GenAI-ML HW6 Deep Learning for Image Classification

TA: 劉建蘴、馮柏翰、李梁玉軒

ntu-gen-ai-ml-2025-fall-ta@googlegroups.com

Deadline: 2025/**11/21** 23:59:59 (UTC+8)

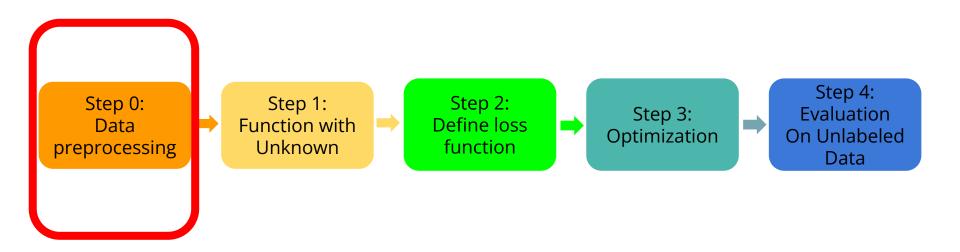
Outline

- Task Description
- Dataset
- Evaluation Metric
- Baseline
- Submission & Grading
- Hints

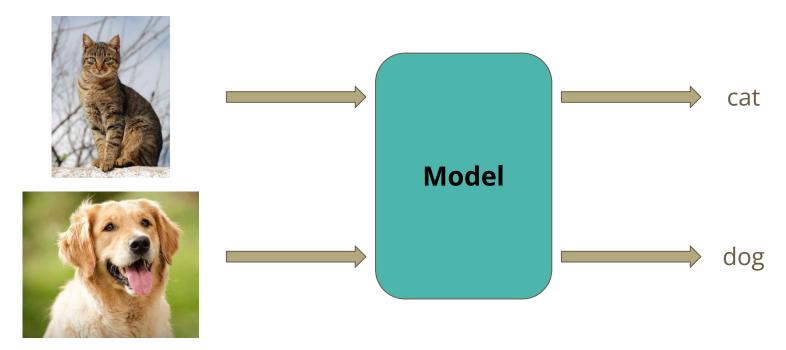
Links

- <u>JudgeBoi</u>
- Colab sample code
- Kaggle sample code
- ML2025 Colab/Kaggle tutorial
- Intro. to CNN (2021)

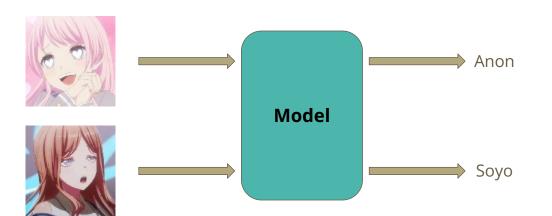
Homework Overview


- In this assignment, we will learn how to use a convolutional neural network (CNN) to solve an image classification task.
- We can decompose the whole assignment into 5 steps:

Ref: Slides for HW5


Homework Overview

- We expect you to know how to implement a convolutional neural network (CNN) with PyTorch in this assignment
- Be more familiar with convolutional neural networks (CNNs)
- Don't worry about building a CNN from scratch, we have provided a simple CNN template for you to refine it
- You can get at least **4 points** just by running the code, and **6 points** by simply adjusting some numbers.


Task Description

Construct an image classifier with pytorch

Task Description

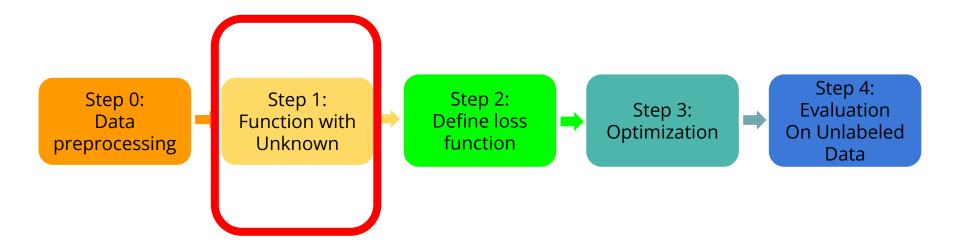
• In this homework, you will train a image classifier to classify 10 main characters in 《BanG Dream! It's MyGO!!!!!》and 《BanG Dream! Ave Mujica》

Dataset

Images are collected from (BanG Dream! It's MyGO!!!!!) and (BanG Dream! Ave Mujica)

There are 2378 images in the dataset:

- Training set: 1578 labeled images
- Validation set: 300 labeled images
- Testing set: 500 unlabeled images



Data Augmentation

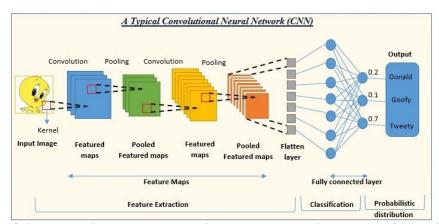
• Is training data enough for training your model? Try to "create" more data

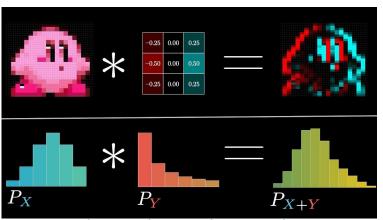
with existing data.

Properties of Images

- Properties of images
 - Spatial Locality
 - Translation Invariant
- Can we leverage such properties to design other architecture than MLP?

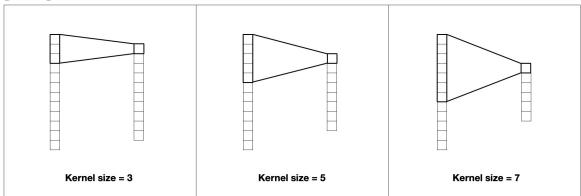
Translation Invariance





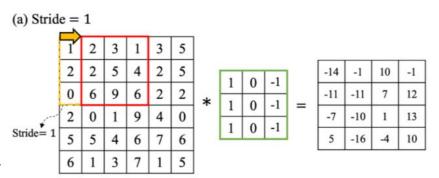
Convolutional Neural Network (CNN)

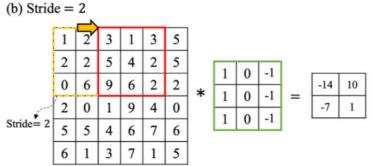
- Leverage the properties of image to capture the features in image more efficiently
 - Convolution
 - Pooling



Ref: https://locusit.se/techpost/specialisation/deep-learning/convolutional-neural-networks/
But what is a convolution?

Different Setting of CNN

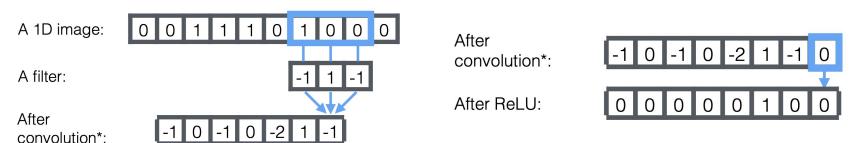

- Filter size of CNN
 - Larger filter
 - Broader area
 - Intermediate scale feature (eg. shape, contour)
 - Smaller filter
 - Narrower area
 - Local feature (eg. edge, texture)



Ref: https://smltar.com/dlcnn

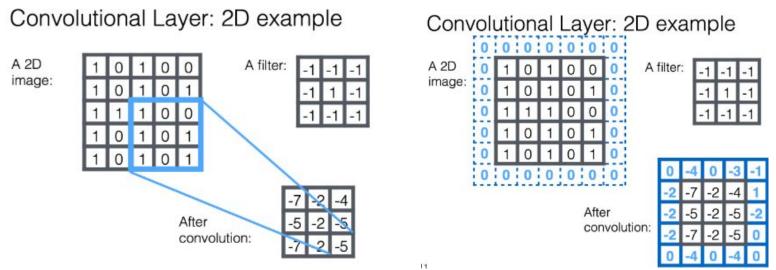
Different Setting of CNN

- Stride for filter in CNN
 - Large stride
 - Less computation and memory
 - May skip some features
 - Small stride
 - More computation and memory
 - Capture more features



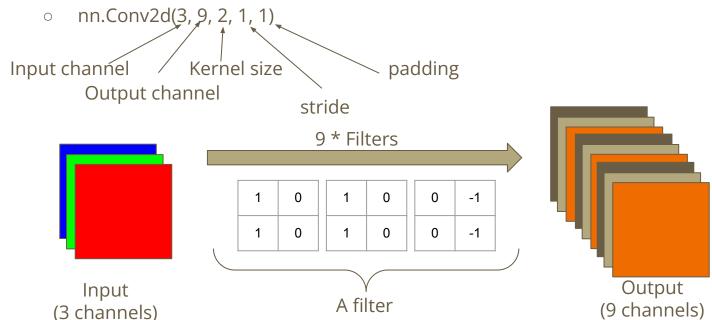
Ref:

1D-CNN

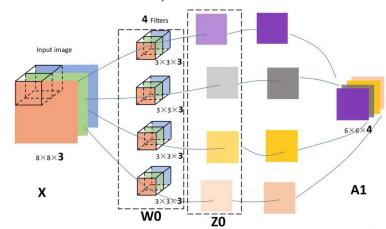

A simple example of 1D-CNN

Convolutional Layer: 1D example

2D-CNN


 Images "shrinks" after convolution, so padding is crucial for it to make size consistent across layers

Ref: https://tamarabroderick.com/files/ml 6036 2020 lectures/broderick lecture 08.pdf


Pytorch Implementation

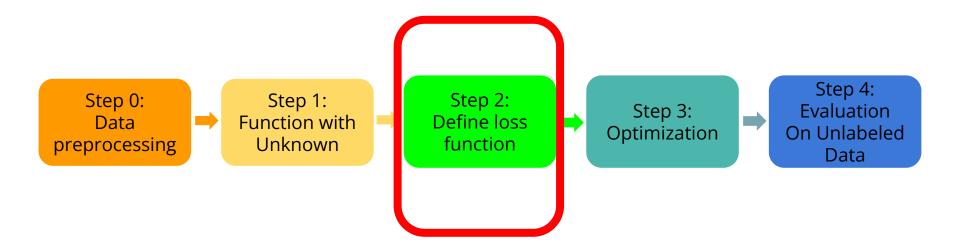
- Convolutional layer is already implemented in PyTorch!!
- An example of convolutional layer in PyTorch

Number of Parameters for Filters

- What is the trainable number of parameters in nn.Conv2d(3, 9, 2, 1, 1)?
 - Input channel = 3
 - Kernel size = 2 * 2
 - Filter size = (Input channel) * (kernel size)
 - Output channel = Filter number = 9
 - Total = (Input channel) * (kernel size) * (Filter number) = 108 parameters !!

Ref:

https://discuss.pytorch.org/t/masking-the-intermediate-5d-conv2d-output/144026


Pooling

- Dimension reduction
- Different pooling is used
 - Max pooling
 - Average pooling
 - Min pooling

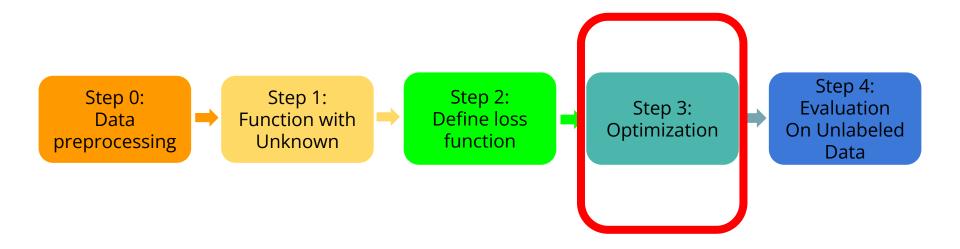
2	2	7	3
9	4	6	1
8	5	2	4
3	1	2	6

9	7
8	6

Loss function - Cross Entropy

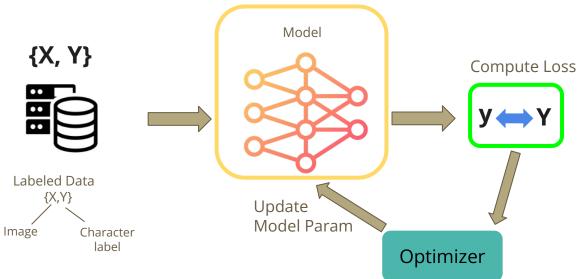
- What is cross entropy loss?
- Why is cross entropy loss, not MSE?
 - Not continuous

Groundtruth of i-th data for c-th class

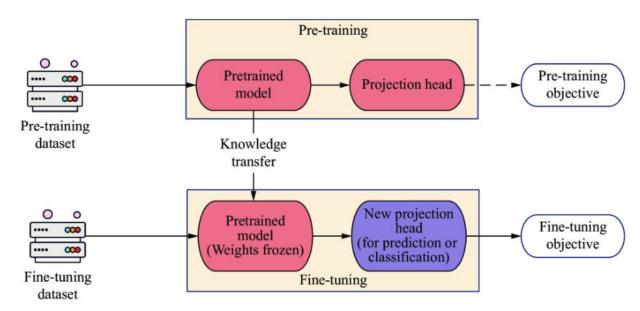

$$\sum_{i=1}^{N} \sum_{c=1}^{C} -y_{i,c} \log_2(p_{i,c})$$

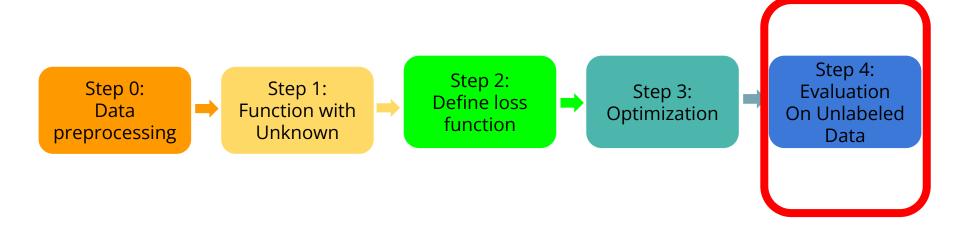
Predicted prob. of i-th data for c-th class

Example - Cross Entropy

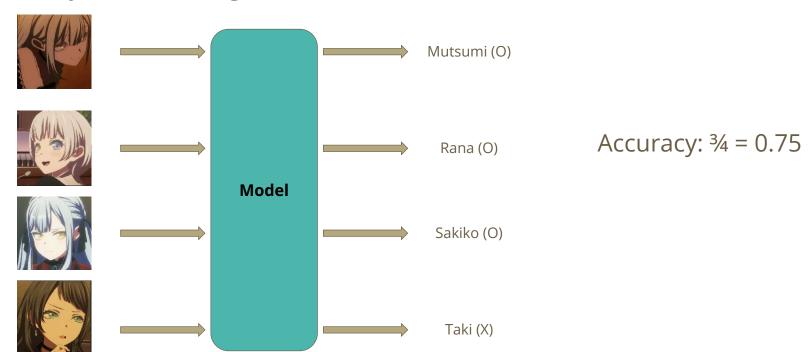

	Prediction		Groundtruth			
	Class 1	Class 2	Class 3	Class 1	Class 2	Class 3
Data 1	0.4	0.3	0.3	1	0	0
Data 2	0.3	0.4	0.3	0	1	0
Data 3	0.5	0.2	0.3	1	0	0
Data 4	0.8	0.1	0.1	0	0	1

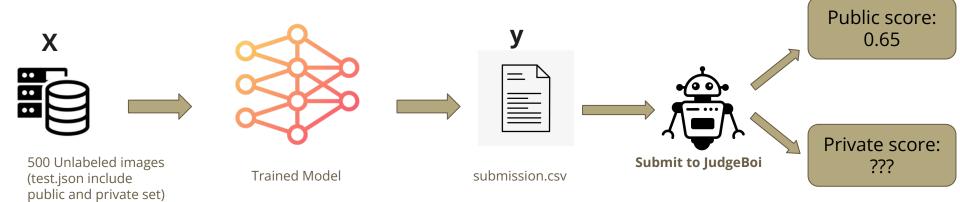
```
CE for data 1: -(1 \times \log(0.4) + 0 \times \log(0.3) + 0 \times \log(0.3)) = 1.322
CE for data 2: -(0 \times \log(0.3) + 1 \times \log(0.4) + 0 \times \log(0.3)) = 1.322
CE for data 3: -(1 \times \log(0.5) + 0 \times \log(0.2) + 0 \times \log(0.3)) = 1
CE for data 4: -(0 \times \log(0.8) + 0 \times \log(0.1) + 1 \times \log(0.1)) = 3.322
Total cross entropy loss = 1.322 + 1.322 + 1 + 3.322 = 6.966
```



Training Loop


 Leverage the label and the output of current model to optimize the model parameters

Pre-trained model


Why pre-trained models?


Evaluation Metric

Accuracy on the testing set

Evaluation pipeline

- Divide the whole testing set into two parts:
 - Public testing set (scores can be seen before the deadline)
 - Private testing set (scores cannot be seen before the deadline)

Release after Deadline

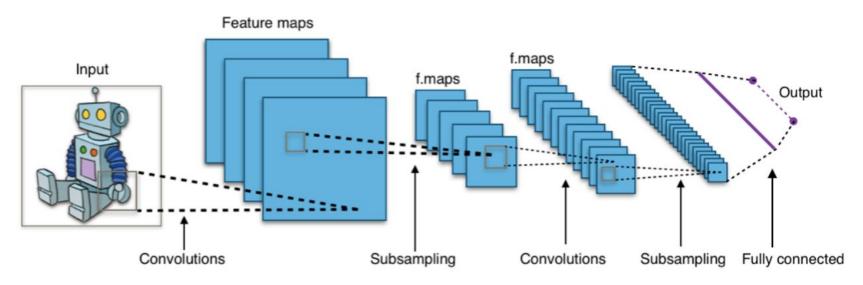
Grading & Baseline

- Any successful submission on Judgeboi: 2 pts
- Any public baseline worth 1 pt
 - Simple public baseline: 0.45
 - Medium public baseline: 0.70
 - Strong public baseline: 0.83
 - Boss public baseline: 0.94
- Any private baseline worth 1 pt
 - There are also 4 baselines for private baseline
 - Announce the result after the deadline

Submission(1/2)

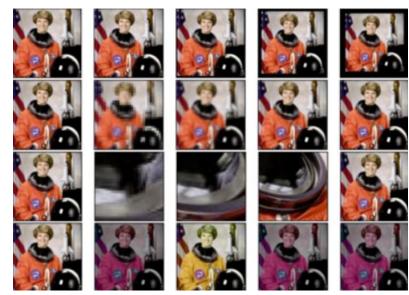
- Submit your prediction file to JudgeBoi
- You have 5 submission quota per day, reset at 23:59
- Deadline: 2025/11/21 23:59:59 (UTC+8)
- No late submission is allowed, please finish your homework as soon as possible

Submission(2/2)

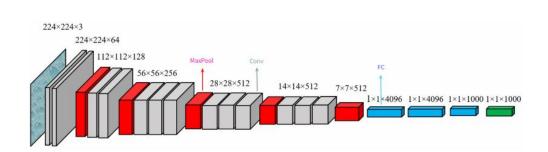

- Reminder: You can select up to 2 submissions on JudgeBot (If not selected, top 2 public score will be chosen by default)
- Beware of overfitting, high public score doesn't assure high private score
 - Refer to your validation score during training

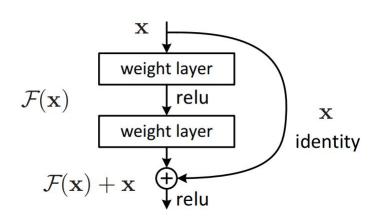
Hints For Passing the Baseline

JudgeBoi Submission (+2 pt)	Submit predicted results to JudgeBoi	Estimated Training Time	Estimated Inference Time	
Public Simple Baseline (+1 pt)	Just run the colab with MLP model and submit the predicted	5-10 minutes	1 minutes	
Private Simple Baseline(+1 pt)	"submission.csv" to JudgeBoi			
Public Medium Baseline (+1 pt)	Change model architecture to simple CNN in the sample code	10-15 minutes	1 minutes	
Private Medium Baseline(+1 pt)	and simply refine it			
Public Strong Baseline (+1 pt)	Refine your CNN model architecture again and data	10-15 minutes	1 minutes	
Private Strong Baseline(+1 pt)	augmentation			
Public Boss Baseline (+1 pt)	Use pre-defined models and fine-tuning models with	10-20 minutes	1 minutes	
Private Boss Baseline(+1 pt)	pre-trained weights			


Medium Baseline – Convolution Neural Network (CNN)

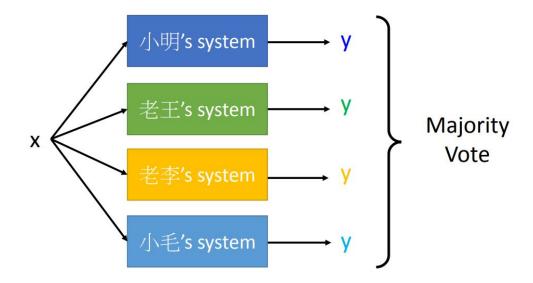
 Is linear layer enough for the classification? You may try convolution neural network (CNN).


Strong Baseline – Data Augmentation


 Is training data enough for training your model? Try to "create" more data with existing data.

Boss Baseline – More Advanced Pre-defined Model

- Standing on the shoulders of giants.
 - VGG
 - ResNet
 - o etc.



Ref: https://zhuanlan.zhihu.com/p/107884876 https://arxiv.org/pdf/1512.03385

Boss Baseline – Ensemble

- Two heads are better than one.
 - Majority vote
 - Logit sum

Other Hints – Techniques

You may try other techniques

- Dropout
- Test-time Augmentation
- Or others...?

Other Hints – Hyperparameter

Number of epochs	10~100 (default: 20)
Learning rate	1e-5 ~ 1e-2 (default: 2e-4)
Batch size	8, 16, 32, 64, 128 (default: 32)
Optimizer	Adam, AdamW, SGD (default: Adam)
Weight decay	1e-3 ~ 1e-5 (default: 1e-5)
Model size	5 MB ~ 150 MB

Grading Release Date

• The grading of the homework will be released by 2025/**12/12** 23:59:59 (UTC+8)

Regulations

- You should NOT plagiarize
- You should NOT modify your prediction files manually
- Do NOT share codes or prediction files with any living creatures
- Do NOT use any approaches to submit your prediction files more than 5 times a day
- Your final grade will x 0.9 and get a zero score for this homework if you violate above rules first time (within this semester)
- You will get a F as your final grade if you violate above rules multiple times
- Prof. Lee & TAs preserve the rights to change the rules & grade

If You Have Any Questions

- NTU Cool **HW6** 作業討論區
 - 如果同學的問題不涉及作業答案或隱私,請一律使用 NTU Cool 討論區
 - 助教們會優先回答NTU Cool討論區上的問題
- Email: ntu-gen-ai-ml-2025-fall-ta@googlegroups.com
 - Title should start with [GenAl-ML 2025 Fall HW6]
 - Email with the wrong title will be moved to trash automatically
- TA Hours
 - Time:
 - 11/3, 11/10, 11/17 Monday 20:00~22:00
 - 11/7, 11/14, 11/21 Friday 17:30~19:30
 - Location: Google Meet (<u>https://meet.google.com/qox-xubu-jak</u>)