASTA �lter and the RASTA �lter combined with
the delta and double-delta �lters.

The �rst discriminant vector, while being the most im-
portant for discrimination, explains only about 80% of the
variability in the data. We therefore decided to investigate
the second and third discriminant vectors as well. The fre-
quency characteristic of the second and third discriminant
vectors are somewhat comparable to the second (slope) and
third (curvature) orthogonal polynomials approximating the
time trajectory of the feature within a 9 frame (90 ms) time
interval as proposed by Furui [8]. The second peak at around
1 Hz in the two-peak �lters can be simulated by adding a
small bias to the double-delta orthogonal polynomial.
As shown in Fig. 6 which depicts frequency responses of

the �rst discriminant vector at all 15 carrier frequencies

(there are 15 critical-band �lters covering the telephone-
bandwidth), �lters at di�erent carrier frequencies are rather
similar.
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Figure 6. Frequency response of the �rst discrimi-
nant vector at all 15 carrier frequencies derived on
the English portion of OGI multi-lingual database.

To further highlight the modulation frequency selective
nature of the LDA-based �lters Figure 7 shows the frequency
response of the resultant �rst discriminant vector for the case
where the log �lter bank energies had a disturbance added
at modulation frequencies of 5 and 20 Hz with respective
amplitudes about 2.5 and 0.5 times the average standard
deviation in the log �lter bank energies. Such a disturbance
can be thought of as a time-varying convolutive disturbance
on the speech signal. As expected, the �lter attempts to
attenuate modulation frequencies at the disturbance.
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Figure 7. Frequency response of the �rst discrimi-
nant vector for an arti�cial non-stationary channel
disturbance.

4. ASR RESULTS

For the results listed below the �lters were derived on the En-
glish portion of the OGI multi-lingual database (OGI-TS).
This is a database of almost 3 hours' continuous telephone
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speech with both speaker and handset variability. We per-
formed the recognition experiments on 500 connected digit
utterances from the OGI-Numbers corpus. This database
also has speaker and handset variability. The phoneme
classes used for deriving the �lters were chosen to match the
monophone classes expected in the recognition experiment.
For the �lter design we used a total of twenty monophones
and weighed them according to their natural frequency of
occurrence in the OGI-TS database.
The results are competitive with current �ltering schemes

such as RASTA. Table 1 lists the word level accuracy for
the connected digit recognition task. A 5 state left-to-right
HMM model was used with 3 mixtures per state. Twenty
monophone models were trained and a simple single pronun-
ciation grammar used. The baseline features (base) were
critical-band log energies from a PLP analysis. The ta-
ble lists accuracies for the baseline features processed with
RASTA �ltering (rasta) and with combinations of the �rst
three LDA-derived �lters (lda1, lda2 and lda3). Accuracies
for when delta (delta) and double delta (ddelta) features are
added are also listed. Features were normalized through-
out with a full whitening transform. This normalization was
necessary to ensure a fair comparison between the di�erent
features for mainly two reasons. a) Decorrelation: The HMM
model used diagonal covariances. b) Scale: The HMM model
used a numerical oor (1e-4) on the variances parameters.
In practise we found the whitening transform to give re-

sults similar to the DCT transform. To mitigate e�ects from
the language back-end of the system and since it is known
that di�erent processing techniques exhibit di�erent inser-
tion and deletion trade-o� [9] we report the word level accu-
racies at the optimum cross-word penalty.

base 83.7

rasta 88.0

lda1 91.8

lda2 85.1

lda3 81.7

base + delta 91.2

rasta + delta 92.4

lda1 + delta 93.5

lda1 + lda2 94.3

base + delta + ddelta 90.0

rasta + delta + ddelta 92.9

lda1 + delta + ddelta 94.0

lda1 + lda2 + lda3 94.6

Table 1. Percentage word level accuracies for a con-
nected digit recognition task (OGI-Numbers corpus)
for the various processing techniques.

From the Table the basic LDA derived feature (lda1) is
seen to generally outperform the baseline and RASTA pro-
cessed features. The di�erences are signi�cant at the 1%
level using Mcnemar's test. These results suggest that while
RASTA greatly aids performance on this database, other
data-derived �lters (here from LDA) may yield even better
performance. This observation extends to the case where
delta and double delta features are added. Given that the

LDA �lters were derived from another database and based
entirely on the baseline feature and class labels we �nd the
results highly encouraging.

5. CONCLUSION

We propose a new temporal �ltering technique to optimize
class discriminability. While many aspects of the technique
are still subject to further research and optimization we �nd
the performance of the entirely data-derived �lters on recog-
nition experiments highly promising.
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