1-4

## Summary

```
Is b}\mathrm{ a linear combination
of columns of A?
Is \(b\) in the span of the columns of \(A\) ?
```



## Rank


73. Describe an $m \times n$ matrix with rank 0
79. What is the largest possible rank of an $m \times n$ matrix?
79. What is the smallest possible nullity of an $m \times n$ matrix?
82. Let $A$ be an $\mathrm{m} \times n$ matrix and $\boldsymbol{b}$ be a vector in $R^{m}$. What must be true about the rank of $A$ if $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution?

Rank $A=$ ?
83. A system of linear equations is called underdetermined if it has fewer equations than variables. What can be said about the number of solutions of an underdetermined system?
84. A system of linear equations is called overdetermined if it has fewer equations than variables. What can be said about the number of solutions of an overdetermined system?

## Summary

$A: m \times n \quad x \in R^{n} \quad b \in R^{m}$


## $\mathrm{Ax}=\mathrm{b}$ is consistent for every $\mathrm{b} \quad A: m \times n$

II
Every $b$ is in the span of the columns of $\mathrm{A}=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$
II
Every $b$ belongs to $\operatorname{Span}\left\{a_{1}, \cdots, a_{n}\right\}$ II
$\operatorname{Span}\left\{a_{1}, \quad \cdots, a_{n}\right\}=R^{m}$
II
RREF of [A b] cannot have a row whose only non-zero entry is at the last column II

RREF of A cannot have zero row

## II

Rank $A=$ no. of rows
81. Let $A$ be a $4 \times 3$ matrix. Is it possible that $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for every $\boldsymbol{b}$ in $R^{4}$ ?
85. Prove that if $A$ is an $m \times n$ matrix with rank $m$, then $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for every $\boldsymbol{b}$ in $R^{m}$.
86. Prove that a matrix equation $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if the ranks of $A$ and $\left[\begin{array}{ll}A & \boldsymbol{b}\end{array}\right]$ are equal.

Chapter 1: Review reduced row echelon form of each of the following matrices.
(a) $\left[\begin{array}{ll}A & 0\end{array}\right]$
(b) $\left[\begin{array}{llll}\boldsymbol{a}_{1} & \boldsymbol{a}_{\mathbf{2}} & \cdots & \boldsymbol{a}_{\boldsymbol{k}}\end{array}\right]$ for $k<n$
(c) $c A$, where $c$ is a nonzero scalar
(d) $\left[\begin{array}{ll}I_{m} & A\end{array}\right]$
(e) $\left[\begin{array}{ll}A & c A\end{array}\right]$, where $c$ is any scalar

