1-4

Summary

$A: m \times n \quad \mathbf{x} \in \mathbb{R}^n \quad \mathbf{b} \in \mathbb{R}^m$

73. Describe an $m \times n$ matrix with rank 0

79. What is the largest possible rank of an $m \times n$ matrix?

79. What is the smallest possible nullity of an $m \times n$ matrix?

82. Let A be an m \times n matrix and **b** be a vector in \mathbb{R}^m . What must be true about the rank of A if $A\mathbf{x} = \mathbf{b}$ has a unique solution?

Rank A = ?

83. A system of linear equations is called *underdetermined* if it has fewer equations than variables. What can be said about the number of solutions of an *underdetermined* system?

84. A system of linear equations is called *overdetermined* if it has fewer equations than variables. What can be said about the number of solutions of an *overdetermined* system?

Summary

$A: m \times n \quad \mathbf{x} \in \mathbb{R}^n \quad \mathbf{b} \in \mathbb{R}^m$

81. Let A be a 4×3 matrix. Is it possible that Ax = b is consistent for every **b** in R^4 ?

85. Prove that if A is an $m \times n$ matrix with rank m, then Ax = b is consistent for every **b** in \mathbb{R}^m .

86. Prove that a matrix equation Ax = b is consistent if and only if the ranks of A and $\begin{bmatrix} A & b \end{bmatrix}$ are equal.

Chapter 1: Review

74 Let A be an $m \times n$ matrix with reduced row echelon form R. Describe the reduced row echelon form of each of the following matrices.

(a) [*A* **0**]

(b) $\begin{bmatrix} a_1 & a_2 & \cdots & a_k \end{bmatrix}$ for k < n

(c) *cA*, where *c* is a nonzero scalar

(d) $\begin{bmatrix} I_m & A \end{bmatrix}$

(e) [A cA], where c is any scalar