Summary

Is b a linear combination of columns of A?
Is b in the span of the columns of A?

NO
No solution

YES

The columns of A are independent.
Rank $A = n$
Nullity $A = 0$

Unique solution

The columns of A are dependent.
Rank $A < n$
Nullity $A > 0$

Infinite solution

$A: m \times n$
$x \in \mathbb{R}^n$
$b \in \mathbb{R}^m$
Rank

- Maximum number of Independent Columns
- Number of Pivot Column
- Number of Non-zero rows

\[\text{Rank} A \leq \text{Number of columns} \]
\[\leq \min(\text{Number of columns, Number of rows}) \]
\[\leq \text{Number of rows} \]
73. Describe an $m \times n$ matrix with rank 0

79. What is the largest possible rank of an $m \times n$ matrix?

79. What is the smallest possible nullity of an $m \times n$ matrix?

82. Let A be an $m \times n$ matrix and b be a vector in R^m. What must be true about the rank of A if $Ax = b$ has a unique solution?

Rank $A =$?
83. A system of linear equations is called *underdetermined* if it has fewer equations than variables. What can be said about the number of solutions of an *underdetermined* system?

84. A system of linear equations is called *overdetermined* if it has fewer equations than variables. What can be said about the number of solutions of an *overdetermined* system?
Summary

Is \(b \) a linear combination of columns of \(A \)?

- **NO**: The columns of \(A \) are \textit{independent}.
 - \(\text{Rank } A = n \)
 - \(\text{Nullity } A = 0 \)
 - Unique solution

- **YES**: The columns of \(A \) are \textit{dependent}.
 - \(\text{Rank } A < n \)
 - \(\text{Nullity } A > 0 \)
 - Infinite solution

Is \(b \) in the span of the columns of \(A \)?

- **NO**: No solution
- **YES**: Unique solution

\[A: m \times n \quad x \in R^n \quad b \in R^m \]
Ax = b is consistent for every b

\[A: m \times n \]

Every b is in the span of the columns of A = \([a_1, \ldots, a_n]\)

Every b belongs to \(\text{Span}\{a_1, \ldots, a_n\}\)

\(\text{Span}\{a_1, \ldots, a_n\} = R^m\)

RREF of [A b] cannot have a row whose only non-zero entry is at the last column

RREF of A cannot have zero row

Rank A = no. of rows
81. Let A be a 4×3 matrix. Is it possible that $Ax = b$ is consistent for every b in R^4?

85. Prove that if A is an $m \times n$ matrix with rank m, then $Ax = b$ is consistent for every b in R^m.

86. Prove that a matrix equation $Ax = b$ is consistent if and only if the ranks of A and $[A \ b]$ are equal.
Chapter 1: Review
Let A be an $m \times n$ matrix with reduced row echelon form R. Describe the reduced row echelon form of each of the following matrices.

(a) $[A \; 0]$

(b) $[a_1 \; a_2 \; \ldots \; a_k]$ for $k < n$

(c) cA, where c is a nonzero scalar

(d) $[I_m \; A]$

(e) $[A \; cA]$, where c is any scalar