語音語三模型的發展史

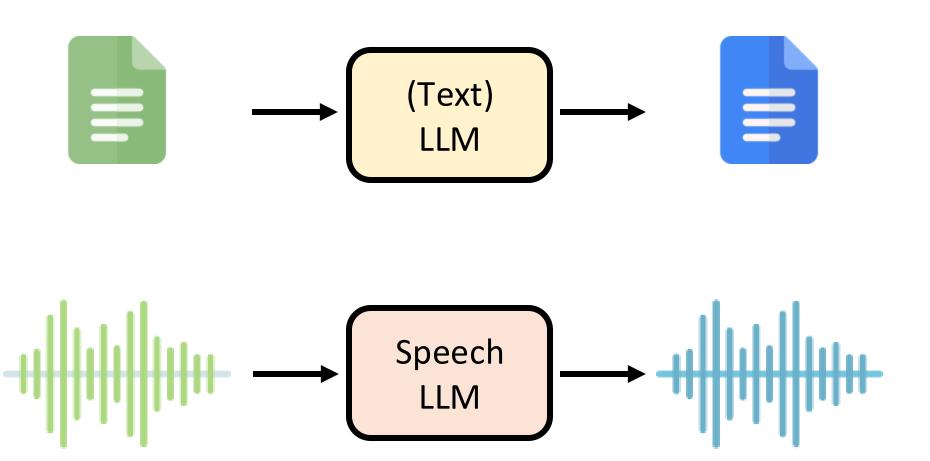
Speaker:

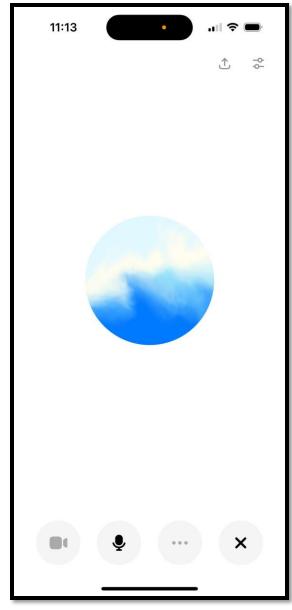
Hung-yi Lee 李宏毅

免責聲明

本課程並非完整介紹語音語言模型,而是以講者經驗講述語音語言模型的發展

語音語型 (Speech Language Model)





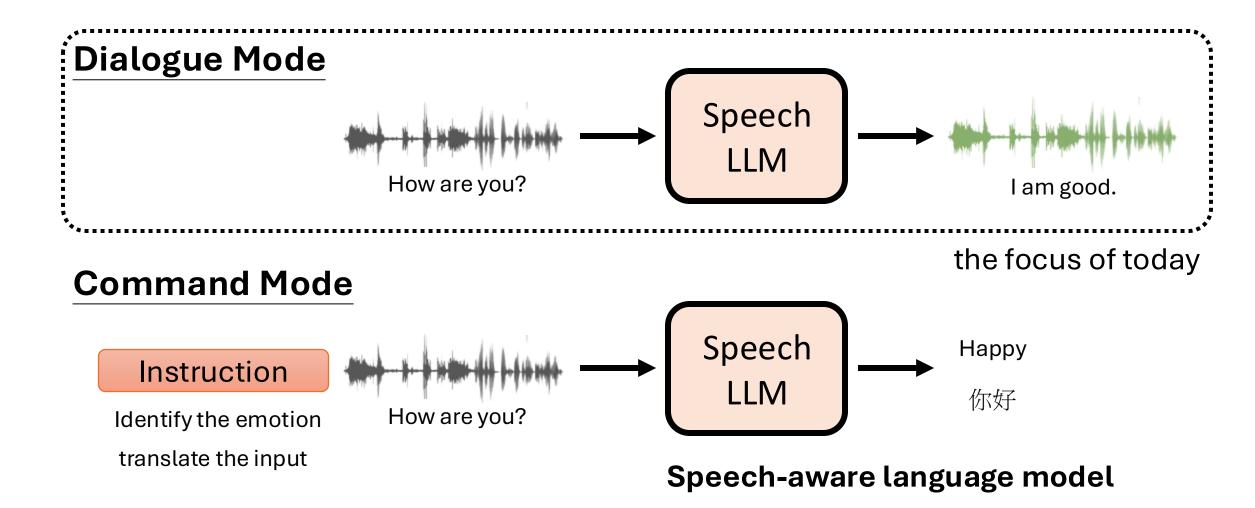
ChatGPT voice mode

Gemini Live

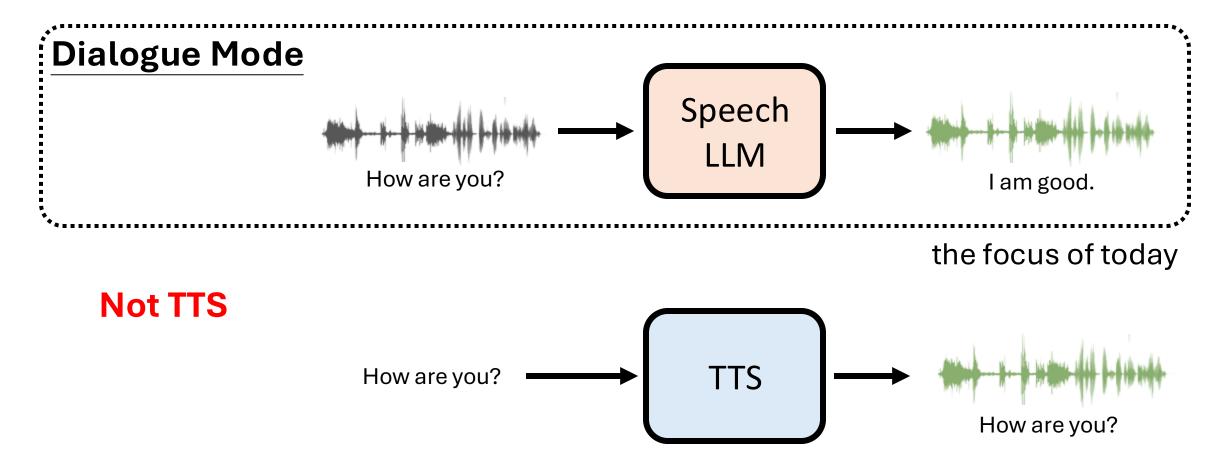
- Moshi
 - https://arxiv.org/abs/2410.00037
- Sesame
 - https://www.sesame.com/research/crossi ng_the_uncanny_valley_of_voice
- GLM-4-Voice
 - https://arxiv.org/abs/2412.02612
- Step-Audio
 - https://arxiv.org/abs/2502.11946
- Qwen2.5-Omni
 - https://arxiv.org/abs/2503.20215
- Kimi-Audio
 - https://arxiv.org/abs/2504.18425
- SpeechGPT
 - https://github.com/OpenMOSS/SpeechGP T-2.0-preview
- Doubao Realtime Voice Model
 - https://seed.bytedance.com/en/realtime_ voice

..... just to name a few

語音語三模型 (Speech Language Model)

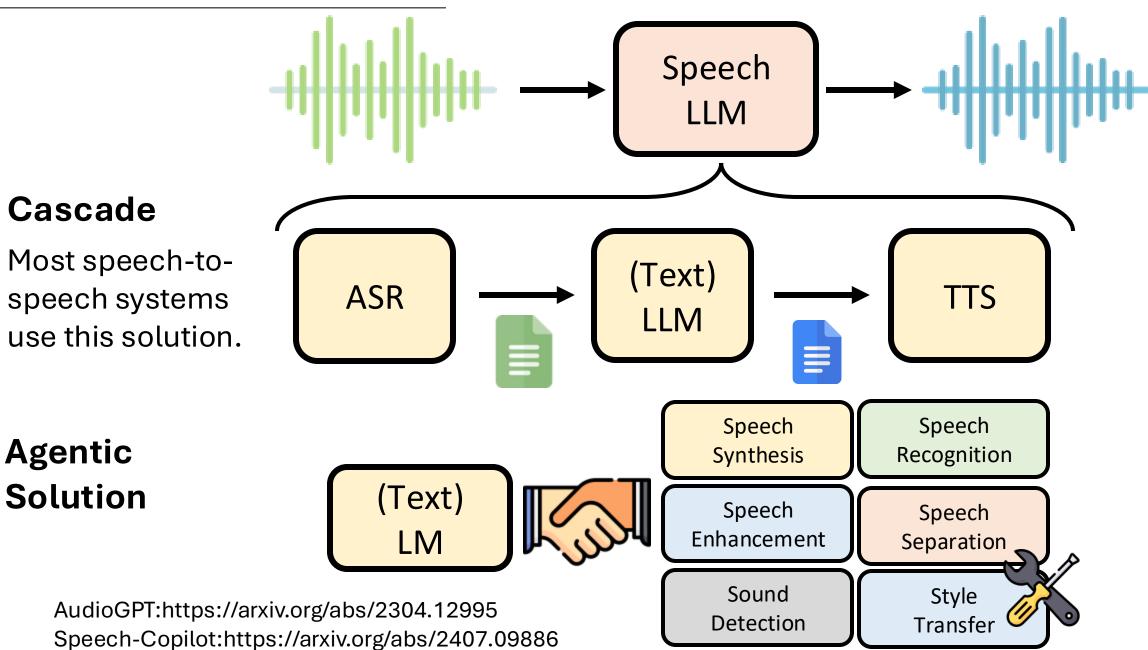


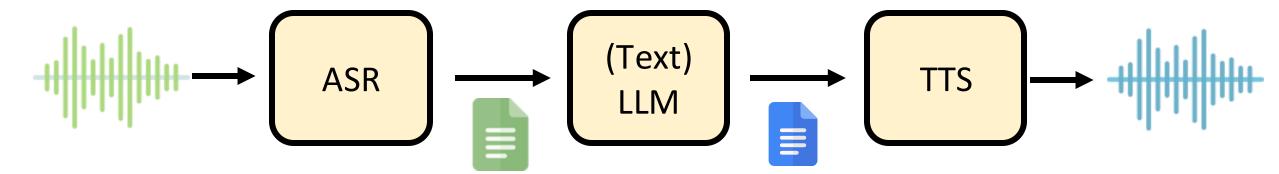
語音語三模型 (Speech Language Model)



Some TTS models also claim themselves to be speech LMs.

Non end-to-end solution





Strength: Easy to construct

Weakness: Information loss (e.g., emotion), latency

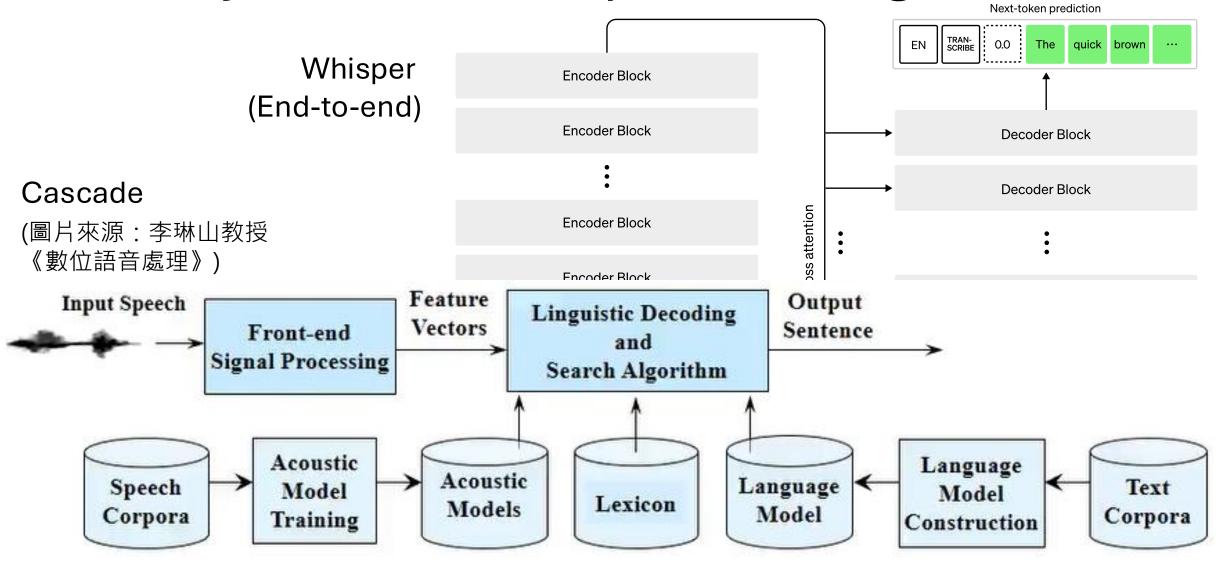
在 2025 年會有 比較好的結果

Strength: Capture all speech information, probably low latency

Weakness: Still under investigation

較高的能力 上限

History of Automatic Speech Recognition ...



History of Automatic Speech Recognition ...

https://www.iscaarchive.org/interspeech_2015/ lu15e_interspeech.html

Step	Splicing	Space	CHM	SWB	Avg
1	±5	feature	62.7	47.6	55.2
2	± 5	feature	61.3	40.8	51.1
3	± 5	feature	59.9	38.8	49.4
4	± 5	feature	60.2	41.7	51.0
1	±7	feature	65.5	47.6	56.6
2	± 7	feature	59.9	41.7	50.9
3	± 7	feature	59.8	40.3	50.1
4	± 7	feature	60.0	43.0	51.6
2	±5	hidden	60.7	42.3	51.5
3	±5	hidden	58.9	41.7	50.3

10.4% on SWB ...

https://ieeexplore.ieee.org/abs tract/document/6854669 (ICASSP'14)

History of Automatic Speech Recognition ...

PHONE RECOGNITION USING RESTRICTED BOLTZMANN MACHINES

Abdel-rahm

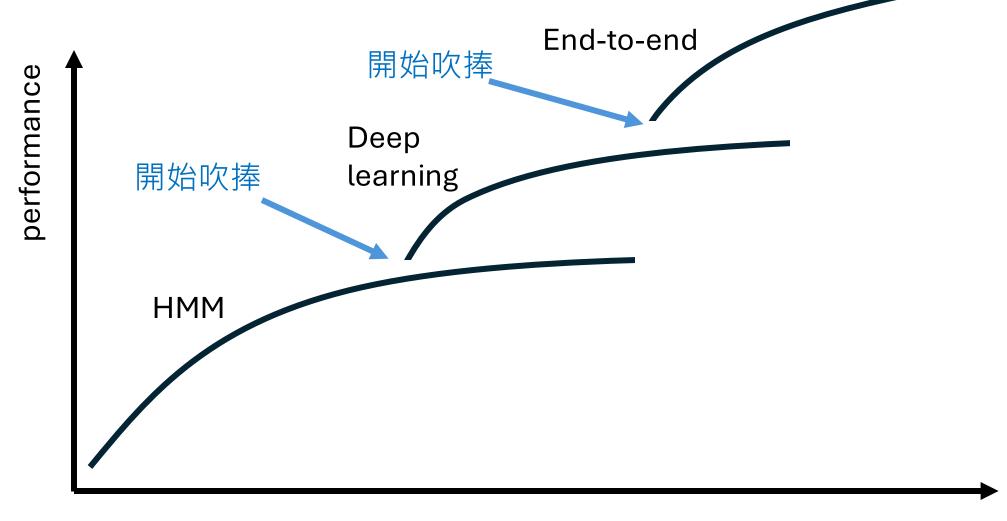
Department of Co

https://ieeexplore.ieee.org/abstract/

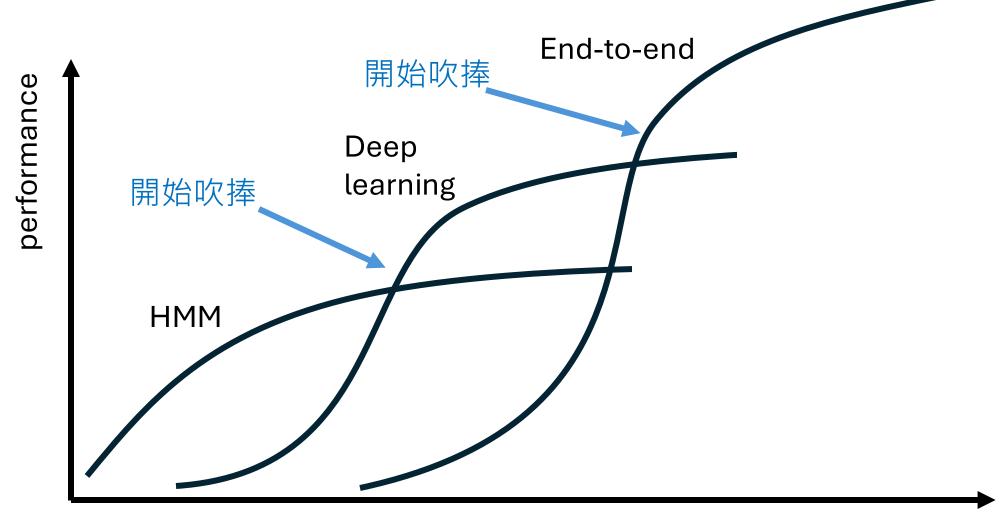
Table 3. Reported results on TIMIT core test set

Method	PER
Conditional Random Field [11]	34.8%
Large-Margin GMM [12]	28.2%
CD-HMM [2]	27.3%
ICRBM (this paper)	26.7%
Augmented conditional Random Fields [2]	26.6%
Recurrent Neural Nets [13]	26.1%
Monophone HTMs [1]	24.8%
Heterogeneous Classifiers [14]	24.4%

一般人想像中的技術發展



實際上可能是這樣

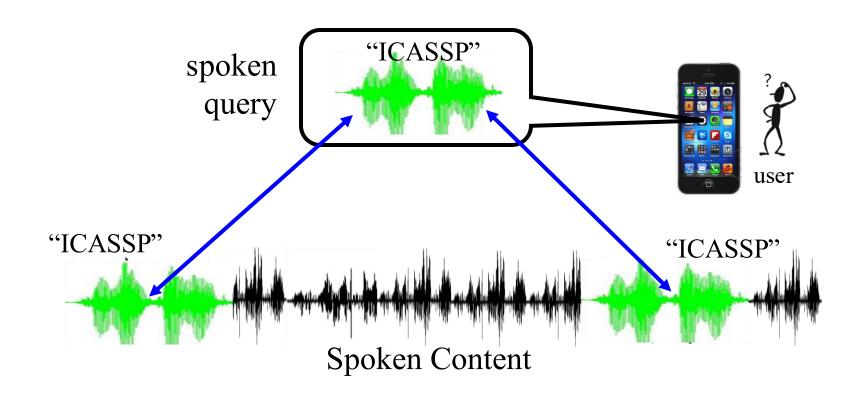


+

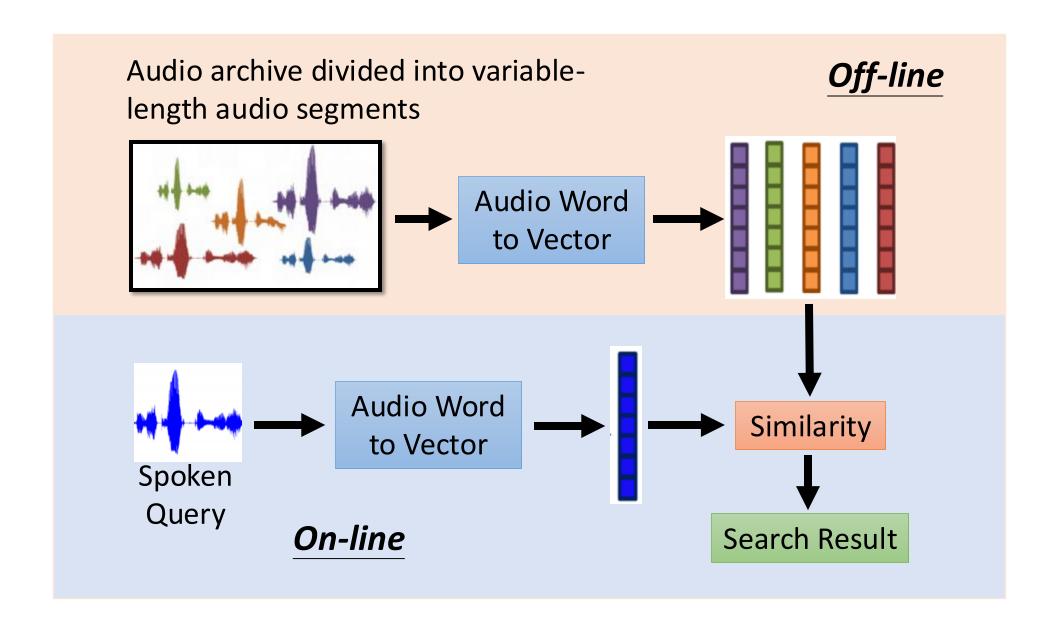
1. 序章

+

Spoken Content Retrieval



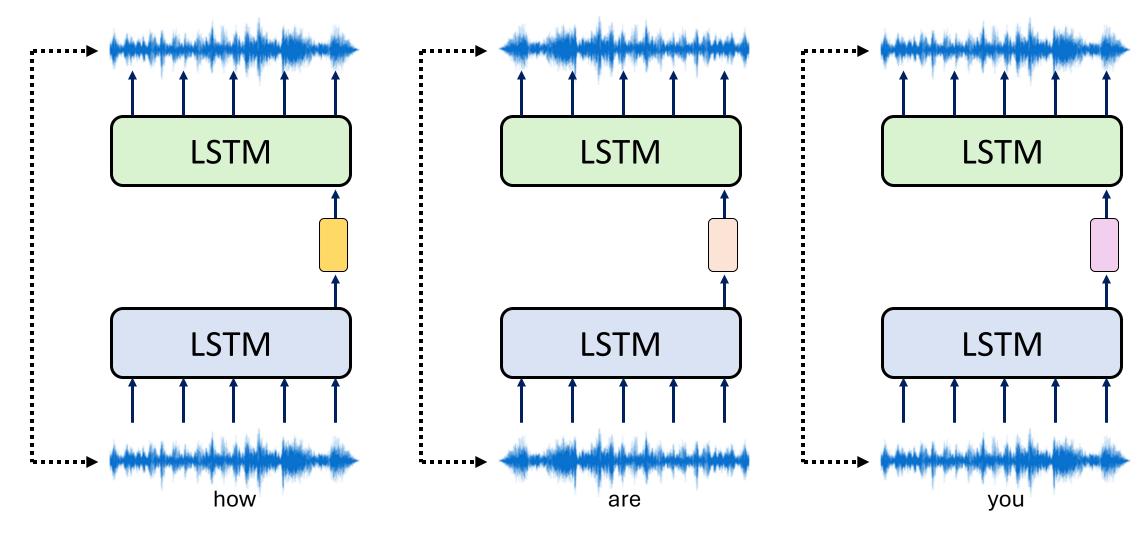
Compute similarity between spoken queries and audio files on acoustic level, and find the query term



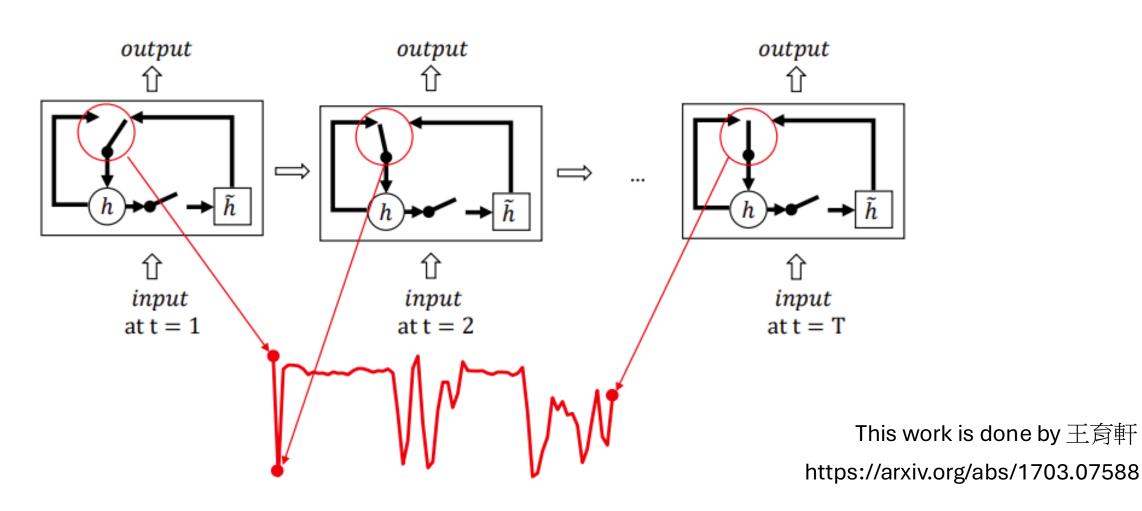
This work is done by 鍾毓安.

Audio Word2Vector

https://arxiv.org/abs/1603.00982



How can we automatically find certain types of boundaries in speech?



Segmental Audio Word2Vector

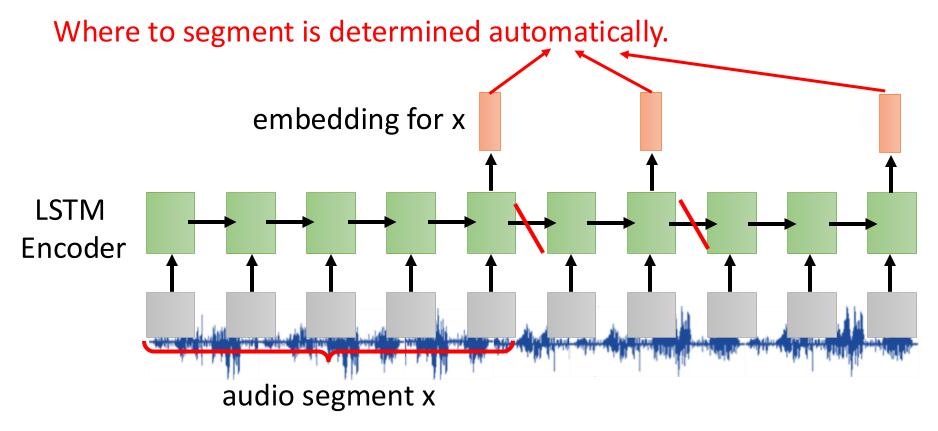
3 1 4 1 5 9 2 7 1 8 3 1 4 1 5 9 2 7 1 8 3 1 4 1 5 9



Joint Learning of Segmentation and Seq2seq Auto-encoder

Segmental Audio Word2Vector https://arxiv.org/abs/1808.02228 This work is done by 王育軒

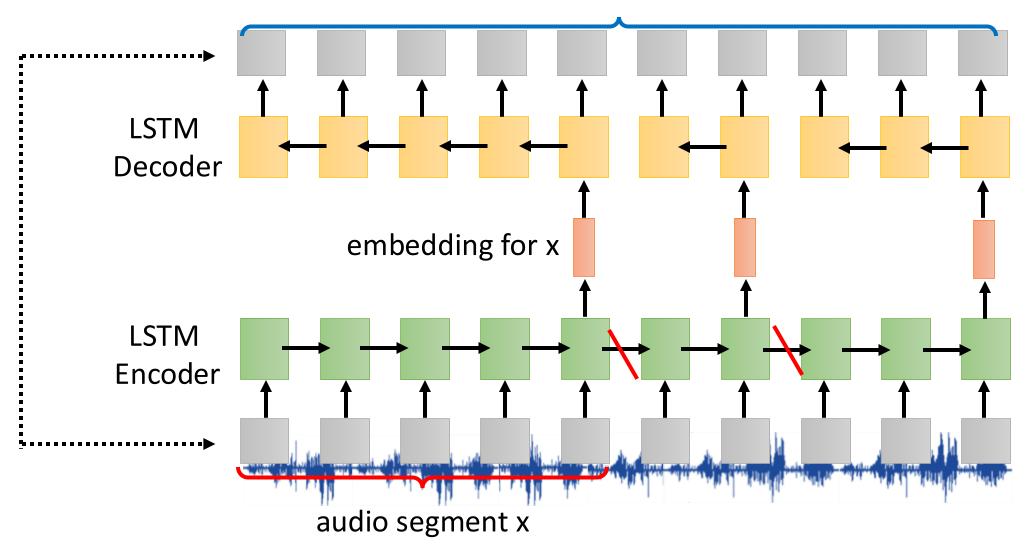
- At each time step, LSTM encoder determines whether it is right before a boundary.
- If it is determined as right before a boundary, a vector (an embedding for an audio segment) is outputted.



Joint Learning of Segmentation and Seq2seq Auto-encoder

Segmental Audio Word2Vector https://arxiv.org/abs/1808.02228 This work is done by 王育軒

LSTM decoder reconstructs the input utterance



Joint Learning of Segmentation and Seq2seq Auto-encoder

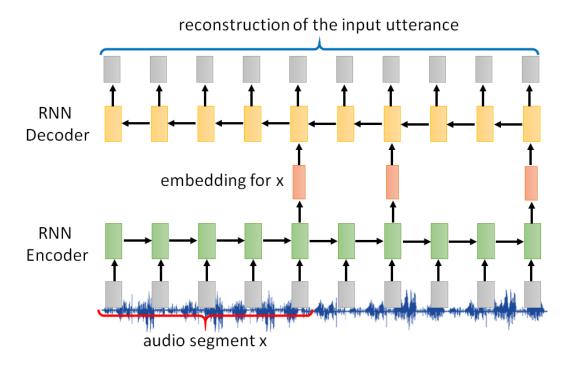
Segmental Audio Word2Vector https://arxiv.org/abs/1808.02228 This work is done by 王育軒

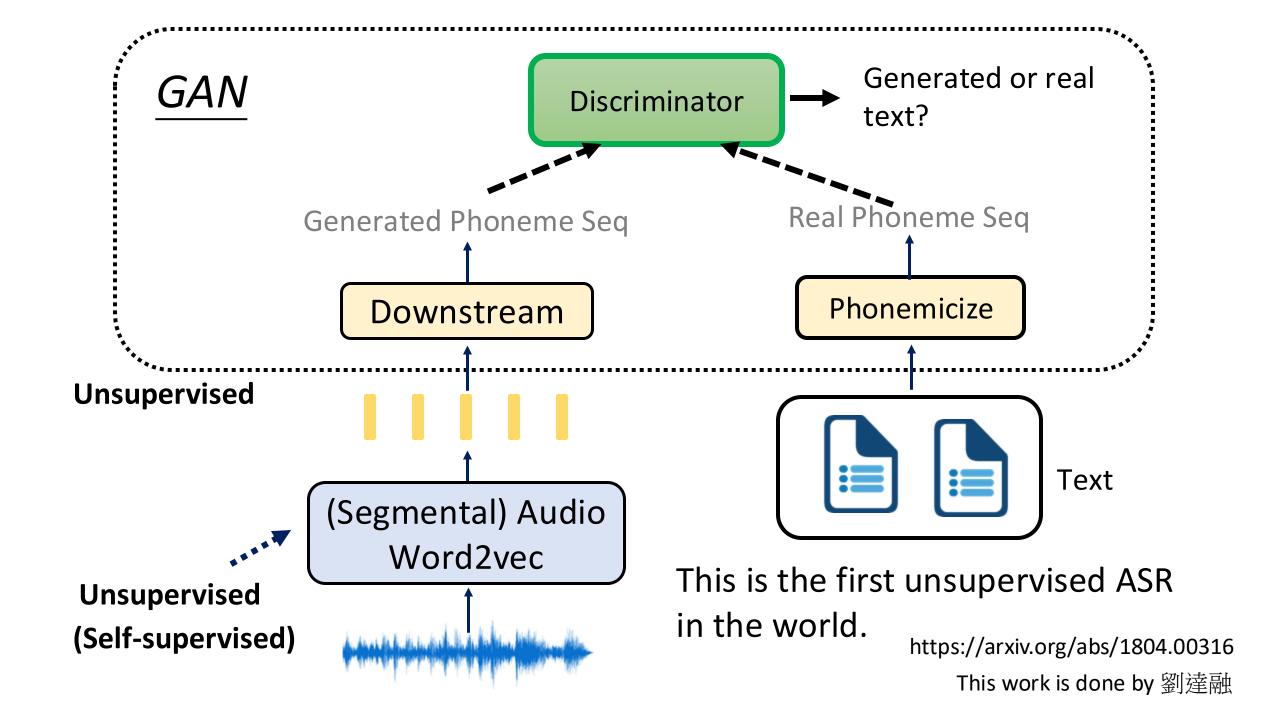
- The learning criterion of LSTM encoder and decoder is the weighted sum of the following two terms.
 - 1. Minimizing Reconstruction error
 - 2. Minimizing the number of segments, that is the number of output embedding

The second term is necessary.

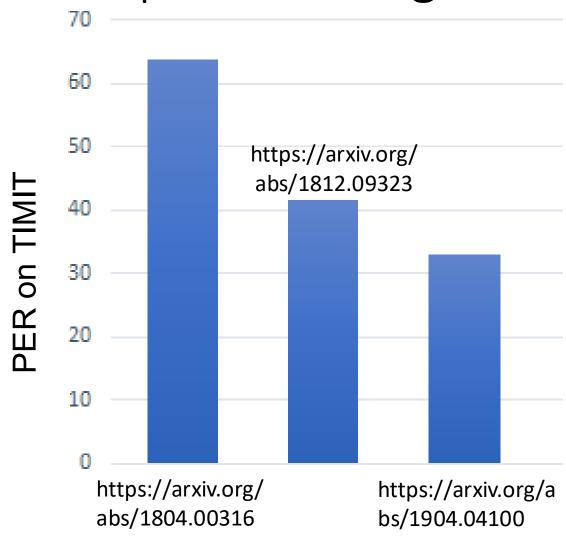
If we only minimize reconstruction error,

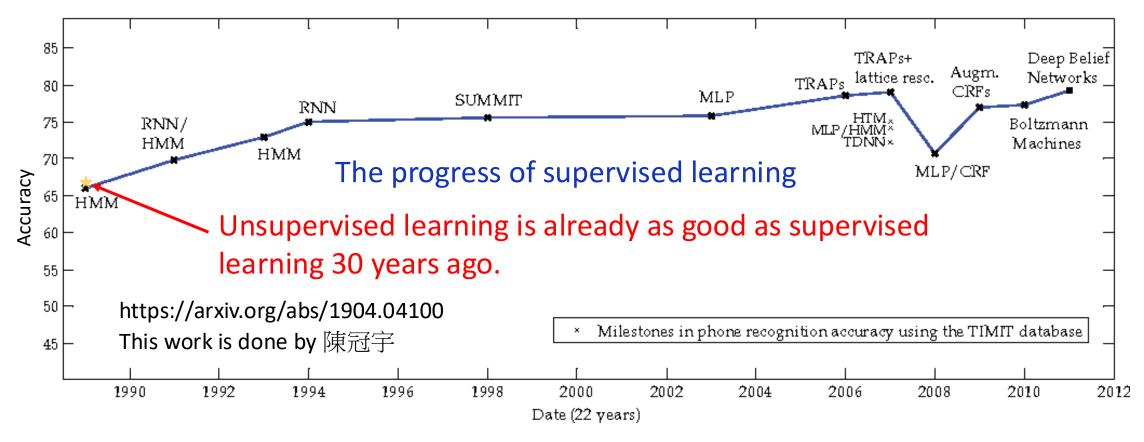
LSTM encoder would output embedding at all of the time steps.





Is Unsupervised Speech Recognition possible?





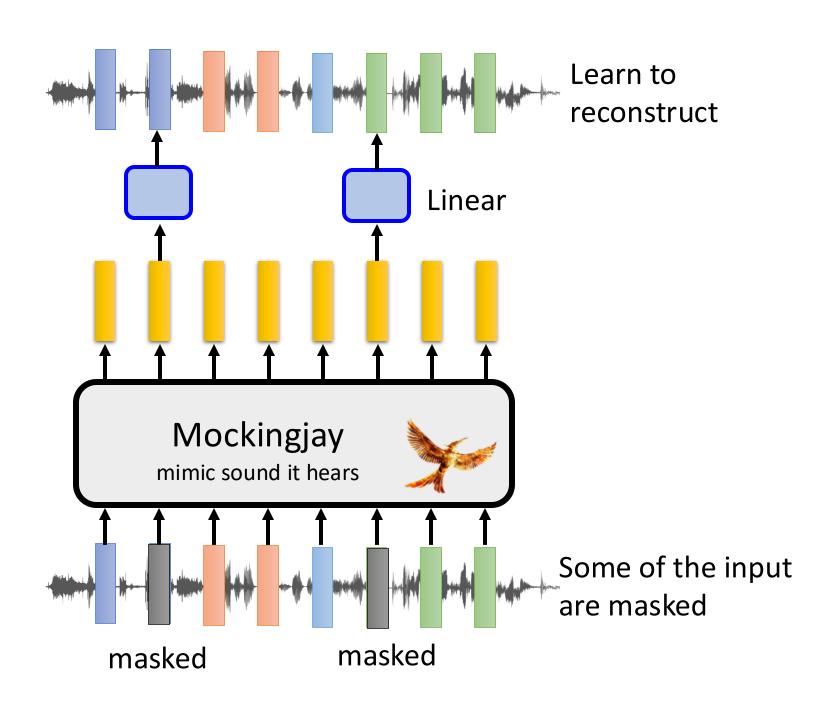
The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigão, F., 2011. Speech Technologies, Vol 1, pp. 285--302.

Speech BERT

https://arxiv.org/abs/1910.12638

Andy T. Liu

Like BERT (also, like MaskGIT)

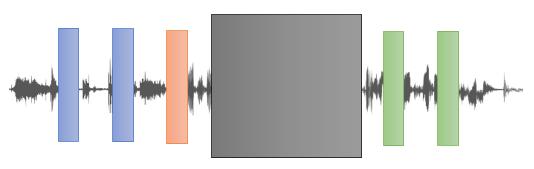


Masking

Smoothness of acoustic features

https://arxiv.org/abs/1910.12638

Masking consecutive features

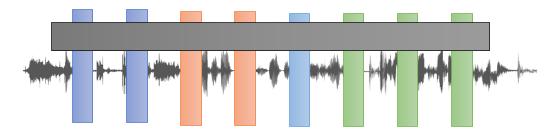


Masking strategies for speech

Learn more speaker information in this way

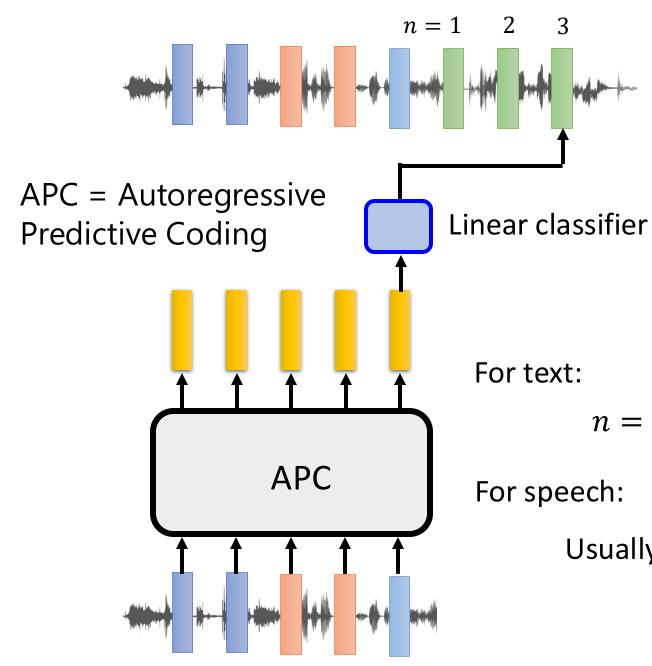
TERA: https://arxiv.org/abs/2007.06028

Masking specific dimensions



Speech

https://arxiv.org/abs/1910.12607



For text:

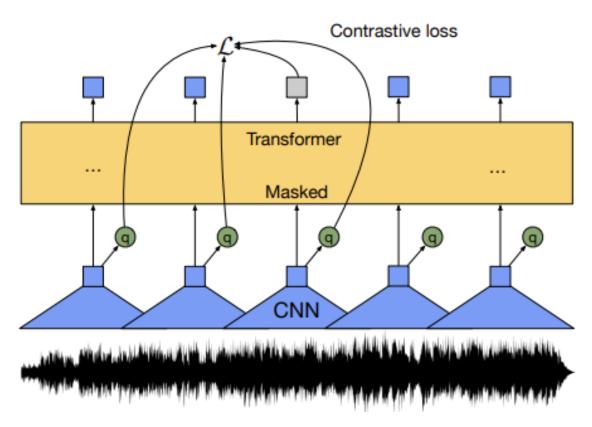
$$n = 1$$

For speech:

3

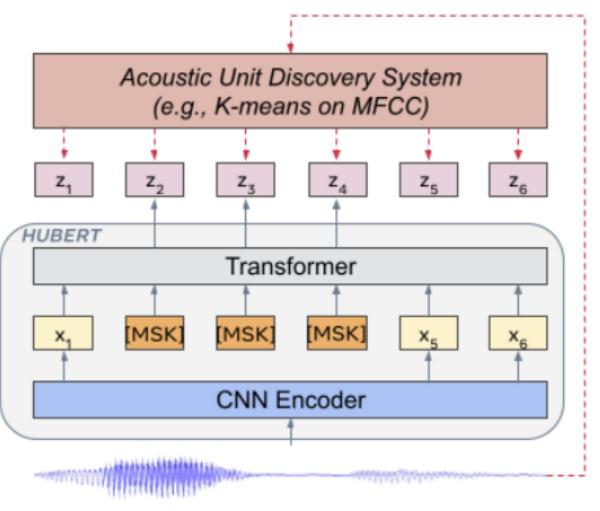
Usually n > 3

Wav2vec / HuBERT



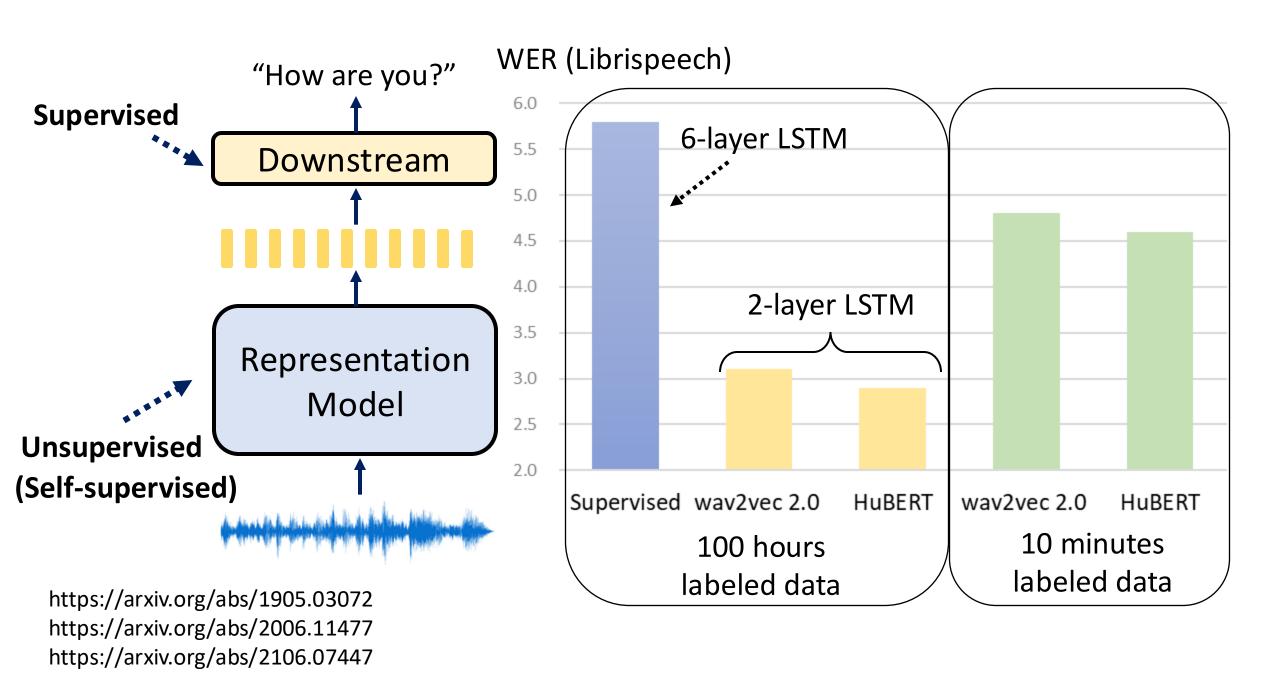
Wav2vec

https://arxiv.org/abs/1904.05862 https://arxiv.org/abs/2006.11477

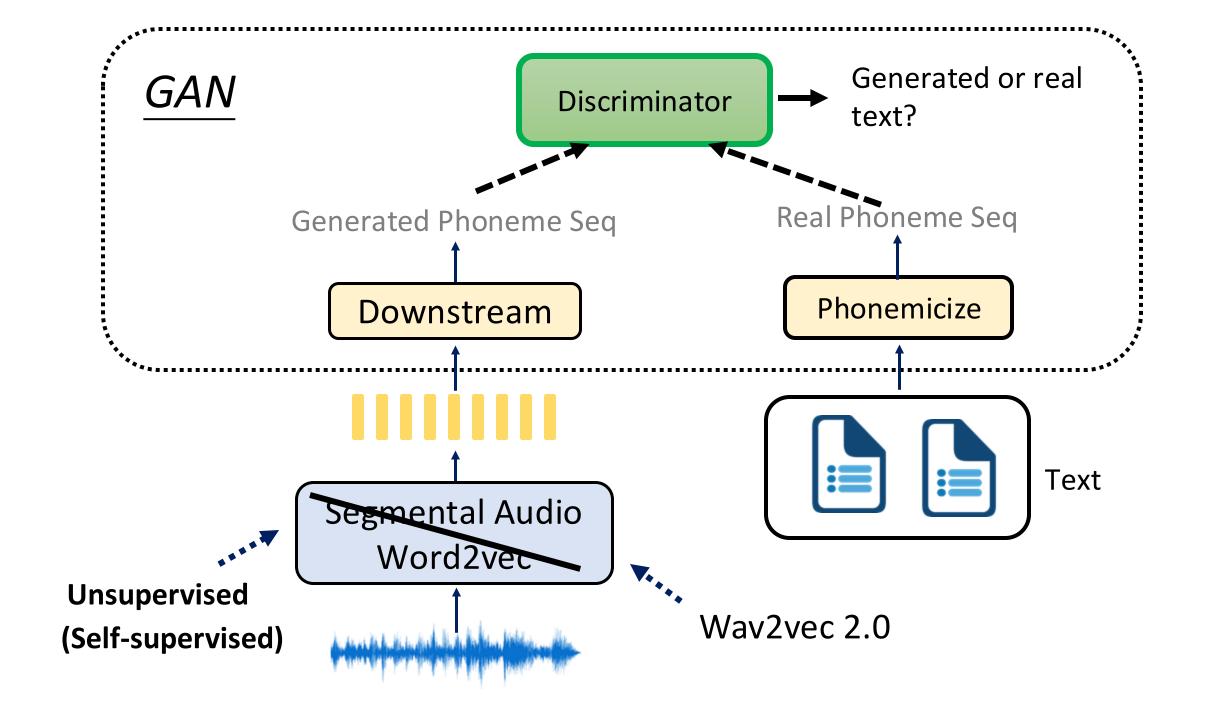


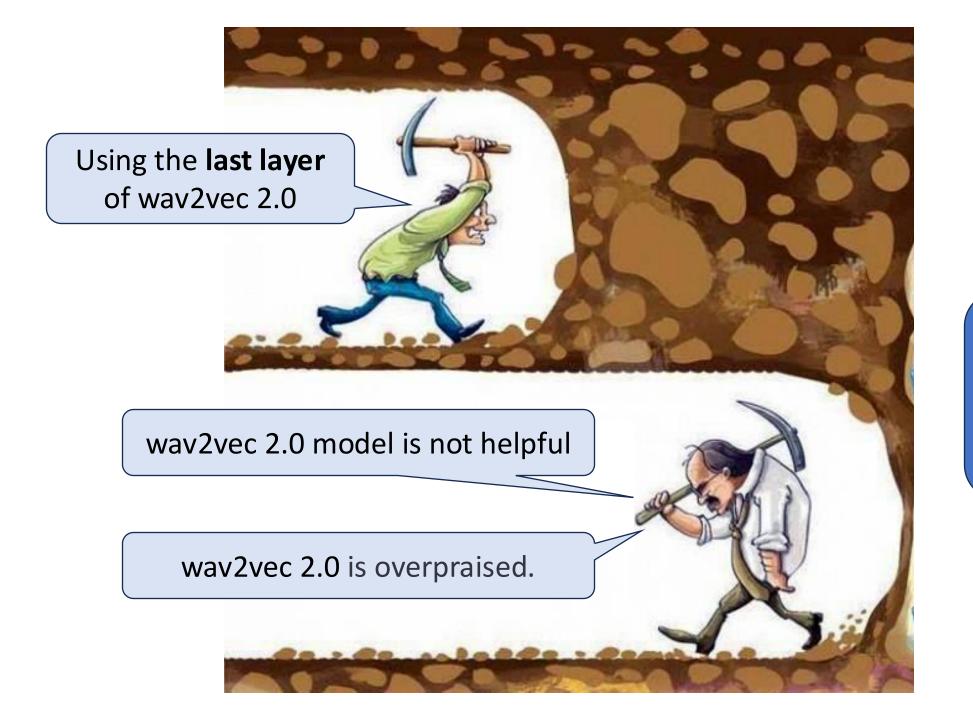
HuBERT

https://arxiv.org/abs/2106.07447



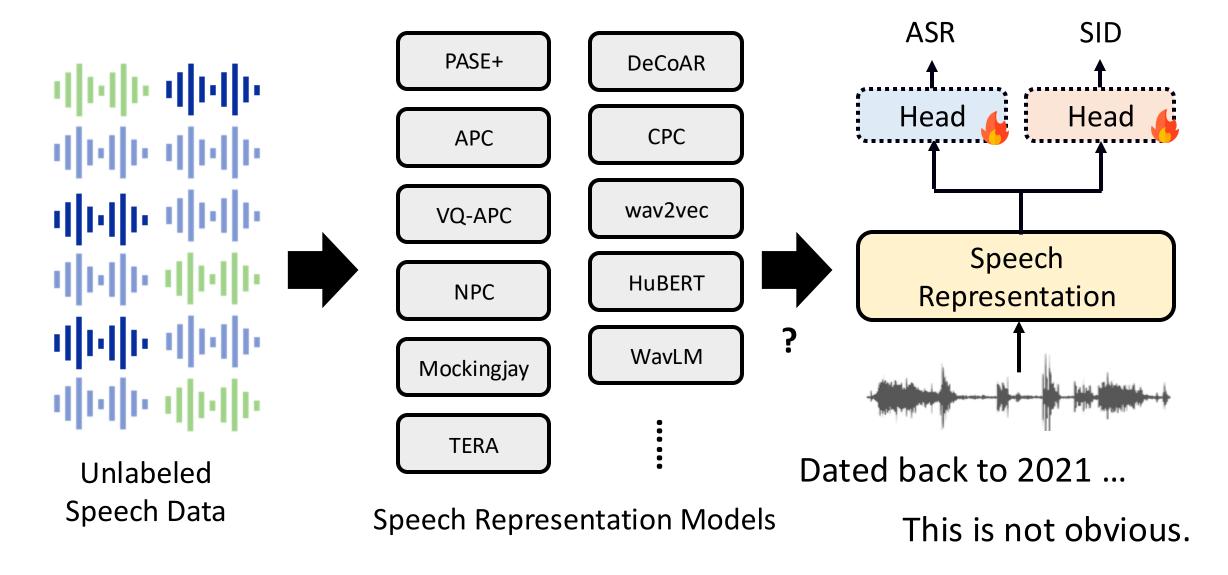
https://arxiv.org/abs/2105.01051





Groundbreaking performance of Unsupervised ASR

Are speech representation models universal?





Speech processing Universal PERformance Benchmark

Shu-wen (Leo) Yang

SUPERB: Speech processing Universal PERformance Benchmark

Shu-wen Yang¹, Po-Han Chi^{1*}, Yung-Sung Chuang^{1*}, Cheng-I Jeff Lai^{2*}, Kushal Lakhotia^{3*}, Yist Y. Lin^{1*}, Andy T. Liu^{1*}, Jiatong Shi^{4*}, Xuankai Chang⁶, Guan-Ting Lin¹, Tzu-Hsien Huang¹, Wei-Cheng Tseng¹, Ko-tik Lee¹, Da-Rong Liu¹, Zili Huang⁴, Shuyan Dong^{5†}, Shang-Wen Li^{5†}, Shinji Watanabe⁶, Abdelrahman Mohamed³, Hung-yi Lee¹

Shang-Wen Li

Abdelrahman Mohamed

Shinji Watanabe

Hung-yi Lee

Speech processing Universal **PERformance Benchmark**

Evaluate a wide range of speech representation models on many speech tasks

Emotion Phoneme Speaker Recognition (ER) Recognition (PR) Identification (SID) Speaker Keyword Spotting (KS) Verification (**SV**)

Sentiment Analysis (SA)

Sarcasm Detection (SarD)

Intent Classification (IC)

Spoken Slot Filling (SF)

Speech Translation (ST)

Speech Enhancement (**SE**)

Voice Conversion

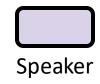
(VC)

Speaker Separation (SS)

Query-by-Example Persuasiveness (QbyE) Prediction (**PP**)

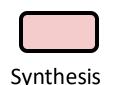
Speech

Recognition (ASR)

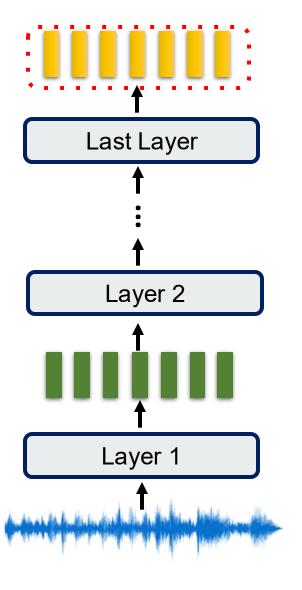


Speaker Diarization

(SD)



https://arxiv.org/abs/2105.01051 https://arxiv.org/abs/2203.06849



Does not always lead to decent performance.

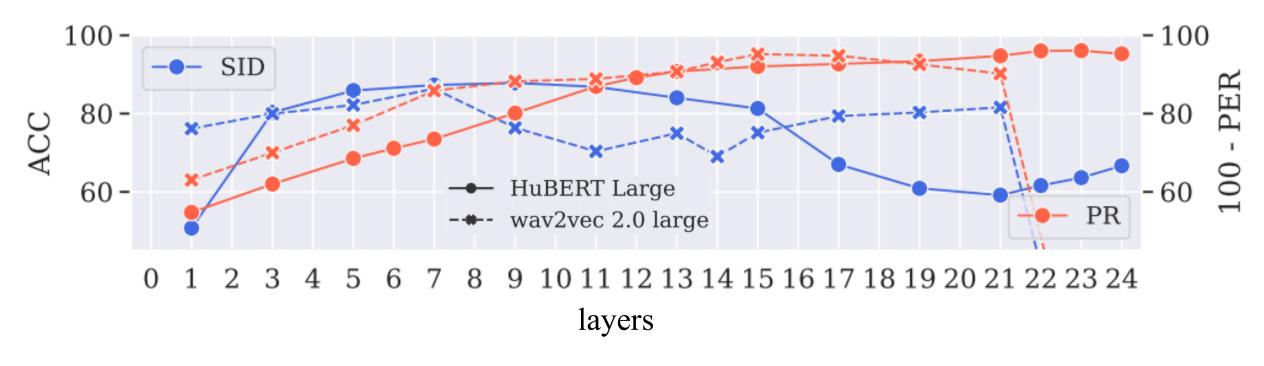
Most speech representation models are worse than acoustic features (fbank) for speaker verification.

I knew it. Speech representation models cannot be universal.

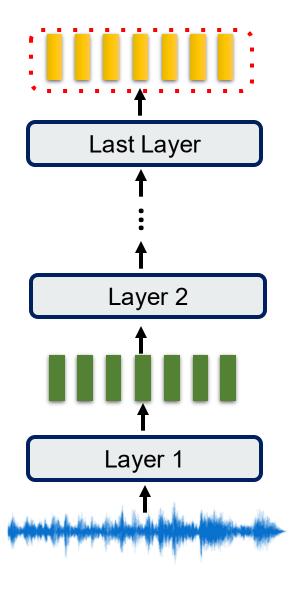
Hung-yi Lee

Large models such as wav2vec-large and HuBERT-large perform as poorly as fbank on some tasks.

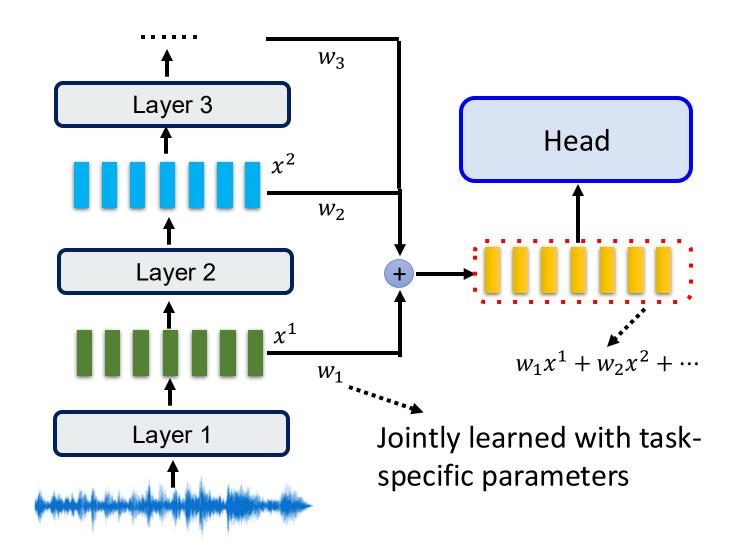
Different Layers Encode Different Information



- PR (phoneme recognition) phonetic information in the last few layers
- SID (speaker identification) speaker information in the first few layers
- The last layer of Wav2vec 2.0 large encodes either phonetic and speaker information.



Does not always lead to decent performance.



"Weighted-sum" is very effective!

PASE+	58.87	82.54	29.82	37.99	57.86	25.11	61.12	51.41	34.66	70.18	88.25	62.14	60.18	0.72	11.61	8.68	3.16	8.66	30.60	63.20	2.56	93.90	9.87
APC	41.98	91.01	74.69	60.42	59.33	21.28	62.34	54.03	35.05	69.95	90.32	70.46	50.90	3.10	8.57	10.53	5.95	8.05	27.20	87.25	2.56	93.40	8.92
VQ-APC	41.08	91.11	74.48	60.15	59.66	21.20	62.85	54.14	35.80	71.04	90.42	68.53	52.91	2.51	8.72	10.45	4.23	7.84	22.40	94.25	2.56	93.40	8.44
NPC	43.81	88.96	69.44	55.92	58.21	20.20	60.75	49.68	34.43												52	93.10	8.04
Mockingjay	70.19	83.67	34.33	32.29	50.28	22.82	65.01	58.28	36.87	•	 Row - SSL model Column – Task 												
TERA	49.17	89.48	58.42	66.62	56.27	18.17	57.89	48.56	30.80	•													
Audio Albert	49.71	86.01	53.10	56.51	56.52	20.43	61.30	52.14	34.82		• value – The darker, the better												9.93
DeCoAR	22.27	91.82	85.34	69.76	60.66	16.57	57.25	47.11	32.12														9.69
DeCoAR 2.0	14.93	94.48	90.80	74.42	62.48	13.02	52.56	41.98	27.27	60.01	80.99	83.28	34.73	4.06	7.16	6.59	9.94	7.83	17.10	90.75	2.47	93.20	8.54
Modified CPC	42.54	91.89	64.09	39.63	60.96	20.18	61.82	53.45	34.92	68.13	90.78	71.19	49.91	3.26	12.86	10.38	4.82	8.41	26.20	71.00	2.57	93.70	10.40
wav2vec	31.58	95.59	84.92	56.56	59.79	15.86	54.95	45.33	30.25	59.74	84.49	76.37	43.72	4.85	8.00	9.90	6.61	7.45	10.10	98.25	2.53	93.80	9.30
vq-wav2vec	33.48	93.38	85.68	38.80	58.24	17.71	60.02	51.44	35.26	65.21	88.19	77.68	41.55	4.10	10.38	9.93	5.66	7.08	13.40	100.00	2.48	93.60	8.16
FaST-VGS+	7.76	97.27	98.97	41.34	62.71	8.83	46.48	35.53	25.32	54.19	70.89	88.15	27.12	5.62	5.87	6.05	14.45	7.73	10.85	92.75	2.57	93.94	9.76
LightHuBERT Stage1	4.15	96.82	98.50	80.01	66.25	5.71	43.72	34.69	24.32	52.82	63.07	88.44	25.92	7.37	5.14	5.51	16.41	7.74	13.12	94.50	2.59	94.11	9.93
LightHuBERT Small	6.60	96.07	98.23	69.70	64.12	8.34	47.26	37.48	26.34	54.89	70.33	87.58	26.90	7.64	5.42	5.85	13.83	7.34	9.38	98.25	2.54	93.85	9.45
DPHuBERT	9.67	96.36	97.92	76.83	63.16	10.47	48.98	38.46	26.09	56.12	75.25	86.86	28.26	6.93	5.84	5.92	12.00	7.63	10.28	96.25	2.56	93.97	9.65
DPWavLM	8.22	96.27	98.58	82.11	65.24	10.19	46.29	33.99	24.7	C.	5 00	ch	CCI	~	~ d ~	ماد د	n n	ha	uni	VOR	cal	1 1	7.47
CoBERT Base	3.08	96.36	98.87	72.66	65.32	4.74	44.36	34.27	24.52	اد	pee	CII	SSL	1110	Jue	:15 C	.dII	ne	uIII	ver	Sdl	ا :	8.25
d Table ecrepitaSh	J4Me	neYær	88.92	59.87	67.59	5.39	42.39	32.60	23.62	52.44	60.92	89.39	22.88	6.65	5.82	4.84	18.74	7.23	9.68	99.25	2.59	94.13	10.59
CCC -wayzyyyac 2 Ω	5 05	96 72	96.47	72.84	64 17	630	11 70	31 06	22 71	50.65	61.84	88 08	24.34	6.73	5.61	127	16.20	7 71	11.22	94.50	2.62	04.16	10.06

Most cited Interspeech papers in last 5 years

1. Conformer: Convolution-augmented Transformer for Speech Recognition.

2.ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification. Desplanques et al. (2020)

3.AST: Audio Spectrogram Transformer. Gong et al. (2021)

4.SUPERB: Speech Processing Universal PERformance Benchmark Yang et al. (2021)

5. Unsupervised Cross-Lingual Representation Learning for Speech Recognition. Conneau et al. (2021)

6.XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale. Babu et al. (2022)

7.DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement. Hu et al. (2020)

8. Real Time Speech Enhancement in the Waveform Domain Défossez et al. (2020)

9.MLS: A Large-Scale Multilingual Dataset for Speech Research Pratap et al (2020)

10.In Defence of Metric Learning for Speaker Recognition Chung et al (2020)

INTERSPEECH is one of the top three internationally recognized conferences in the field of speech processing.

The SUPERB Universe

AV-SUPERB: A MULTI-TASK EVALUATION BENCHMARK FOR AUDIO-VISUAL REPRESENTATION MODELS

Yuan Tseng1, Layne Berry2*, Yi-Ting Chen3*, I-Hsiang Chiu1*, Hsuan-Hao Lin1*, Max Liu1*,

ML-SUPERB: Multilingual Speech Universal PERformance Benchmark

'hi-Luen Feng¹, Hung-yi Lee¹

Jiatong Shi¹, Dan Berrebbi¹, William Chen¹, Ho-Lam Chung², En-Pei Hu², Wei Ping Huang², Xuankai Chang¹, Shang-Wen Li³, Abdelrahman Mohamed⁴, Hung-yi Lee², Shinji Watanabe¹

s at Austin, USA

¹Carnegie Mello {jiatongs, dberrebb

DYNAMIC-SUPERB: TOWARDS A DYNAMIC, COLLABORATIVE, AND COMPREHENSIVE INSTRUCTION-TUNING BENCHMARK FOR SPEECH

Chien-yu Huang¹, Ke-Han Lu*¹, Shih-Heng Wang*¹, Chi-Yuan Hsiao^{†1}, Chun-Yi Kuan^{†1}, Haibin Wu^{†1} IndicSUPERB: A Speech Processing Universal Performance Benchmark ², Roshan Sharma², Shinji Watanabe²

for Indian languages

Conferences > ICASSP 2025 - 2025 IEEE Inter... ?

Tahir Javed^{1,2} Kaushal Sa

Anoop Kunchukuttan^{2,3} Pr TS-SUPERB: A Target Speech Processing Benchmark for **Speech Self-Supervised Learning Models**

¹Indian Institu

²AJ4Bh Publisher: IEEE

Cite This

Wav2vec-U: Unsupervised ASR with Wev2vec

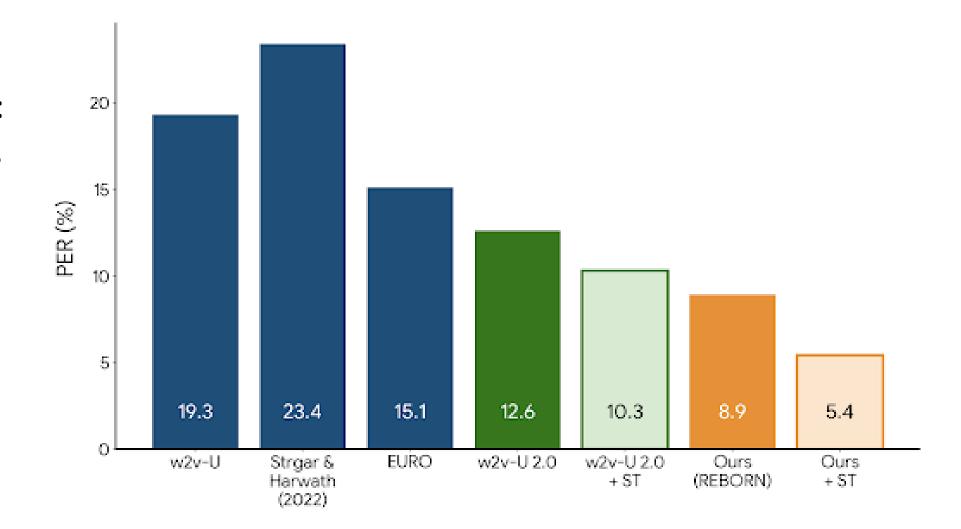


Wav2vec-U uses the **15th layer** instead of the **last layer**.

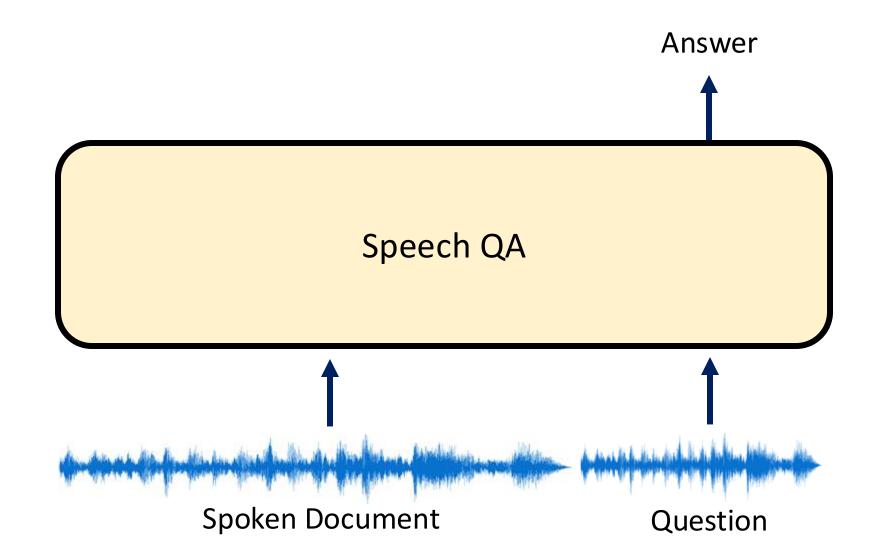
REBORN http

https://arxiv.org/abs/2402.03988

- Librispeech
- training data:
 - 100 hours



Listening Comprehension (Speech QA)



Listening Comprehension

TOEFL Listening Comprehension Test by Machine

Audio Story: (The original story is 5 min long.)

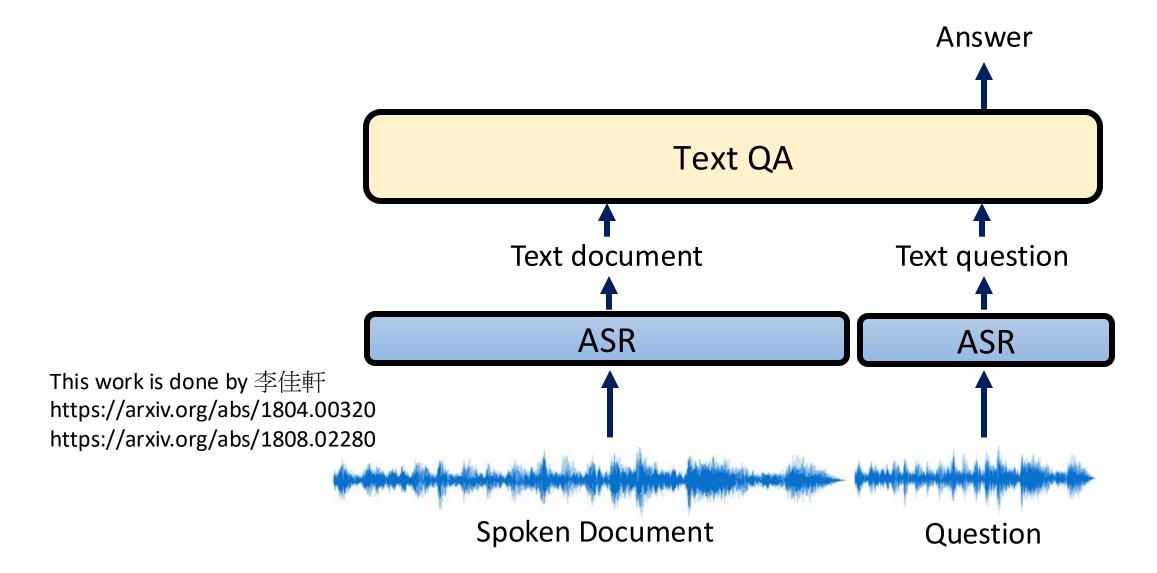
Question: "What is a possible origin of Venus' clouds?"

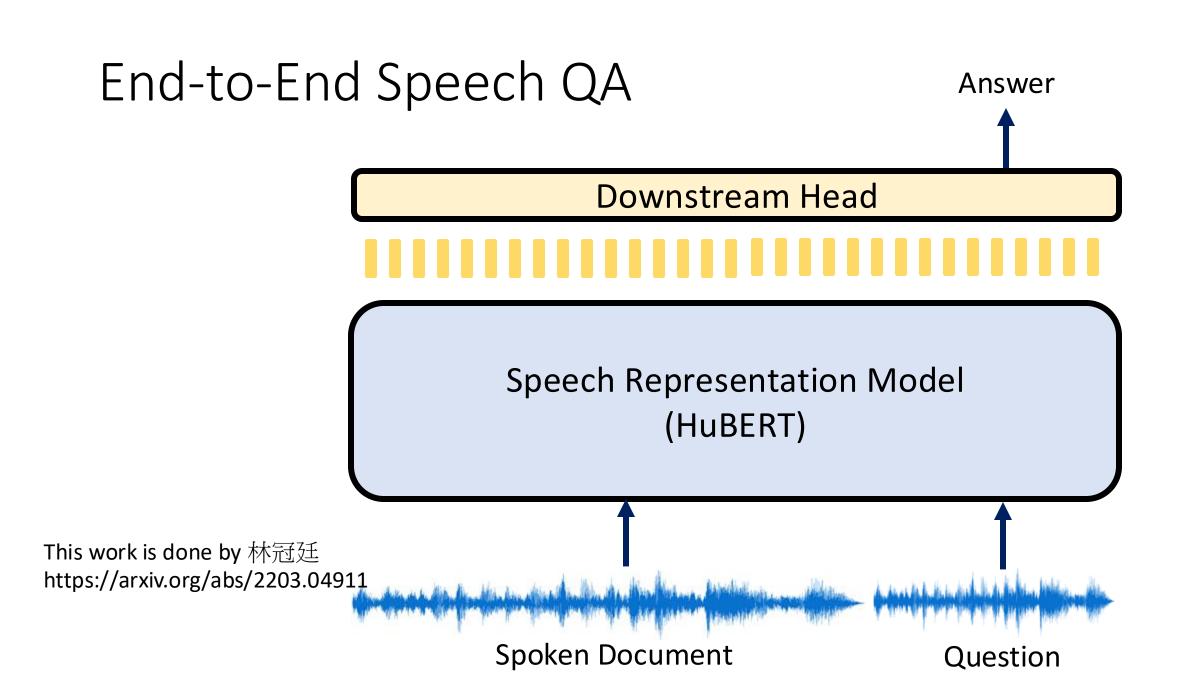
Choices:

- (A) gases released as a result of volcanic activity
- (B) chemical reactions caused by high surface temperatures
- (C) bursts of radio energy from the plane's surface
- (D) strong winds that blow dust into the atmosphere

This work is done by 曾柏翔 https://arxiv.org/abs/1608.06378

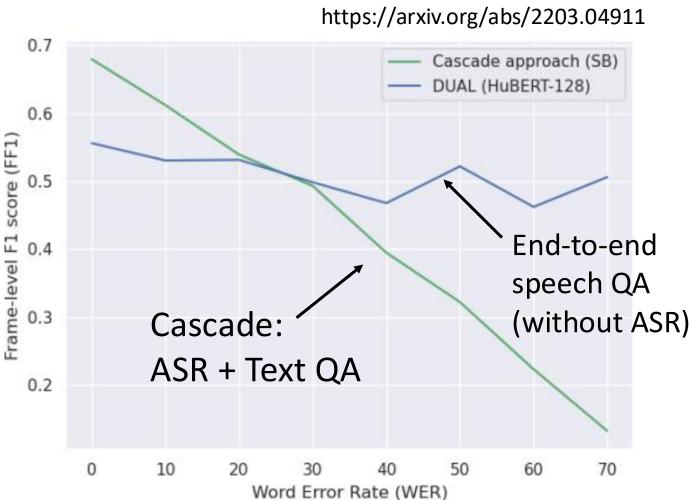
Listening Comprehension (Speech QA)





End-to-End Speech QA

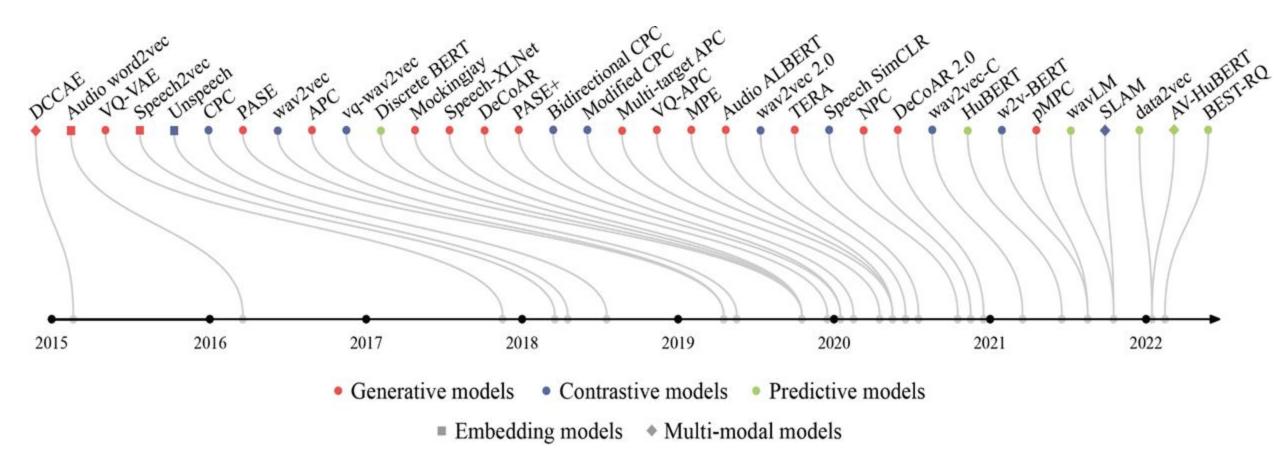
https://rc.signalprocessingsociety.org/conferences/icassp-2022/spsicassp22vid1971



Self-Supervised Speech Representation Learning: A Review

https://arxiv.org/abs/2205.10643

Abdelrahman Mohamed*, Hung-yi Lee*, Lasse Borgholt*, Jakob D. Havtorn*, Joakim Edin, Christian Igel Katrin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars Maaløe, Tara N. Sainath, Shinji Watanabe



Useful Toolkit! The S3PRL toolkit

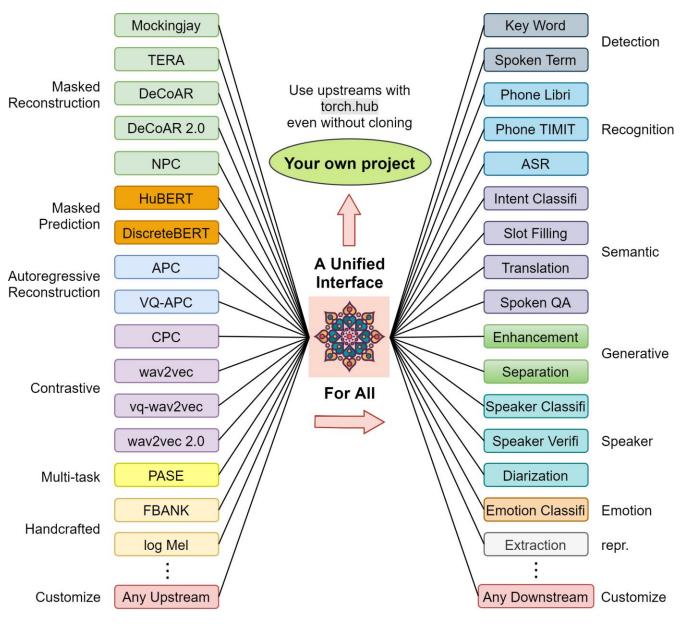


https://github.com/s3prl/s3prl

Creator

Shu-wen (Leo) Yang

Andy T. Liu



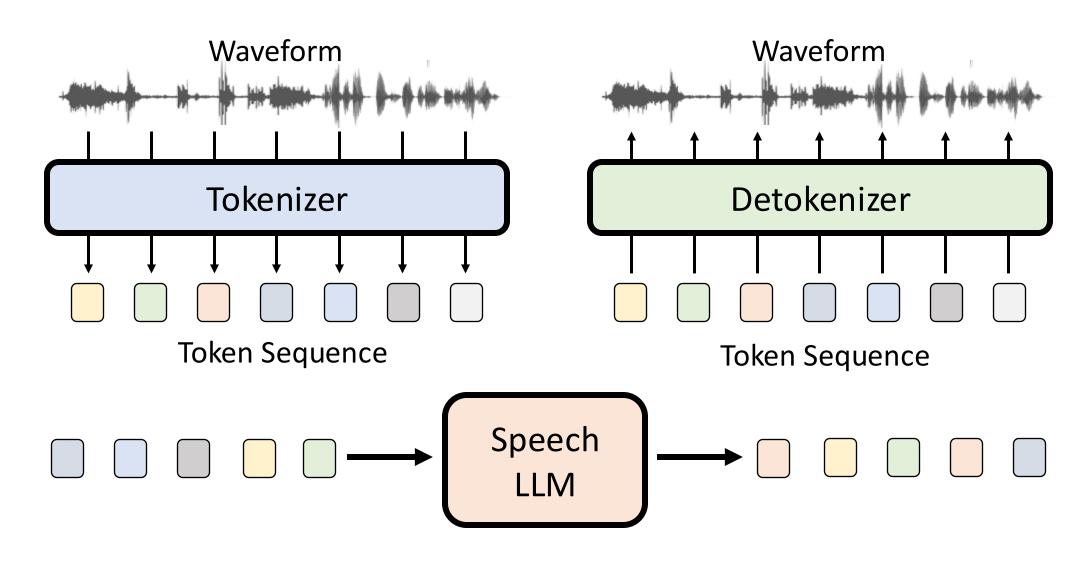
Over 2.5k stars & used by over 180 repos

2. 初代語音語言模型

Speech LLM

Generative Spoken Language Modeling (GSLM) from Raw Audio

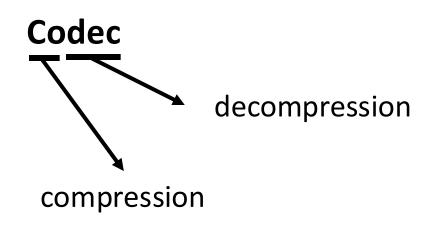
https://arxiv.org/abs/2102.01192

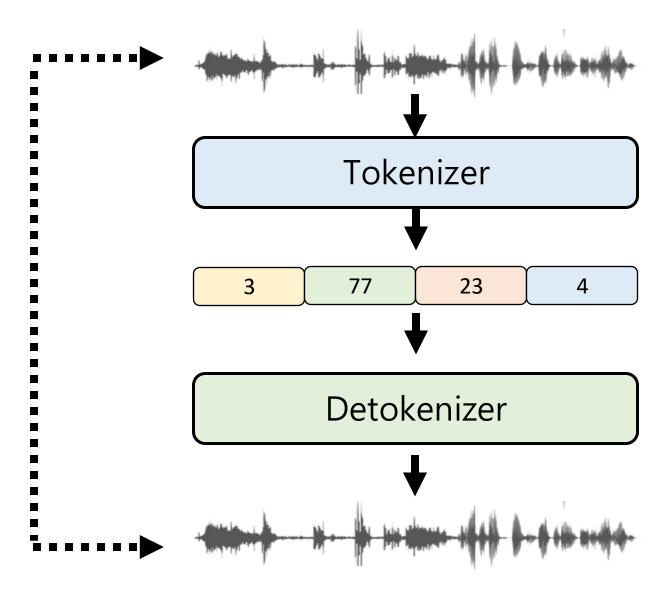


Another possible pipeline of speech tokenization

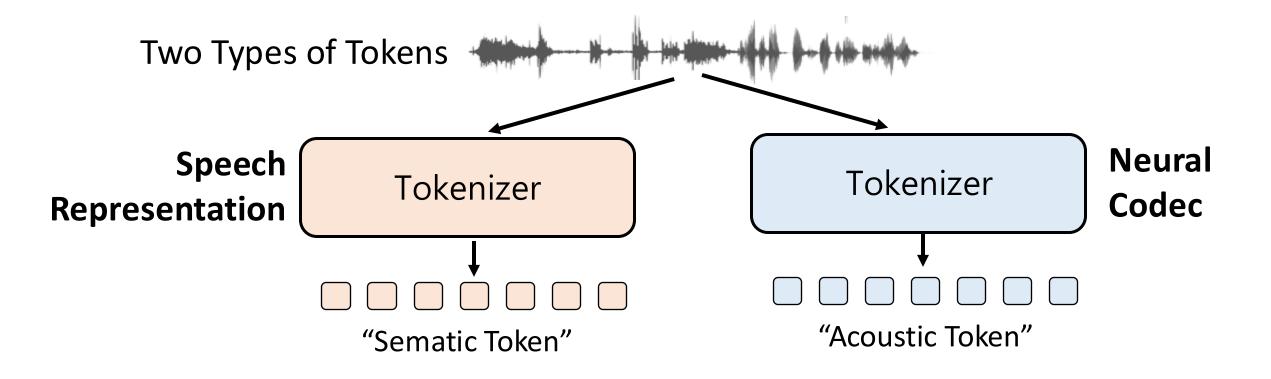
Neural Speech Codec

The tokenizer and detokenizer are learned jointly.





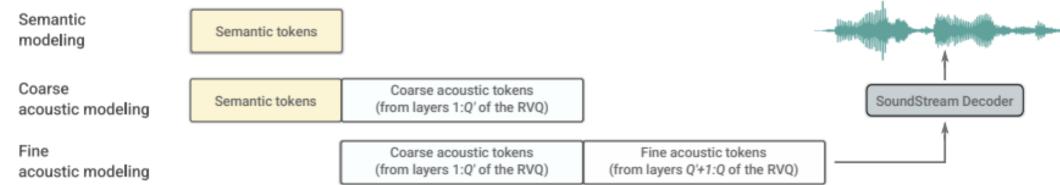
Various Types of Speech Tokenizers



Which one is the best choice?

Just use all of them!

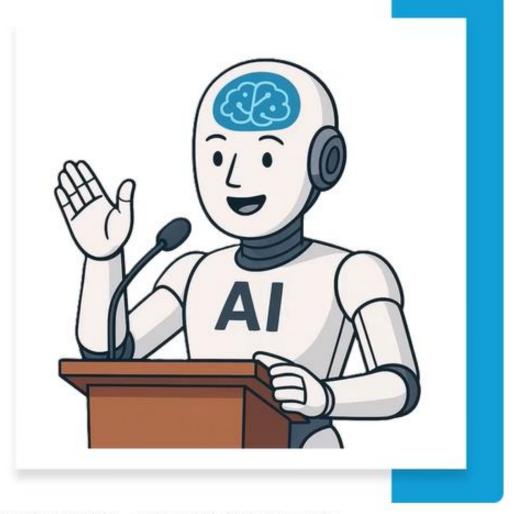
Audio LM https://arxiv.org/abs/2209.03143



How to arrange the order of their generation

https://arxiv.org/abs/2306.05284

可以聽和說的 語音語言模型



【生成式AI時代下的機器學習(2025)】第十二講:語言模型如何學會說話 – 概述語音語言模型發展歷程

https://www.youtube.com/watch?v=gkAyqoQkOSk

27:00 - 39:00

Very challenging!

Speech LLM

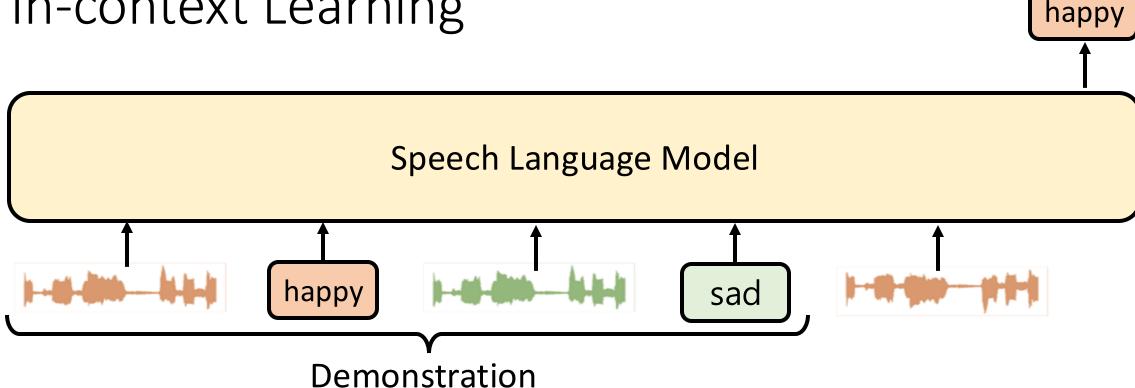
He assassinated the president and gave mister johnson the last charge of improvement in his writing possible three point eight nine.

https://arxiv.org/abs/2306.02207

Does this sentence make sense?

... while the sentence has recognizable English words and phrases, as it is currently constructed, it doesn't coherently communicate a clear, singular idea or sequence of connected ideas. ...

In-context Learning



 Text LLM usually has the in-context learning capability, but speech LM (GSLM) has not shown similar capability.

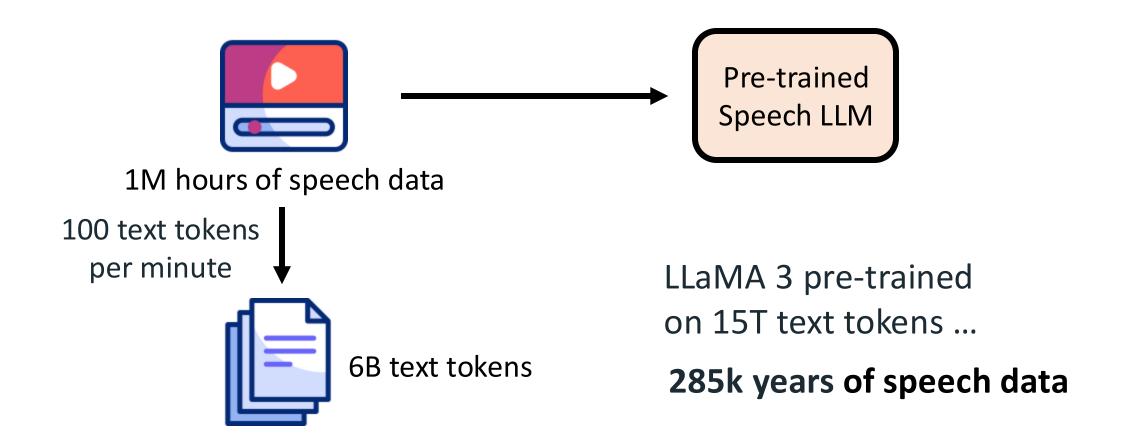
Prompting Speech LLM for Different Tasks

https://ga642381.github.io/SpeechPrompt/

Kai-Wei Chang

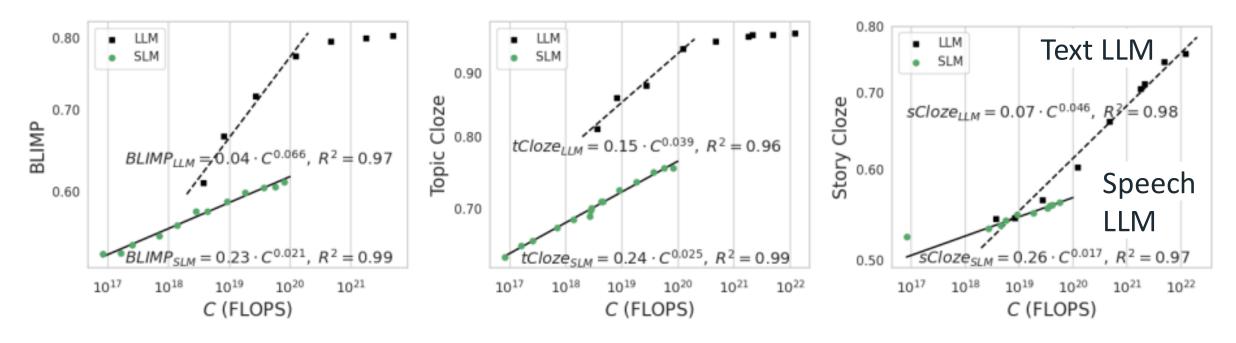


Why is training speech LM so challenging?



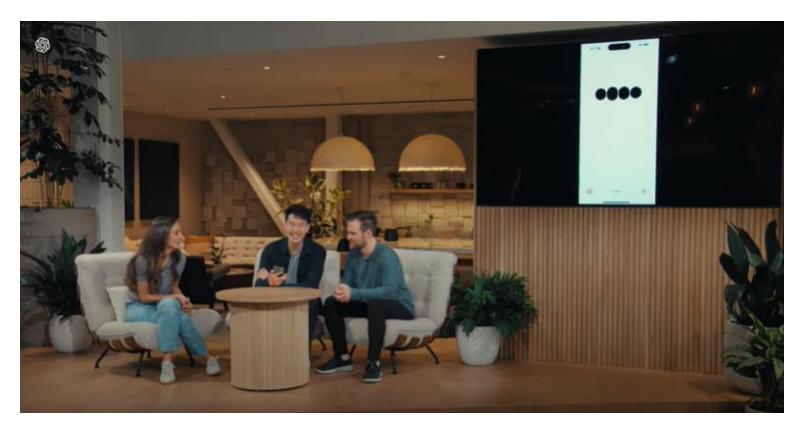
Why is training speech LM so challenging?

https://arxiv.org/abs/2404.00685



Besides content, speech LLMs also have to learn to understand other information (such as speaker identity, emotion, etc.) that text LLMs do not have to.

Until



GPT-40 Voice Mode

Source of image: https://www.youtube.com/watch?v=DQacCB9tDaw

Moshi

https://moshi.chat/

3. 如何利用強大的文字模型

模型訓練: Pre-train (利用文字資訊) 語言模型 你好嗎? 我 以文字的語言模型初始化 只需要學這個新符號是甚麼意思 教原有的語言模型聽懂語音 語音版 混合模式: 好好笑 語言模型 其他利用文字資訊的方式 https://arxiv.org/abs/2310.08715 https://arxiv.org/abs/2402.05755 GPT-4o 背後可能的語音技術猜測

Starting from Text LLM

Downstream Head

Answer

Initialized by text LLM (BERT)

Speech Representation Model (HuBERT)

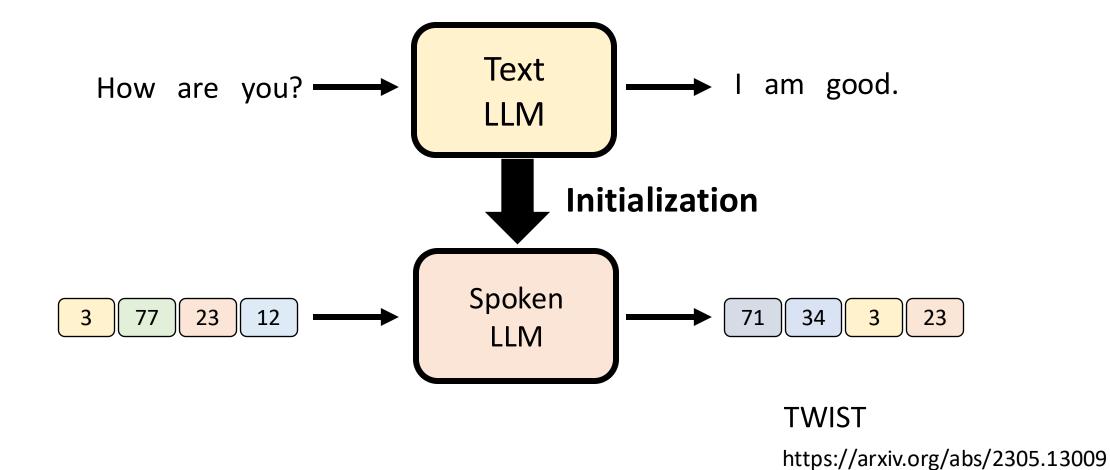
DUAL

https://arxiv.org/abs/2203.04911

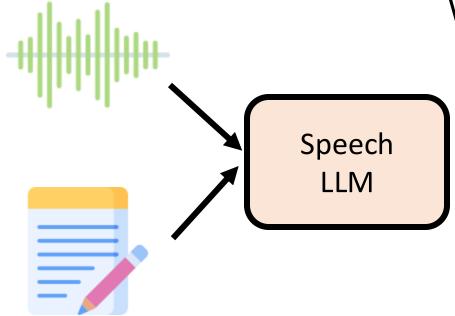
GSQA

https://arxiv.org/abs/2312.09781

Starting from Text LLM

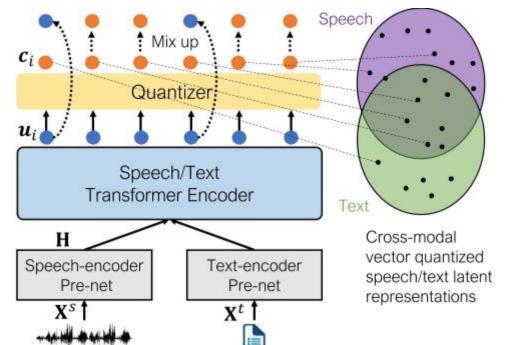


Jointly learned from the speech and text



How to better alignment between speech and text

Widely studied in the era of shared encoder



https://arxiv.org/abs/2110.10329 https://arxiv.org/abs/2110.07205

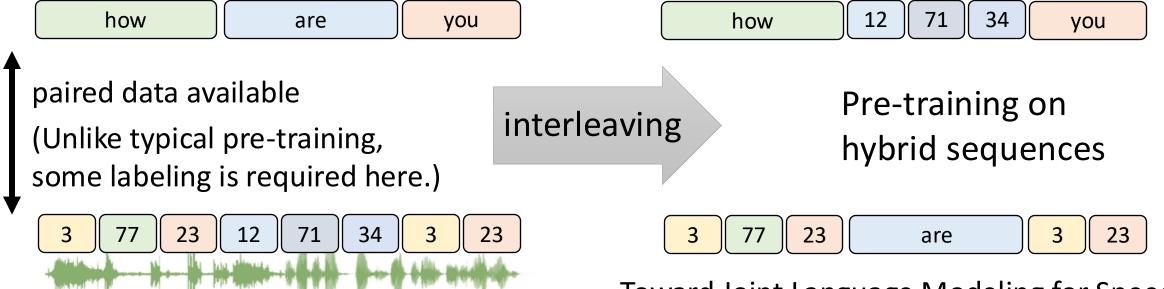
Source:

speechT5

https://arxiv.org/abs/2204.03409

Jointly learned from the speech and text

Methods for spoken LM



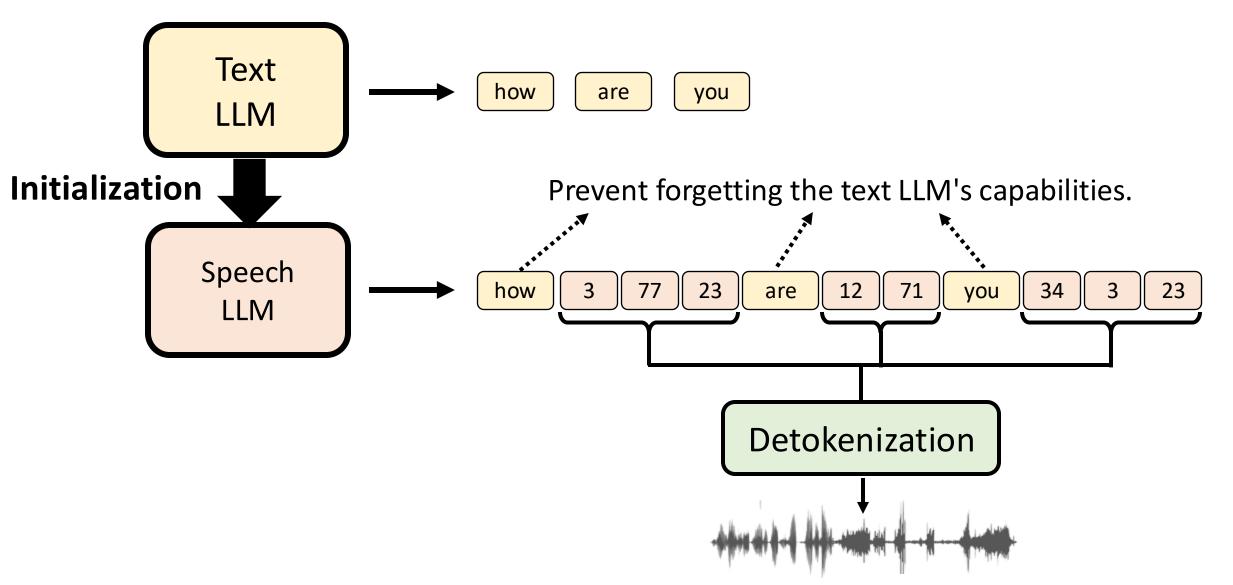
Toward Joint Language Modeling for Speech Units and Text

https://arxiv.org/abs/2310.08715

Spirit LM

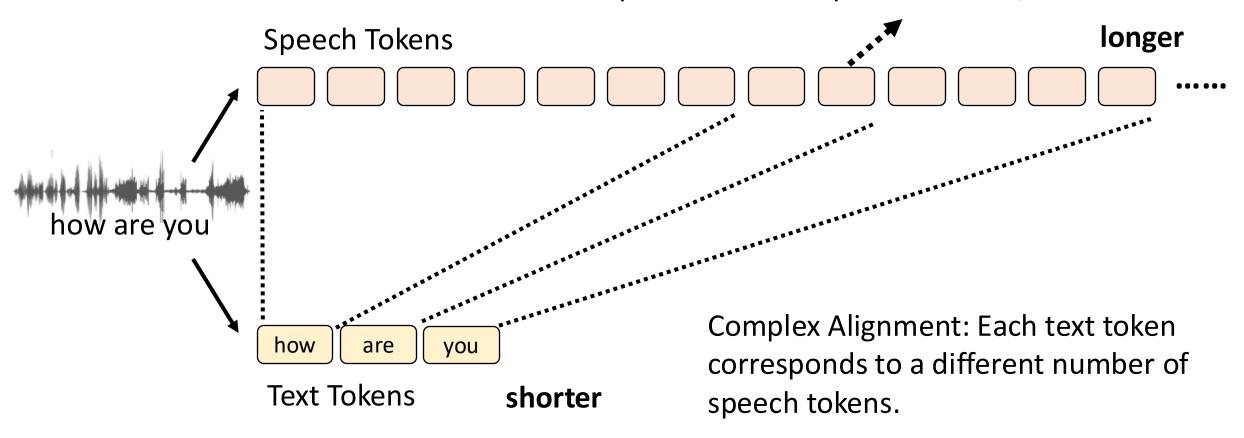
https://arxiv.org/abs/2402.05755

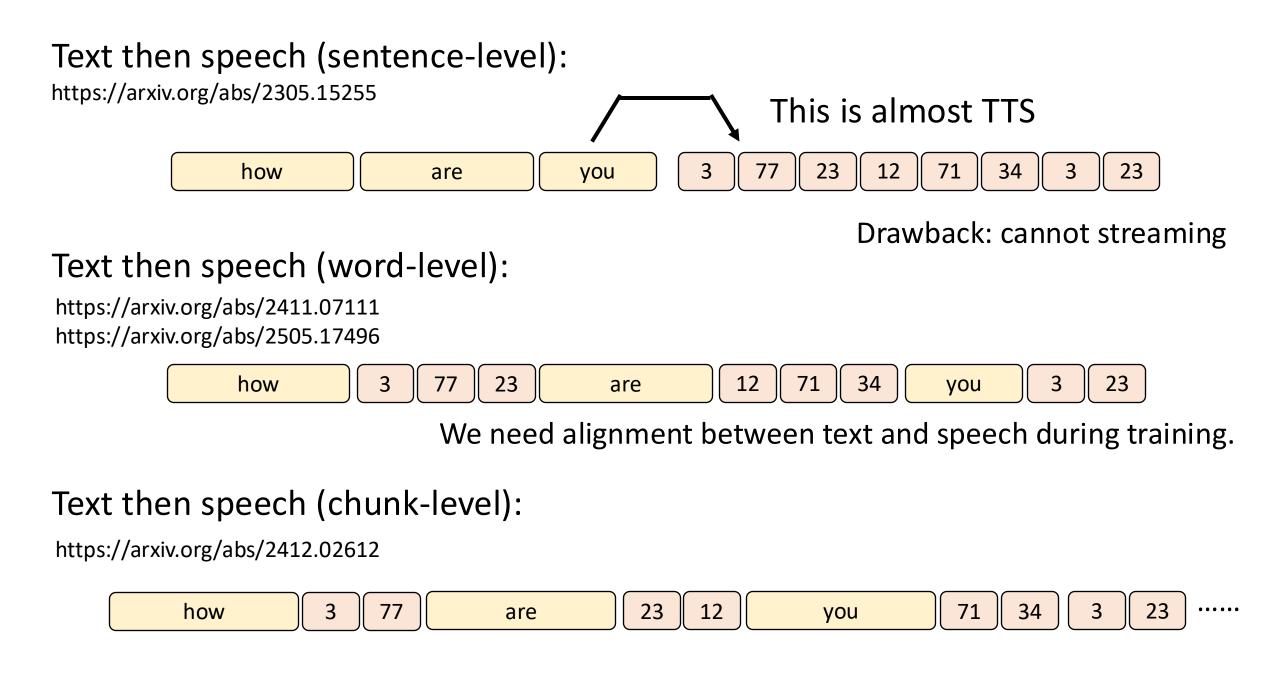
Text-Speech Hybrid Generation



Text-Speech Hybrid Generation

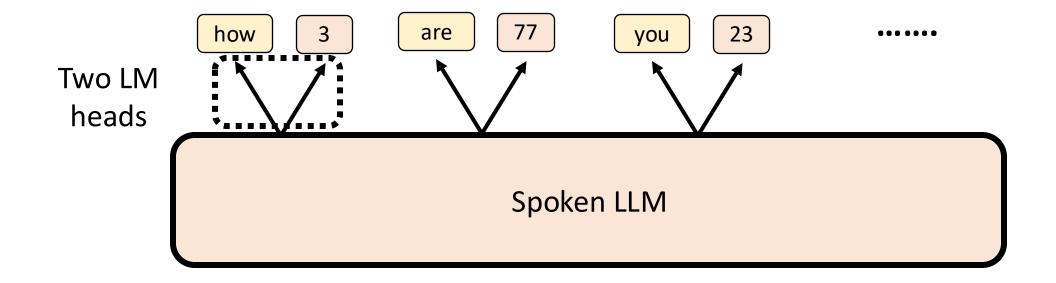
Each corresponds to a fixed period of time, such as 0.02s.



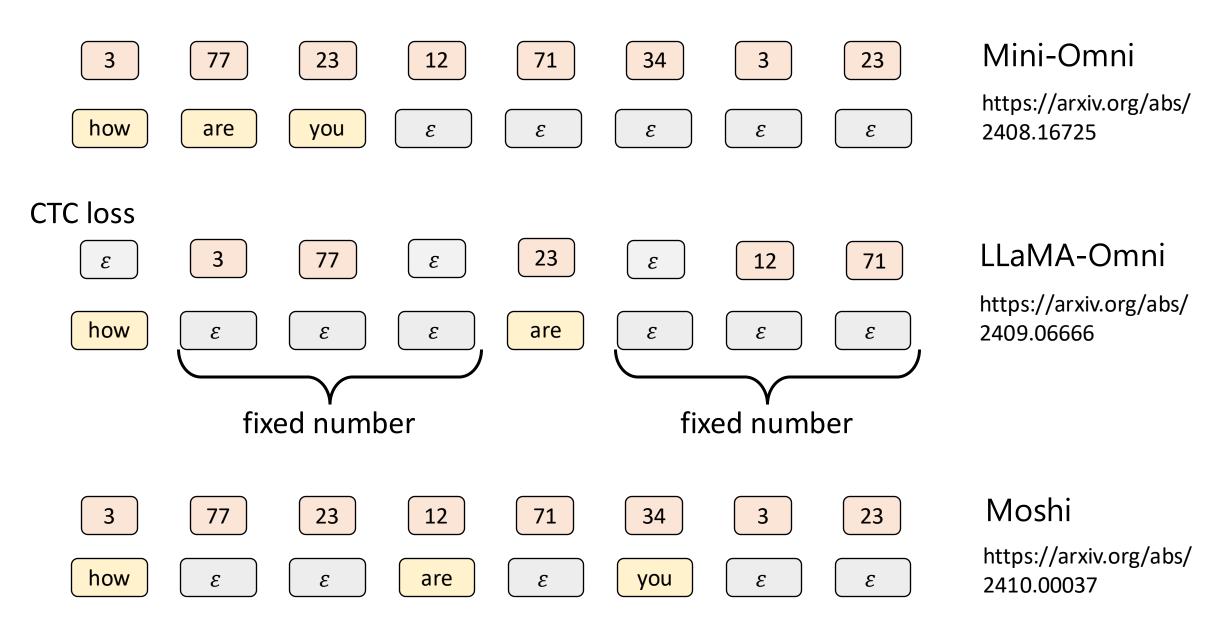


Text-Speech Hybrid Generation

Text and speech at the same time

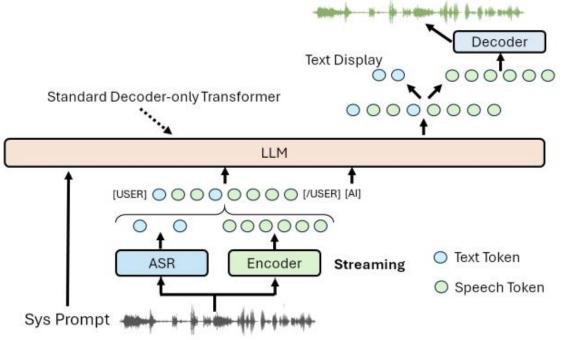


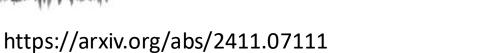
The text token and speech token do not have the same scale (their lengths differ significantly).

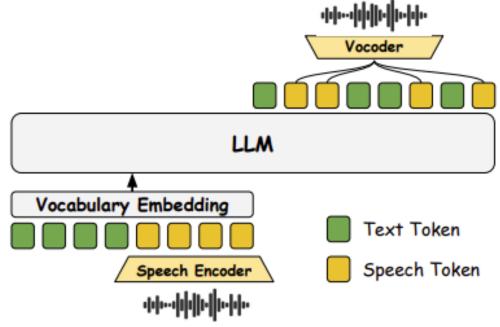


This is similar to a duration model.

Text then speech (word-level)





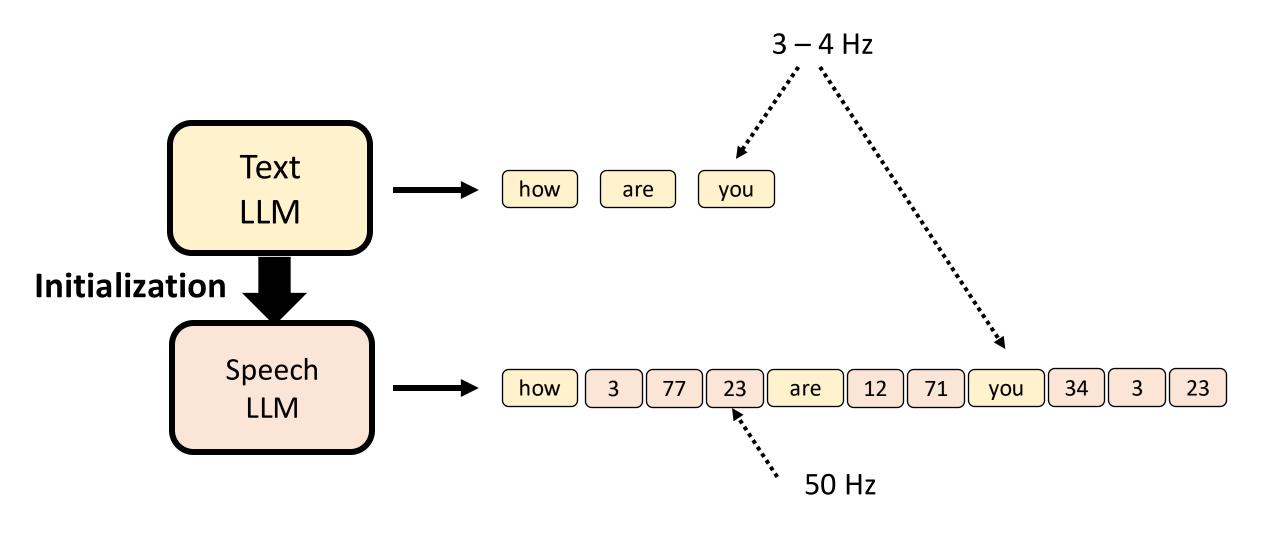


https://arxiv.org/abs/2505.17496

I am hungry now. Can you give me some ideas?

The training data is approximately 1,000 hours.

I'd be happy to help you with some ideas for something to eat. What kind of food are you in the mood for? Are you craving something sweet, savory, or something else? Do you have any dietary restrictions or preferences? Let me know and I can suggest some options for you.



Ten times the length and **one hundred** times the computational cost for attention...

4. 尋找更合適的語音表示方式

TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling

Liang-Hsuan Tseng*23 Yi-Chang Chen*1 Kuan-Yi Lee23 Da-Shan Shiu1 Hung-yi Lee3

*Equal contribution ¹MediaTek Research ²Internship at MediaTek Research ³National Taiwan University

https://arxiv.org/abs/2504.07053

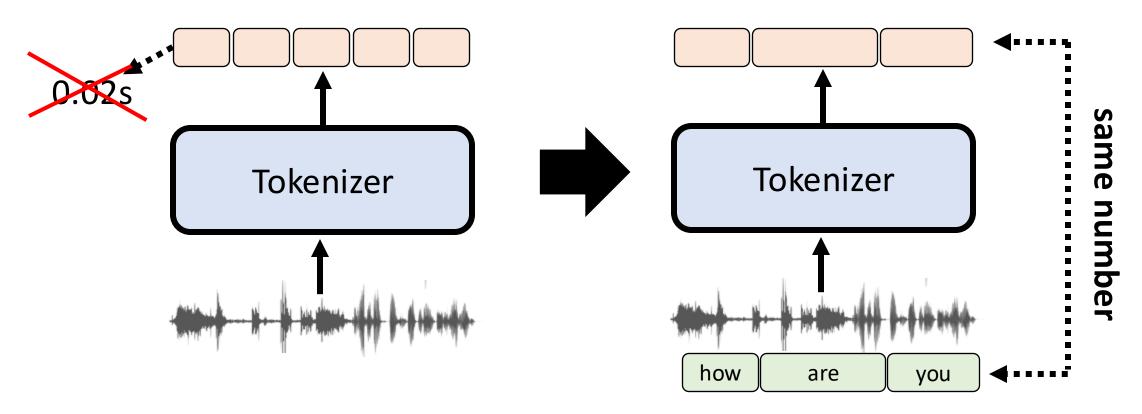
Liang-Hsuan Tseng (NTU)

Yi-Chang Chen (MediaTek)

Kuan-Yi Lee (NTU)

Can we have speech tokens designed for textspeech hybrid generation?

1. Straightforward relationship with text (cannot be fixed duration) e.g., one speech token corresponds to one text token

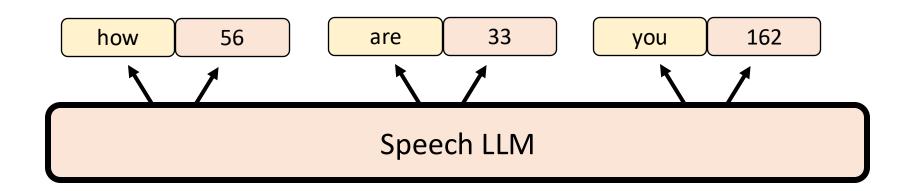


Can we have speech tokens designed for textspeech hybrid generation?

1. Straightforward relationship with text (cannot be fixed duration)

e.g., one speech token corresponds to one text token

Text-speech hybrid generation can be so simple.



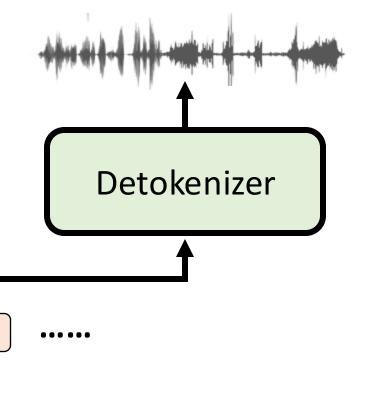
Can we have speech tokens designed for textspeech hybrid generation?

2. No need to include content information.

are

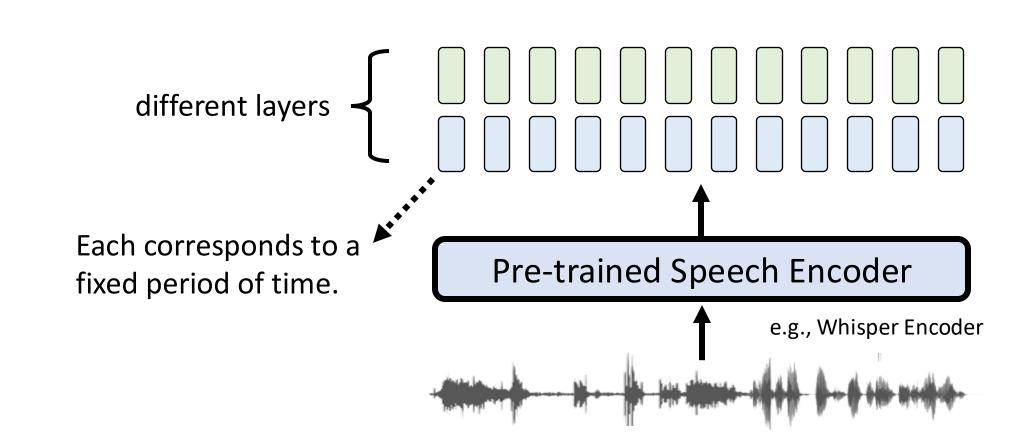
Speech tokens focus on information that cannot be expressed by text.

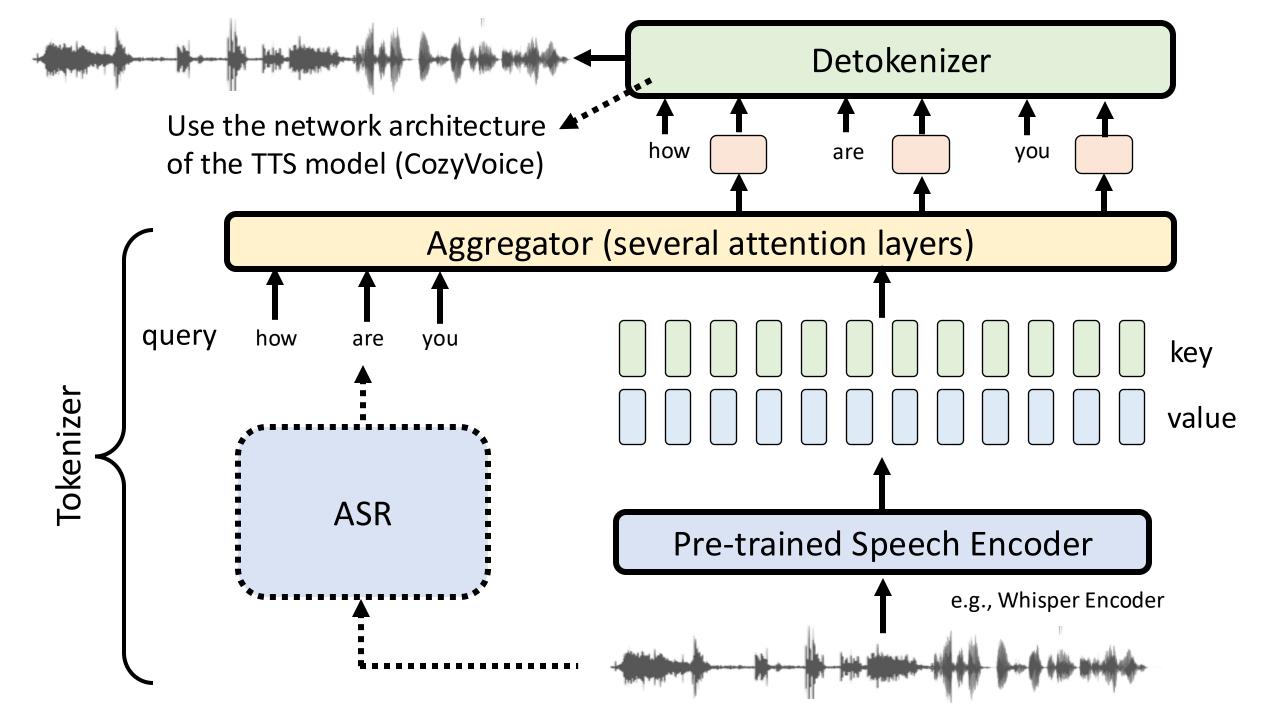
how

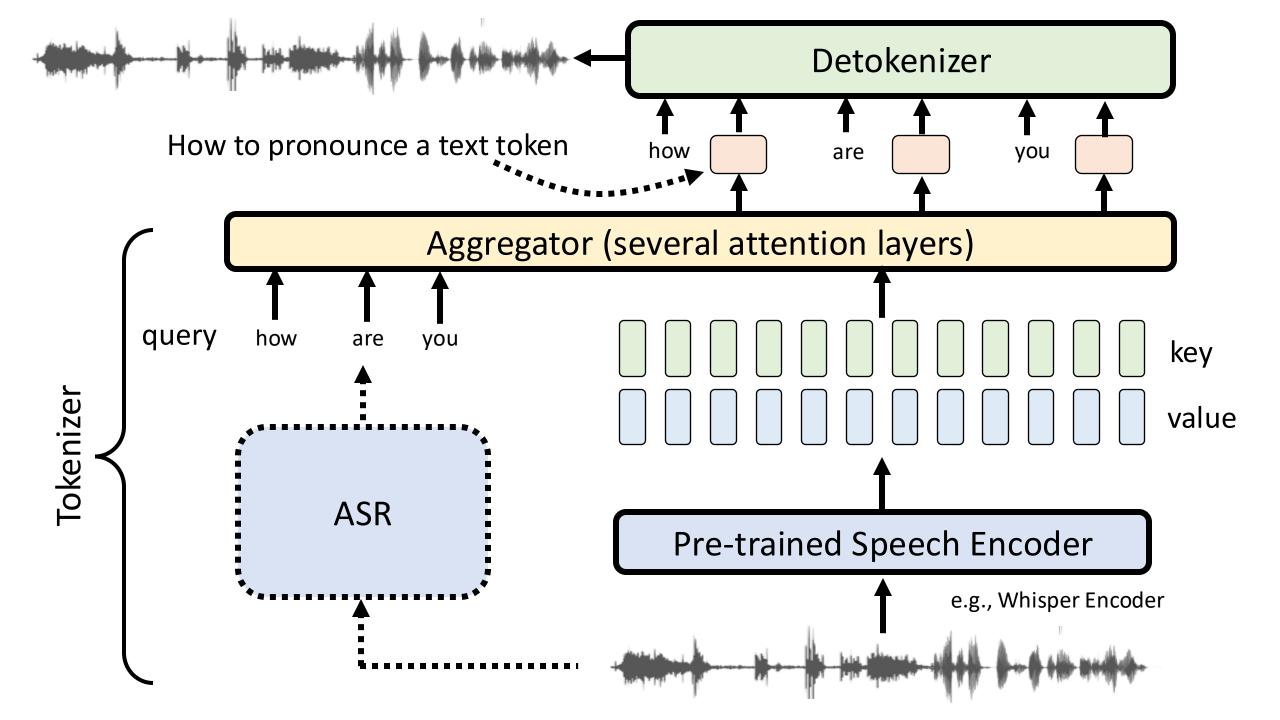


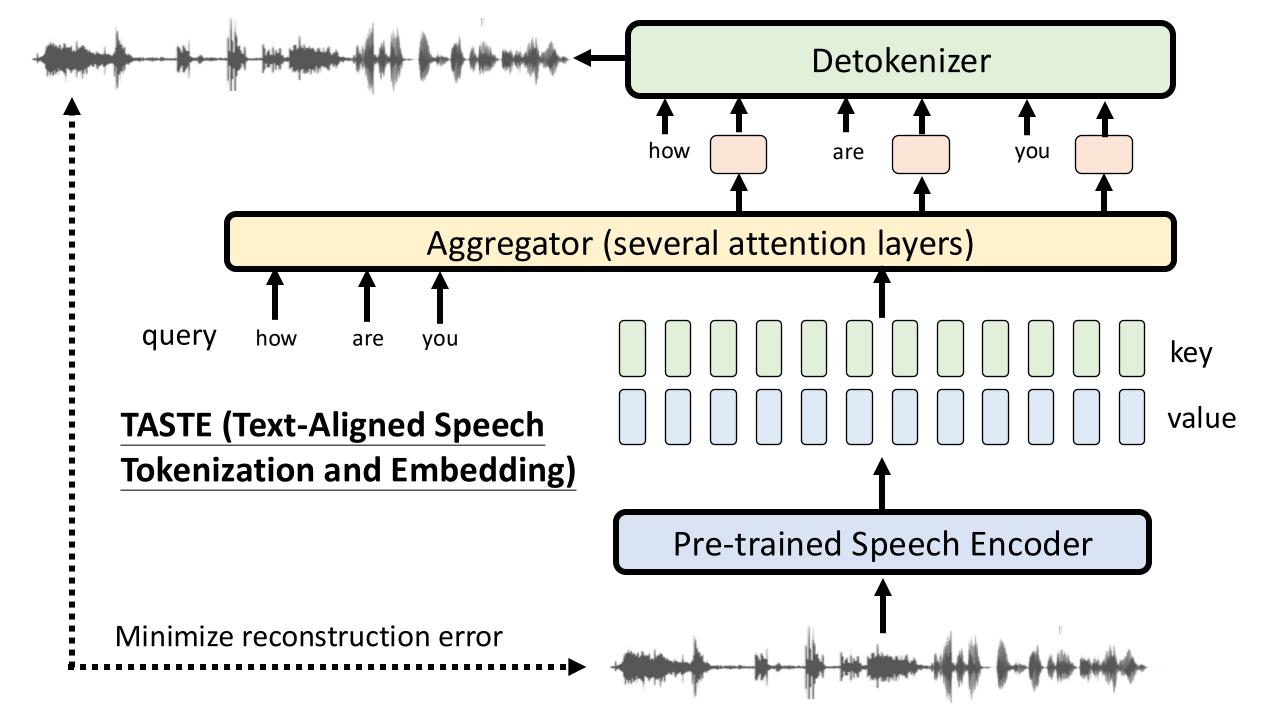
Speech LLM

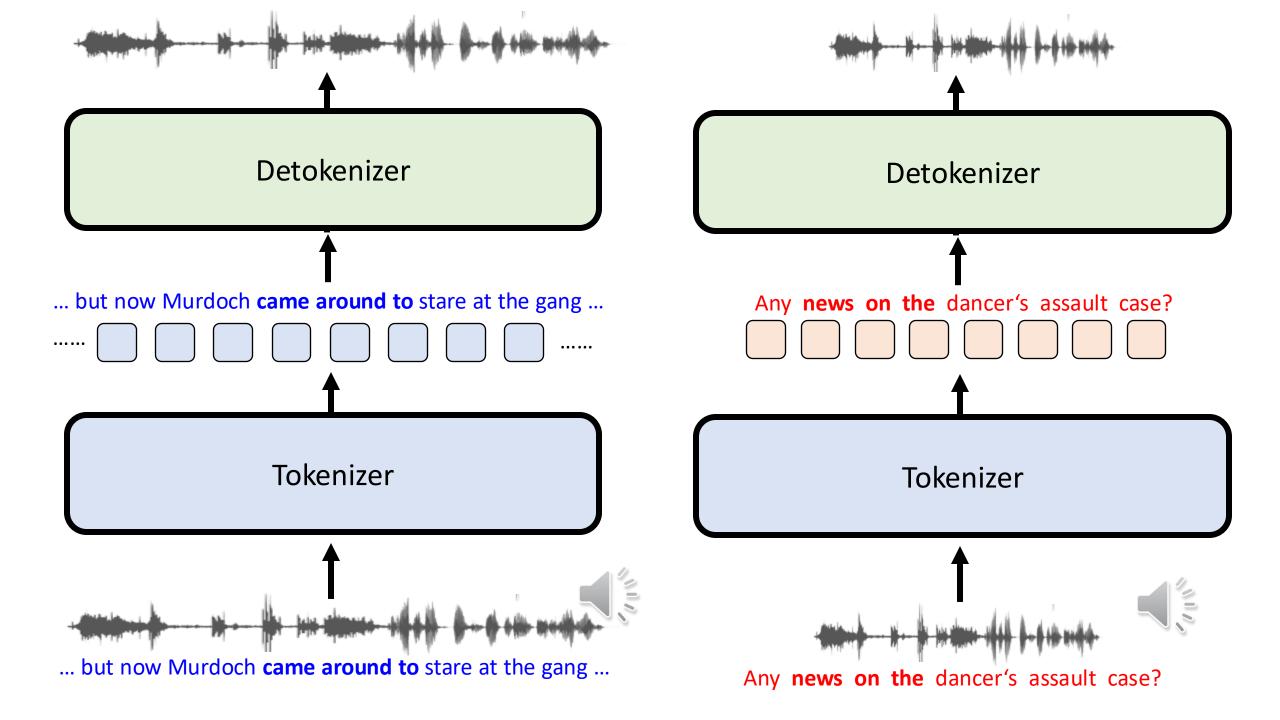
you

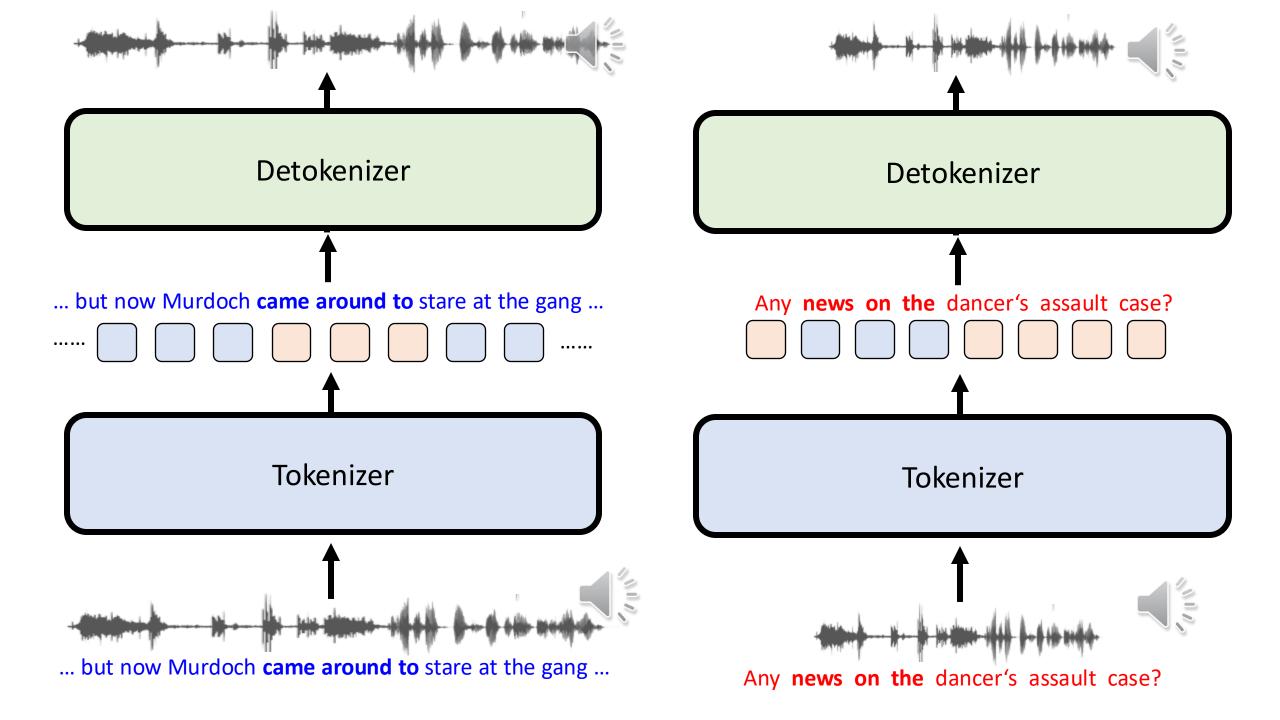




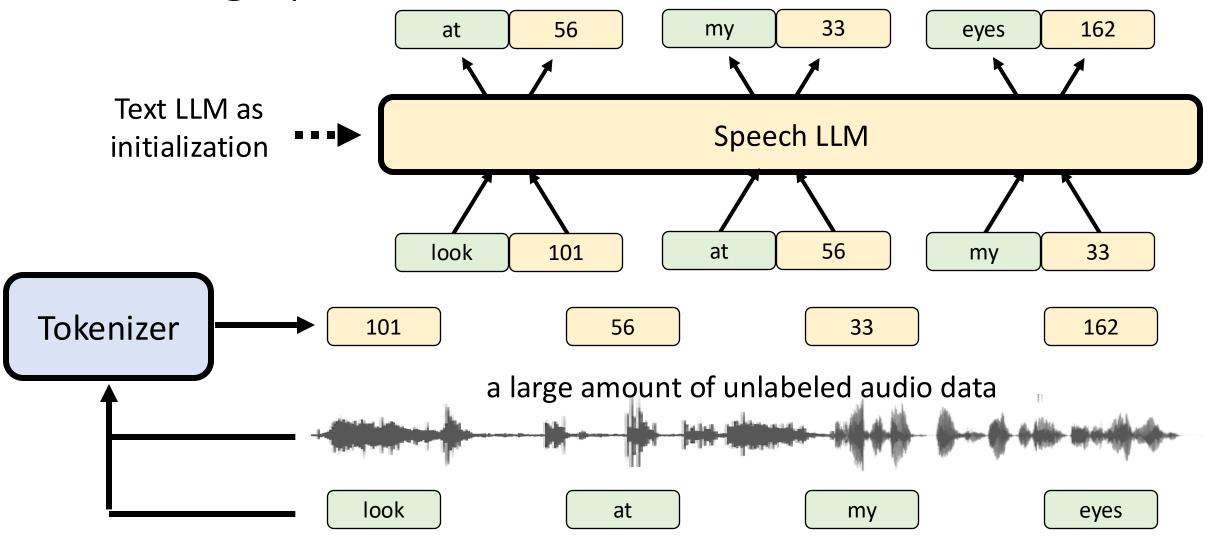




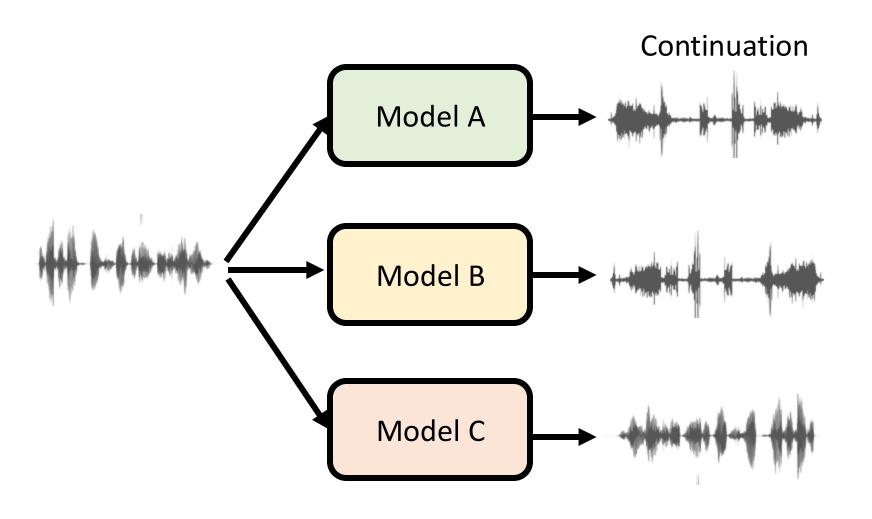




Training Speech LLM



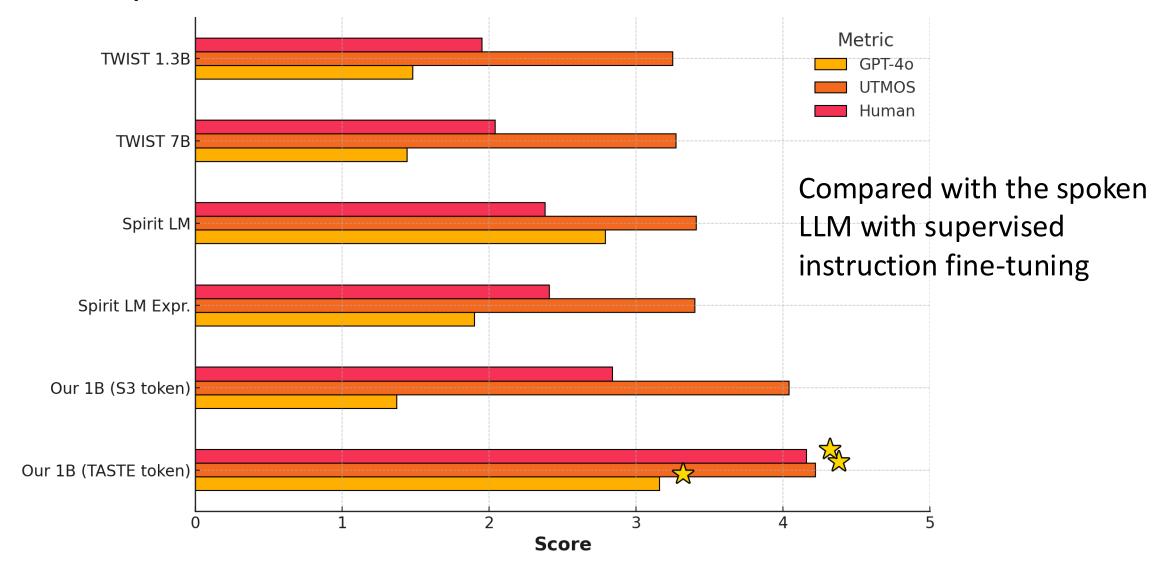
Compared with Other Pretrained Models



Evaluation

- ASR+GPT-4o: semantic coherence
- UTMOS: audio quality
- Human: how reasonable the utterances are

Compared with Other Pretrained Models



English Demo

Source of video: https://www.youtube.com/watch?v=Dc7gc7BECk0

【生成式AI時代下的機器學習(2025)】第十二講:語言模型如何學會說話 – 概述語音語言模型發展歷 程 https://www.youtube.com/watch?v=gkAyqoQkOSk&t=4450s

Chinese Demo

你這個廢物

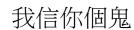
我是李宏毅

台灣最高的山

大家好我是李宏毅 今天很高興來給這場演講

Chinese Demo

不要瞎掰好嗎



唉唷~我老爸得了 MVP

亮你好厲害 又拿到了全學年的第一名

啊能能

感謝陳竣瑋同學產生結果

More

Dynamic Token Rate

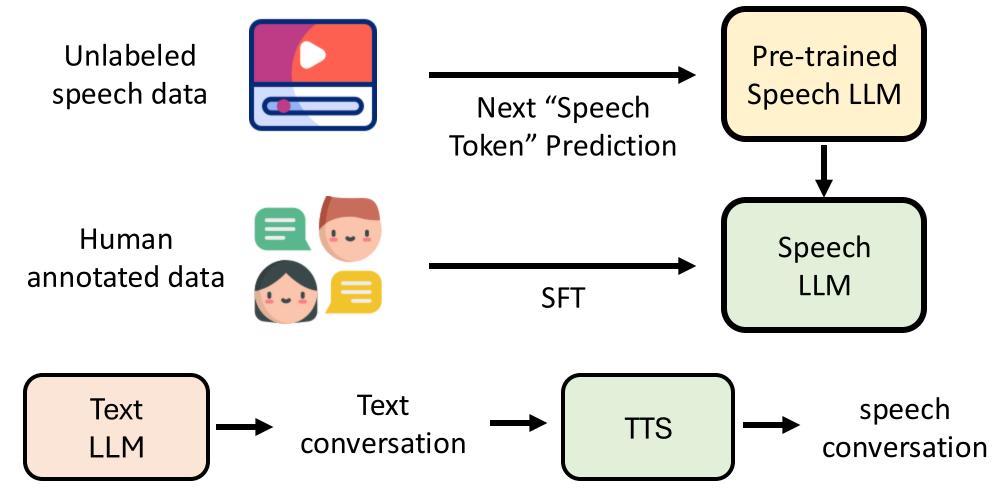
- SyllableLM: Learning Coarse Semantic Units for Speech Language Models
 - https://arxiv.org/abs/2410.04029
- Sylber: Syllabic Embedding Representation of Speech from Raw Audio
 - https://arxiv.org/abs/2410.07168
- CodecSlime: Temporal Redundancy Compression of Neural Speech Codec via Dynamic Frame Rate
 - https://arxiv.org/abs/2506.21074
- TaDiCodec: Text-aware Diffusion Speech Tokenizer for Speech Language Modeling
 - https://arxiv.org/abs/2508.16790

Text

- FlexiCodec: A Dynamic Neural Audio Codec for Low Frame Rates
 - https://arxiv.org/abs/2510.00981
- TASLA: Text-Aligned Speech Tokens with Multiple Layer-Aggregation
 - https://arxiv.org/abs/2510.14934

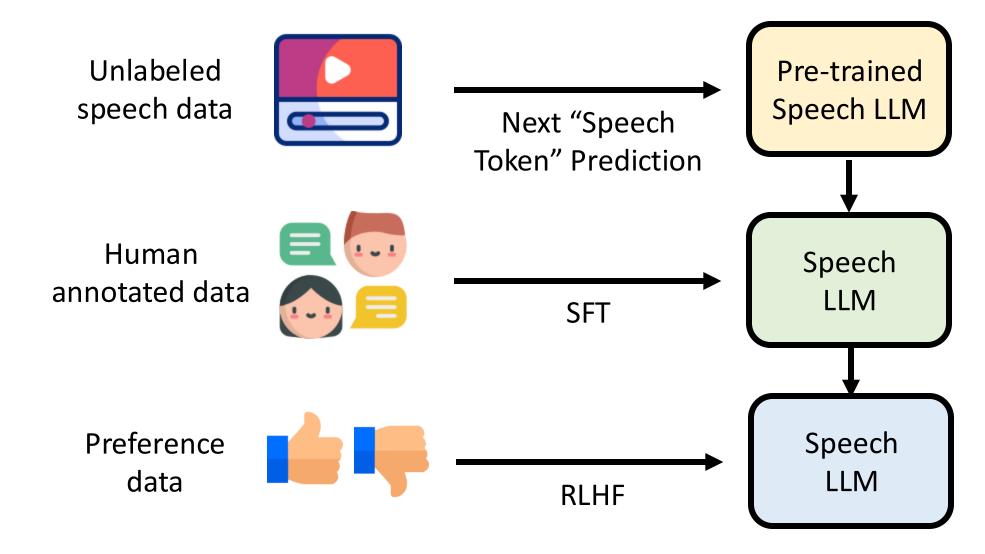
Text + Dynamic Token Rate

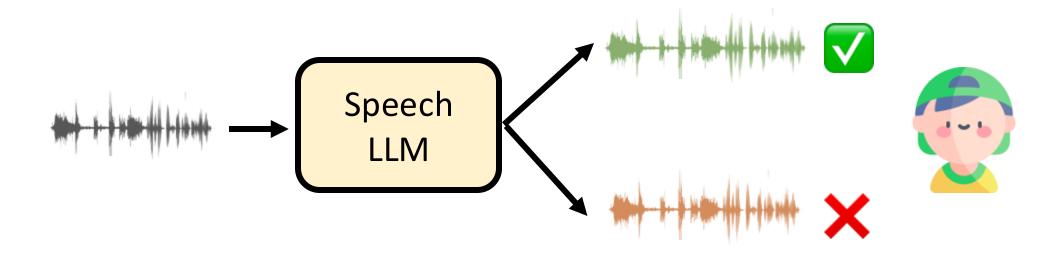
How to Train Speech LLM

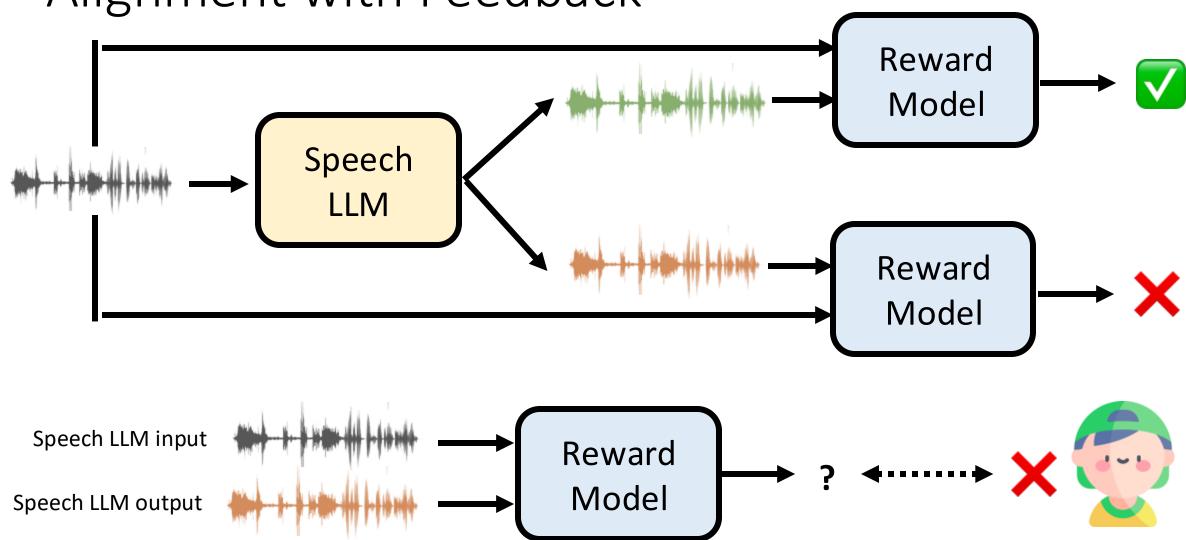


https://arxiv.org/abs/2411.07111

How to Train Speech LLM

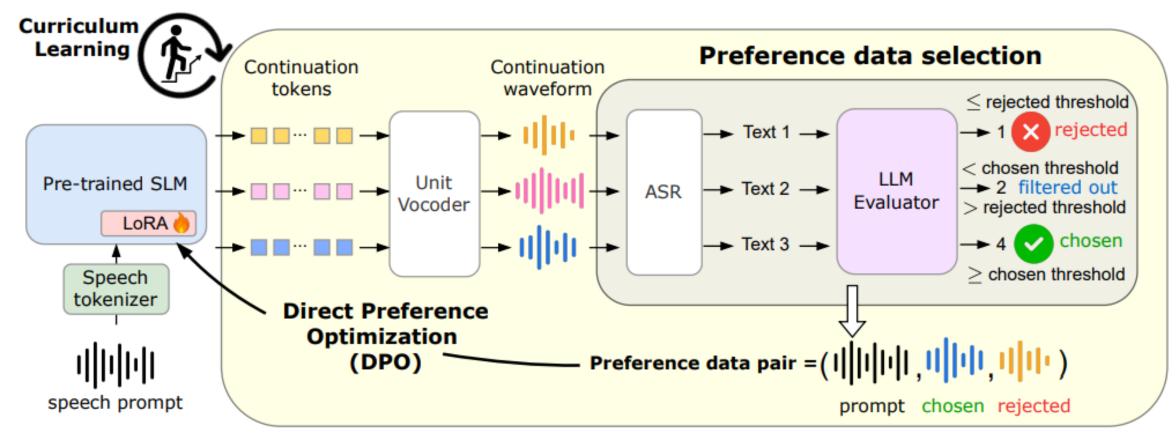


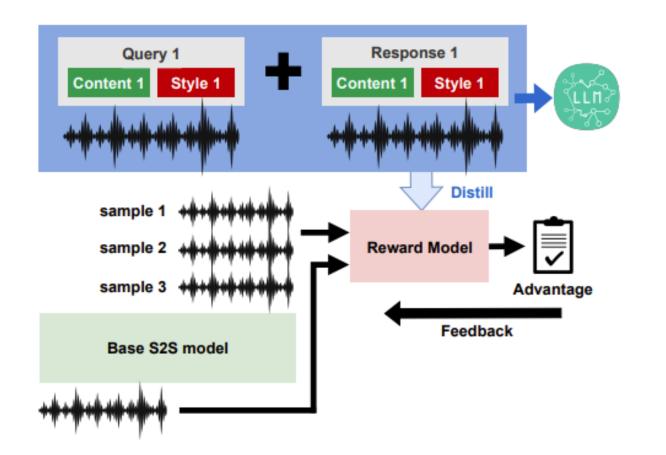




Guan-Ting Lin (with researchers from the Amazon GAI team)

https://arxiv.org/abs/2411.01834





Shu-wen (Leo) Yang

(with researchers from the ByteDance Seed team)

https://arxiv.org/abs/2511.08723

Emotion

Gender

Age

https://paras2sbench.github.io/

Reasoning (深度思考)

ChatGPT

告訴我人工智慧的未來

正在思考>

立即回答

DeepSeek

告訴我人工智慧的未來

 \vee

7 2

図 已思考(用时4秒) >

人工智慧(AI)的未來充滿無限可能,

告訴我人工智慧的未來

Claude

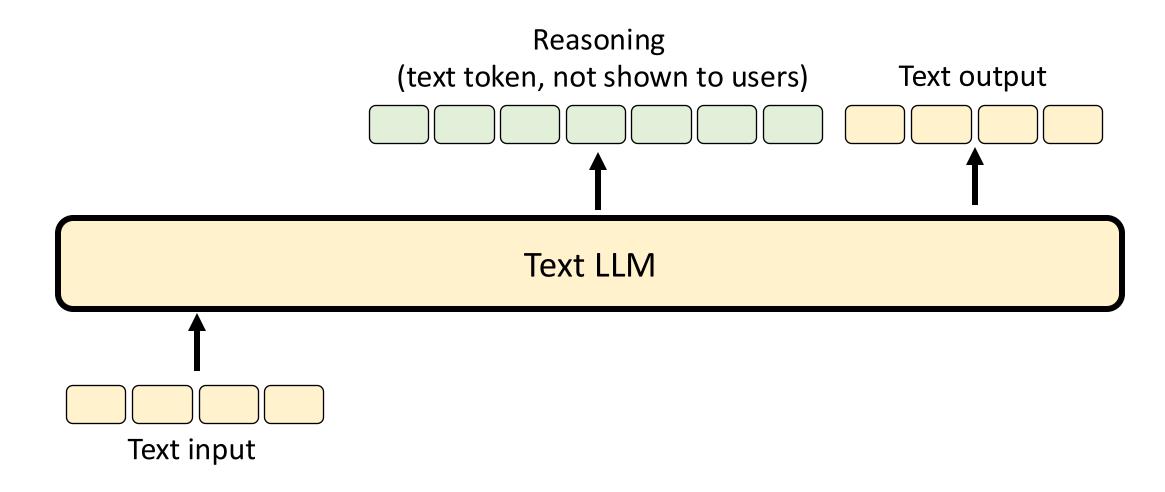
告訴我人工智慧的未來

Gemini

等**劃**全面回應涵蓋技術、應用與社會影響。

人工智慧的未來是個引人入勝的話題,我從幾個面向來談:

Text LLM + Reasoning

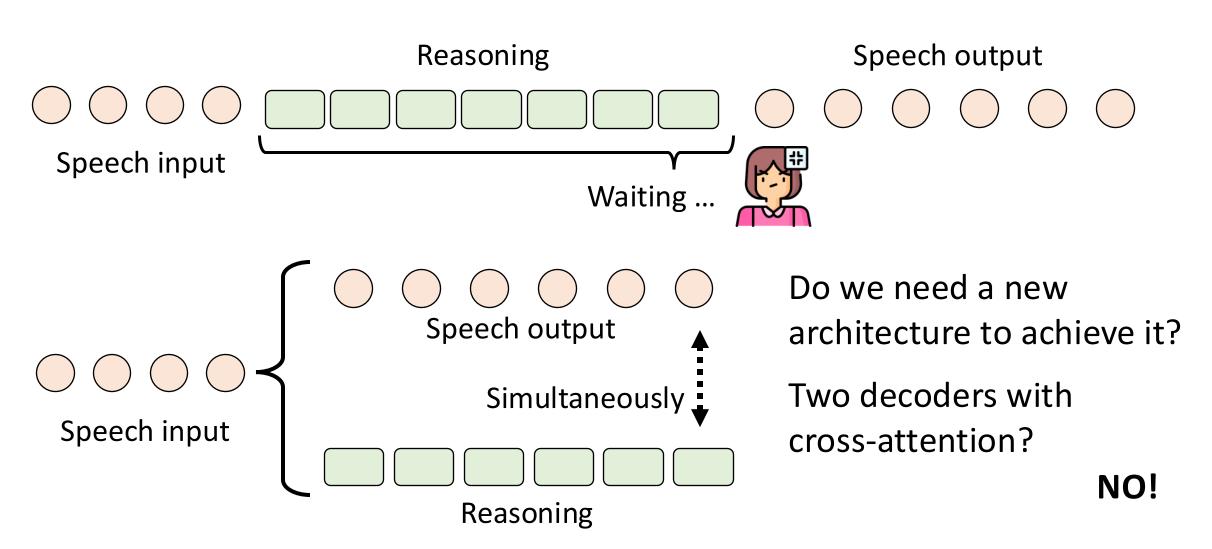


Speech LLM + Reasoning

(Actually, text-speech hybrid generation is used, but do not show the text token here.)

Reasoning Speech output (text token, not shown to users) Speech LLM Audio-Reasoner https://arxiv.org/abs/2503.02318 Speech input Audio-Thinker https://arxiv.org/abs/2508.08039

Simultaneous Thinking and Talking?



STITCH: SIMULTANEOUS THINKING AND TALKING WITH CHUNKED REASONING FOR SPOKEN LANGUAGE MODELS

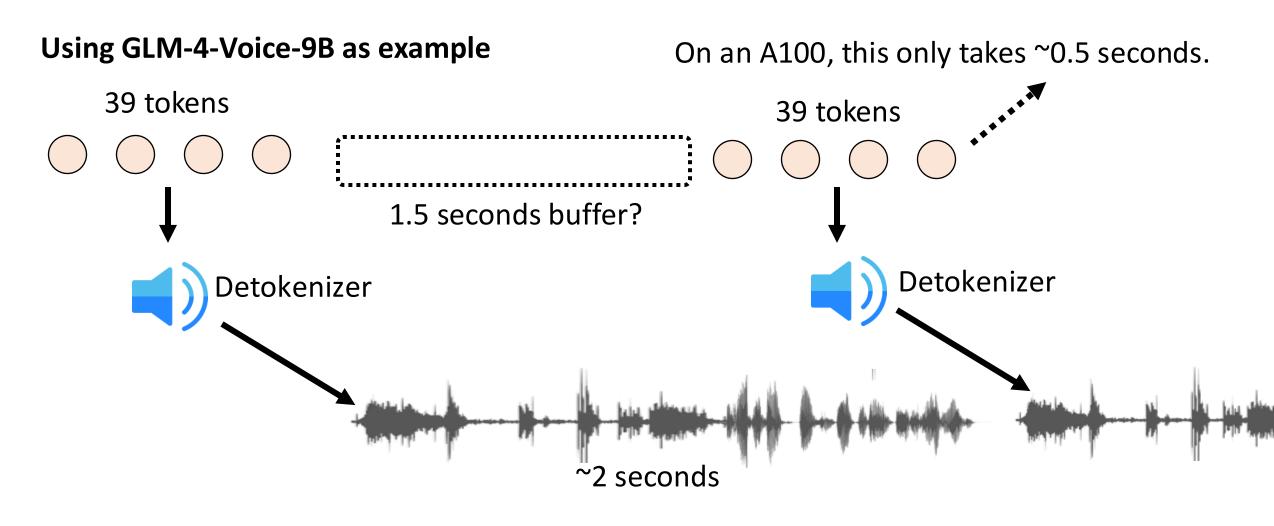
Cheng-Han Chiang^{1,2*} Xiaofei Wang^{2†} Linjie Li² Chung-Ching Lin² Kevin Lin² Shujie Liu² Zhendong Wang² Zhengyuan Yang² Hung-yi Lee¹ Lijuan Wang²

¹National Taiwan University ²Microsoft

https://arxiv.org/abs/2507.15375

Cheng-Han Chiang and Microsoft Researchers

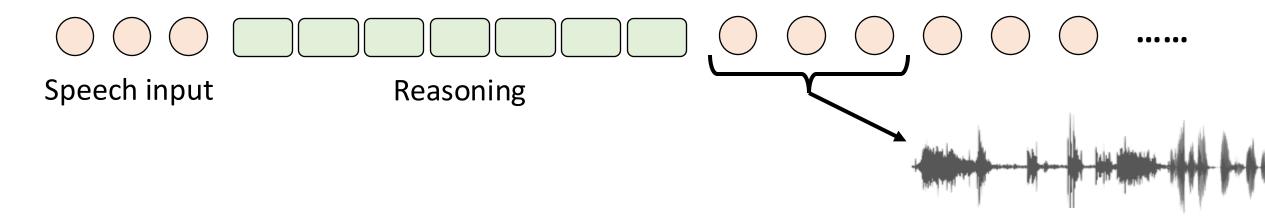
STITCH: Simultaneous Thinking and Talking with Chunked Reasoning



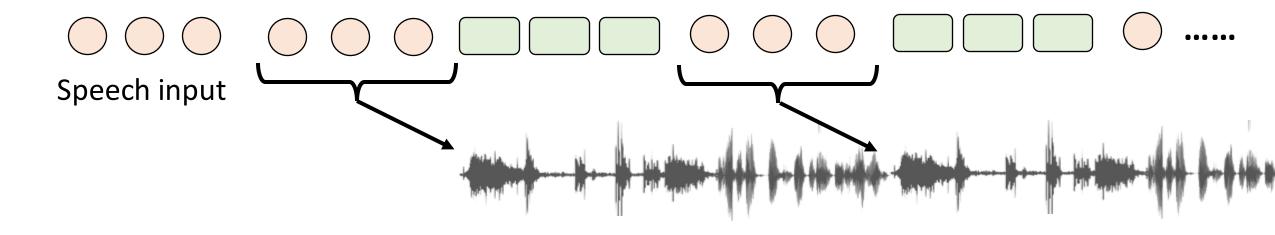
STITCH: Simultaneous Thinking and Talking with Chunked Reasoning



Typical Speech LLM + Reasoning

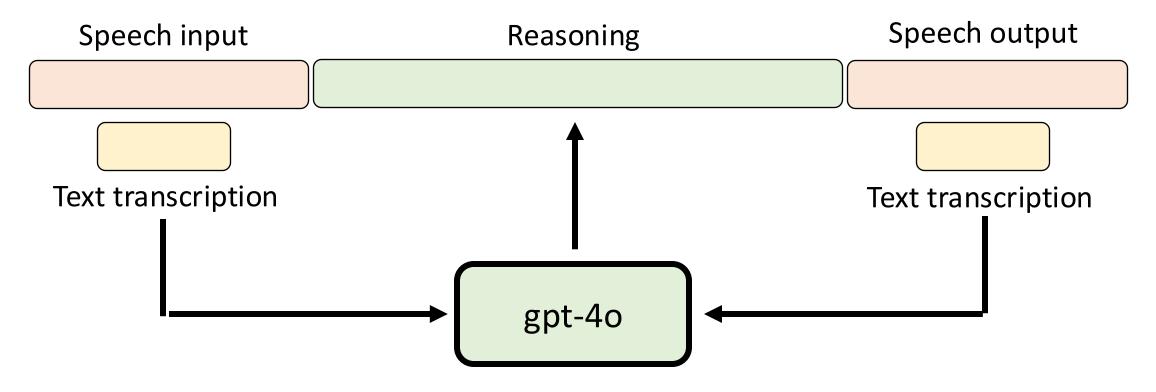


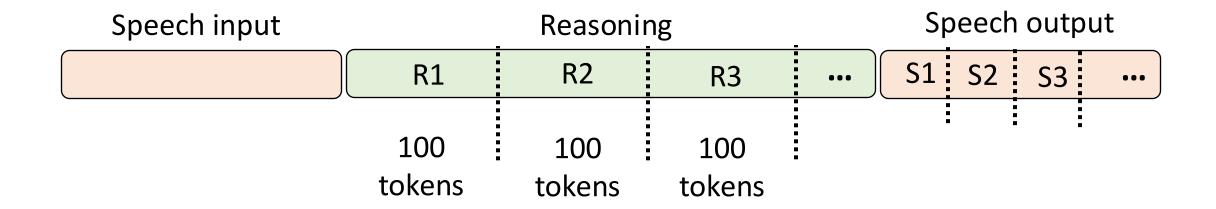
STITCH

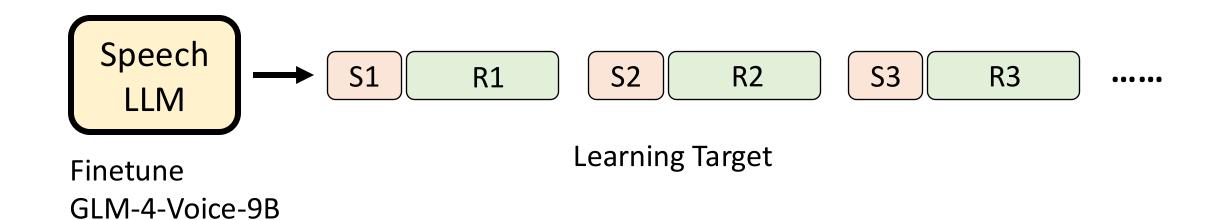


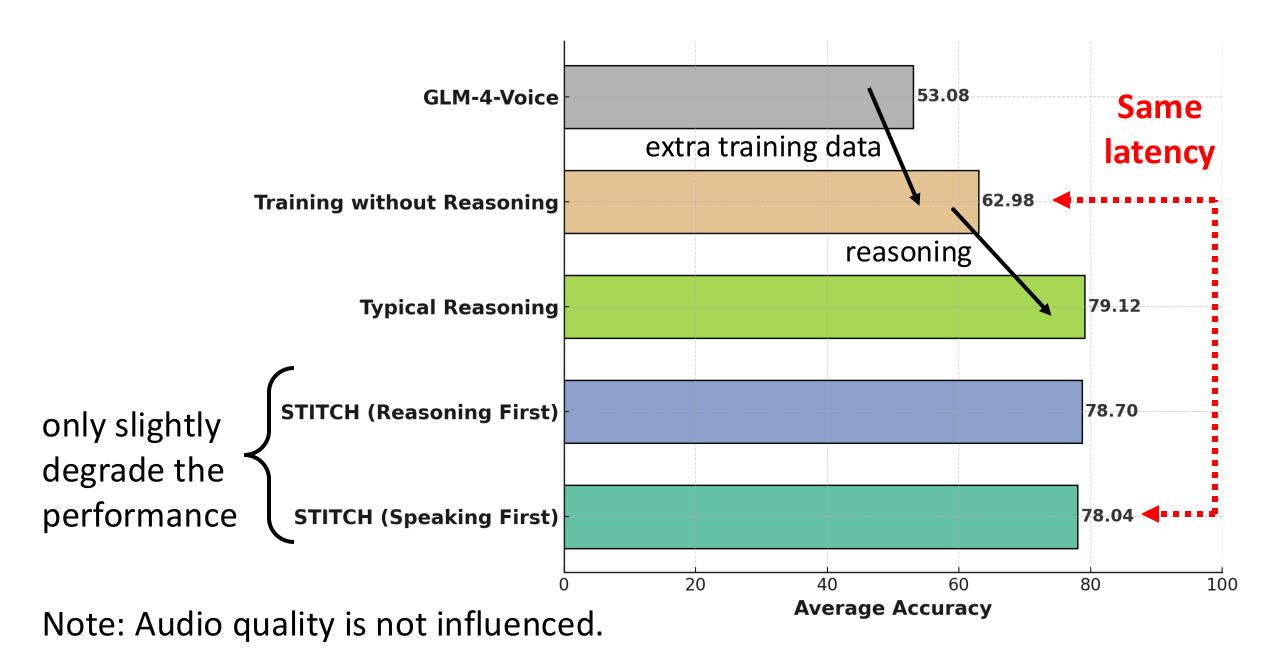
How to prepare training data

 There is already some speech-to-speech dialogue datasets (e.g., VoiceAssistant400K)

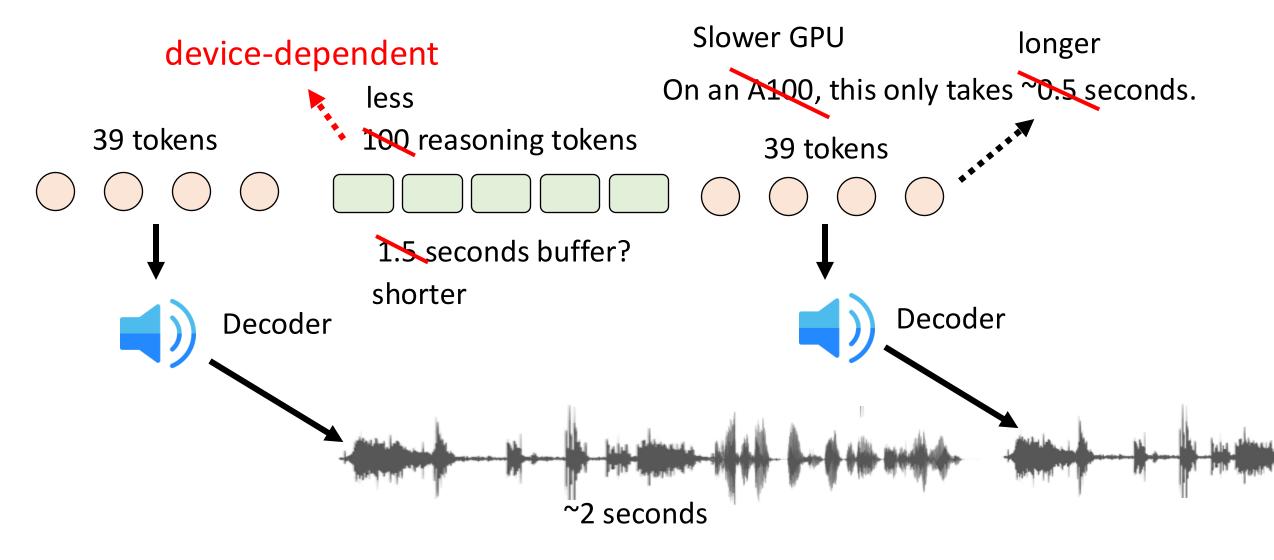






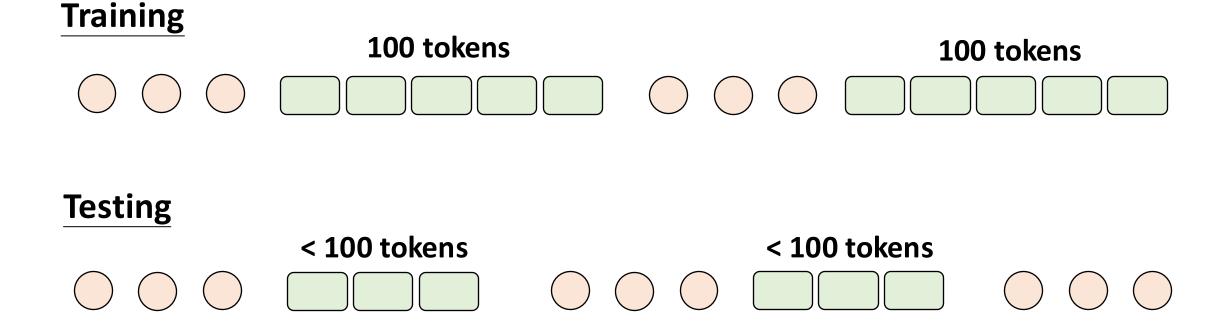


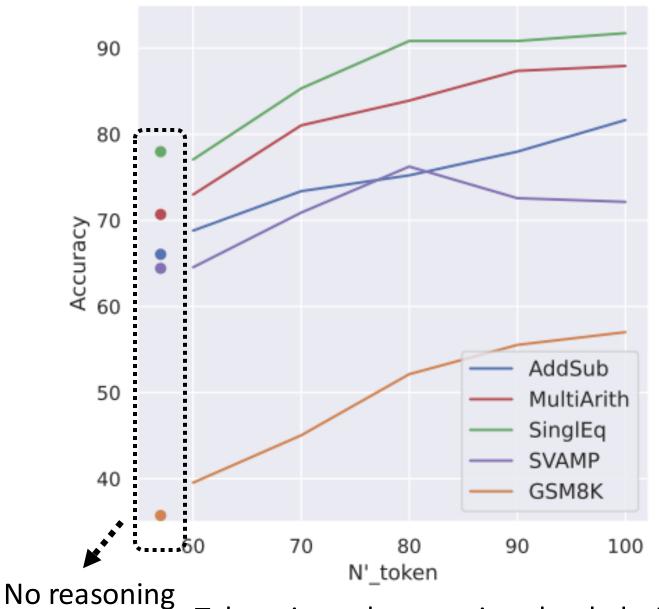
Dynamic Reasoning Chunk Sizes



Dynamic Reasoning Chunk Sizes

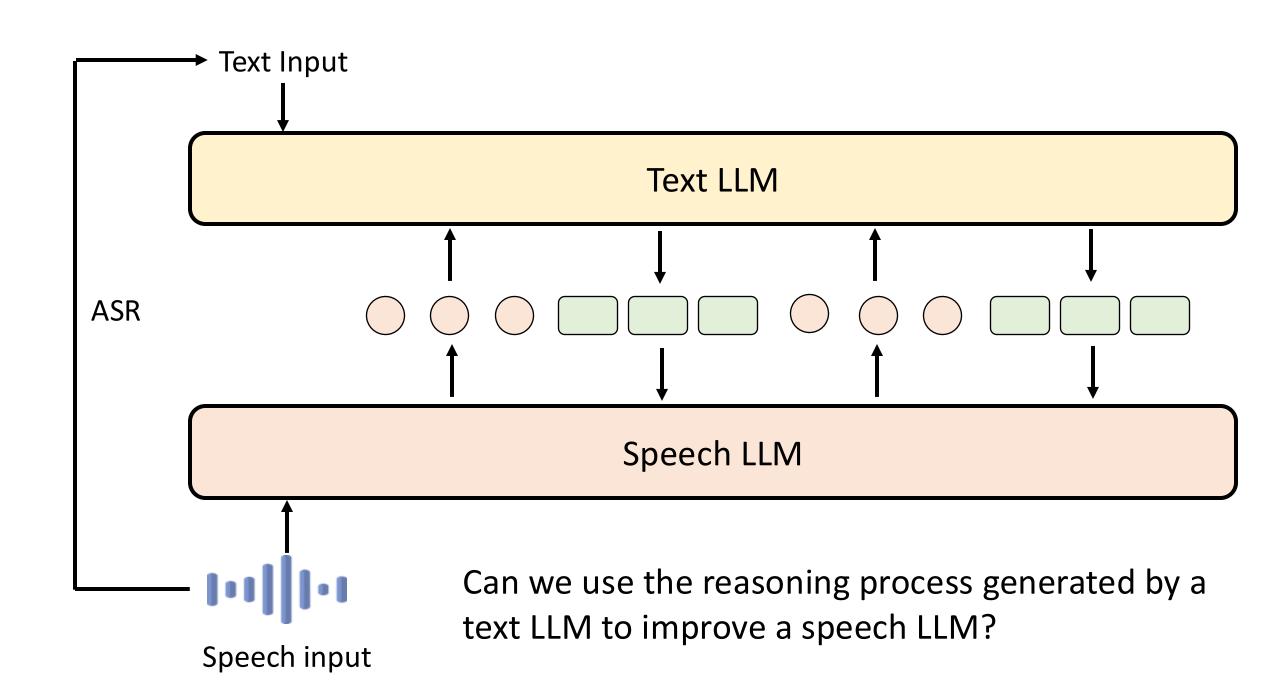
What would happen if the training and testing reasoning chunks have different numbers of tokens?

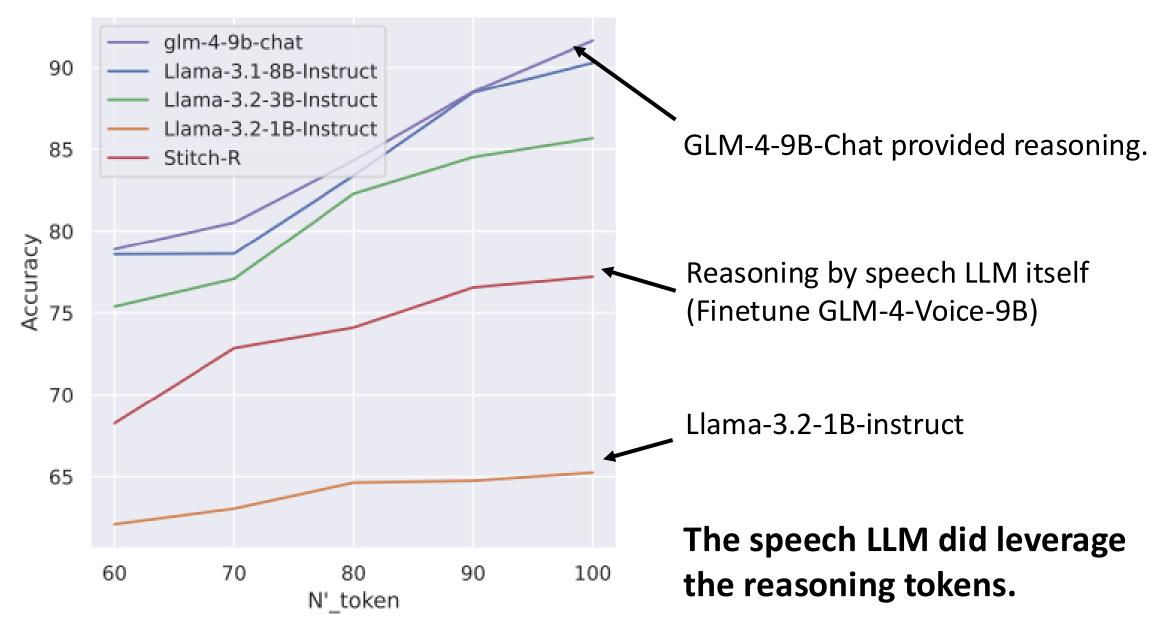




- Shorter reasoning chunks yield to worse performances
- Still better than "no reasoning" in many cases

Tokens in each reasoning chunk during inference





Tokens in each reasoning chunk during inference

Demo Video

```
User: Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?
```

Source: https://d223302.github.io/STITCH/

More

- Mini-Omni-Reasoner: Token-Level Thinking-in-Speaking in Large Speech Models
 - https://arxiv.org/abs/2508.15827
- Stream RAG: Instant and Accurate Spoken Dialogue Systems with Streaming Tool Usage
 - https://arxiv.org/abs/2510.02044
- SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
 - https://arxiv.org/abs/2510.06917
- Can SpeechLLMs Think while Listening?
 - https://arxiv.org/abs/2510.07497

Concluding Remarks

- 1. 序章:如何有效表示語音
- 2。初代語音語言模型
- 3。如何利用強大的文字模型

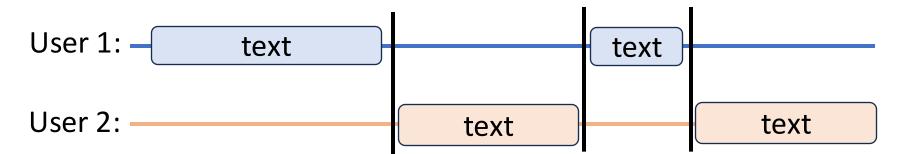
- 4。尋找更合適的語音表示方式
- 5。語音語言模型的三部曲
- 6。一邊說一邊思考

其實還有很多沒有講到的技術

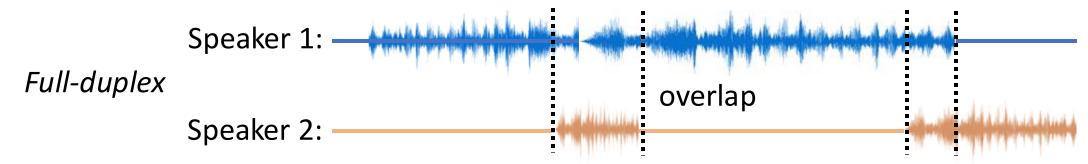
Beyond the Turn-based Game

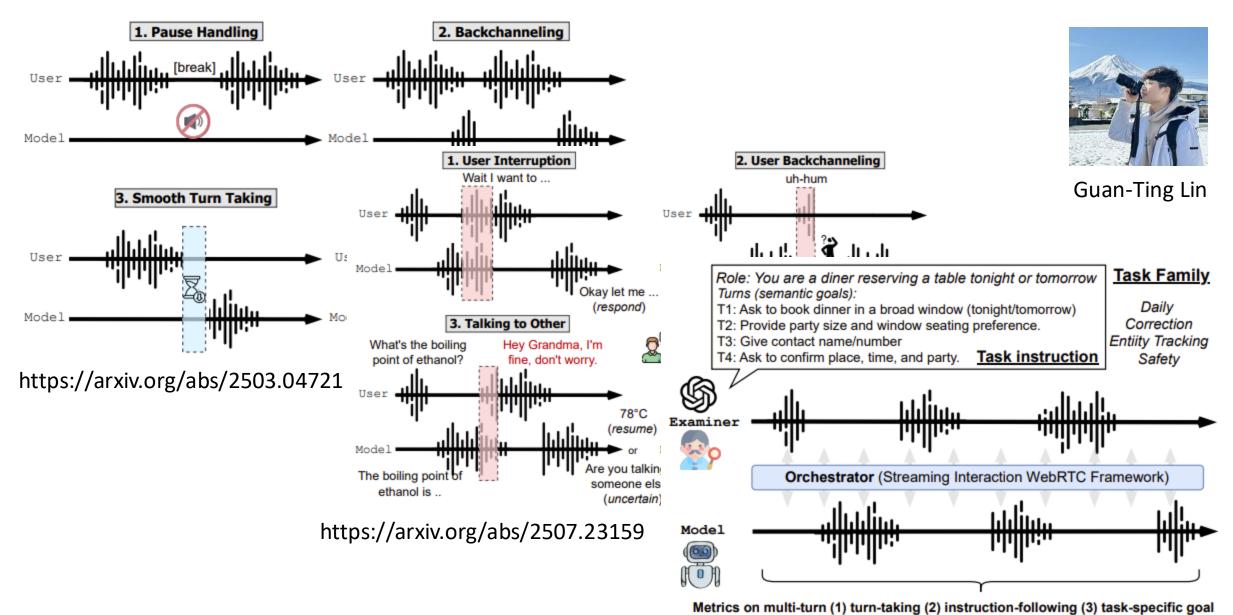
Text Conversation

Turn-based



Speech Conversation





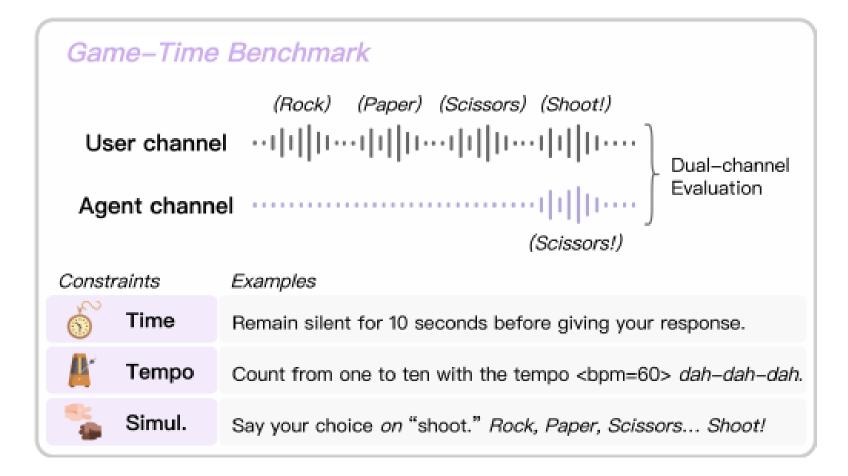
Full-Duplex-Bench

https://arxiv.org/abs/2510.07838

(With Shih-Yun Shan Kuan)

Do speech LLMs know how long 10 seconds is?

Kai-Wei Chang



https://arxiv.org/abs/2509.26388

On The Landscape of Spoken Language Models: A Comprehensive Survey

Siddhant Arora 1* Kai-Wei Chang 2* Chung-Ming Chien 3* Yifan Peng 1* Haibin Wu $^{2*\#}$ Yossi Adi $^{4+}$ Emmanuel Dupoux $^{5+}$ Hung-Yi Lee $^{2+}$ Karen Livescu $^{3+}$ Shinji Watanabe $^{1+}$

- ¹ Carnegie Mellon University, USA
- ² National Taiwan University, Taiwan
- ³ Toyota Technological Institute at Chicago, USA
- ⁴ Hebrew University of Jerusalem, Israel
- ⁵ ENS PSL, EHESS, CNRS, France

https://arxiv.org/abs/2504.08528

